
UNIVERSITY OF TARTU

Faculty of Science and Technology

Institute of Computer Science

Software Engineering Curriculum

Sander Jenk

A multi-objective optimizer to retrieve

issue reports based on developer

experience and business value

Master’s Thesis (30 ECTS)

Supervisor: Ezequiel Scott, PhD

Tartu 2022

Contents

1 Introduction 6

2 Background 8
2.1 Agile software development . 8

2.2 Issue reports . 8

2.3 Sprint planning . 10

2.4 Issue self-assignment . 10

2.5 Importance of accounting for developer preferences 11

2.6 Multi-objective optimization . 12

3 Related work 13

4 Methodology 15
4.1 Research goal . 15

4.2 The approach . 15

4.3 Dataset . 16

4.4 Data preprocessing . 16

4.4.1 Closed-source project . 16

4.4.2 Preprocessing . 18

4.4.3 LDA preprocessing . 19

4.5 Topic extraction . 19

4.6 Optimization algorithm overview . 20

4.6.1 Candidate solution . 20

4.6.2 Fitness functions . 20

4.6.3 Constraint . 21

4.6.4 Performance Indicator . 22

4.6.5 Termination criterion . 24

4.7 Hyperparameter selection . 24

4.7.1 LDA . 24

4.7.2 NSGA-II . 25

4.8 Quantitative validation . 27

2

4.9 Qualitative validation . 29

5 Results 31
5.1 Dataset description . 31

5.2 Performance results (RQ1) . 32

5.3 Survey results (RQ2) . 41

6 Discussion 49
6.1 Research questions . 49

6.2 Limitations . 50

7 Conclusions and future work 51

Appendix 57
I. Interview questionnaire . 57

7.0.1 Survey introduction . 57

7.0.2 Section 1: Demographic . 57

7.0.3 Section 2: Choosing the desired sprint plan 58

7.0.4 Section 3: Evaluating the generated set of issues 59

II. Prototype . 62

II. Licence . 65

3

A multi-objective optimizer to retrieve issue reports based on devel-
oper experience and business value

Abstract:
In Agile Software Development, software gets delivered in short iterations. Selecting

work for an iteration is complex for multiple reasons. When planning the iteration,

developers need to consider their experience, preferences, and work capacity while

maximizing the business value. To do this, developers have to understand the content of

the issue reports, which is time-consuming because the backlogs can contain thousands

of issues. With these things in mind, an automatic multi-objective approach is proposed

in this thesis that retrieves issues from the backlog for a developer based on their work

capacity and optimizes for the business value of the issue, developer’s previous experience

with similar issues, and the novelty of the issue. The approach uses LDA to extract topics

from the issues. These topics are used to define the developer experience and novelty.

NSGA-II is used as the optimization algorithm to extract the set of issues that satisfy the

3 objectives. The approach is evaluated using the data of 15 open-source projects and 1

closed-source project. The evaluation includes an analysis of execution times and the

quality of the solutions based on Hypervolume. In addition, a survey with developers

is conducted to better understand their opinion and the quality of the solutions. The

results show that you can get optimal solutions in less than 4 seconds on average, which

is considerably better than the time developers take to manually select issue reports

under the same conditions. The answers from the survey show positive results since

the approach optimizes for the 3 selected objectives. For these reasons, the tool will be

beneficial in the sprint planning process of software projects.

Keywords:
Multi-objective optimization, natural language processing, agile software development

CERCS: P170 Computer science, numerical analysis, systems, control

4

Mitme eesmärgiga optimeerija leidmaks tööülesandeid vastavalt tark-
varaarendaja kogemusele ja ärilisele väärtusele

Lühikokkuvõte:
Välearendust kasutavates tarkvaraprojektides tarnitakse tarkvara lühikeste iteratsiooni-

dena. Tööülesannete valimine iteratsiooni on keeruline mitmel põhjusel. Iteratsiooni

planeerides peavad tarkvaraarendajad arvesse võtma enda kogemust, eelistusi ja töömah-

tu ning maksimeerima iteratsiooni ärilist väärtust. Selleks peavad nad olema tuttavad

ülesannete sisuga, mis on aeganõudev, kuna tegemata tööde prioriteediloend võib olla tu-

handeid kirjeid pikk. Neid faktoreid arvestades on selle magistritöö eesmärk välja töötada

automaatne mitme eesmärgiga optimeerimismeetod, mis leiaks tegemata tööde loendist

ülesanded vastavalt tarkvaraarendaja töövõimakusele ja maksimeeriks kolme eesmärki:

tööülesannete ärilist väärtust, arendaja eelnevat kogemust sarnaste tööülesannetega ja töö-

ülesande uudsust arendaja vaatepunktist. Välja töötatud meetod kasutab LDA algoritmi

tööülesannetest teemade ekstraheerimiseks ja neid teemasid kasutatakse arendaja eelneva

kogemuse ja tööülesande uudsuse defineerimiseks. NSGA-II algoritmi kasutatakse kolme

eesmärgi optimeerimiseks, et leida parimad tööülesannete kombinatsioonid tegemata

tööde loendist. Välja töötatud meetodi efektiivsust näidatakse kasutades 15 avatud lähte-

koodiga projekti ja 1 kinnise lähtekoodiga projekti andmestikke. Meetodi efektiivsuse

hindamine sisaldab käitusaja uurimist ja leitud lahendite kvaliteedi analüüsi kasutades

Hypervolume sooritusnäitajat. Lisaks küsitletakse tarkvaraarendajaid, et paremini mõista

nende eelistusi ja genereeritud lahendite kvaliteeti. Tulemused näitavad, et optimeeritud

lahendite genereerimine võtab keskmiselt alla 4 sekundi, mis on oluliselt kiirem võrreldes

manuaalselt tööülesannete valimisega samu kriteeriumeid arvesse võttes. Küsitlus näitab

samuti positiivseid tulemusi, kuna meetod optimeerib 3 eesmärki arvesse võttes. Välja

töötatud meetod on neid tulemusi arvesse võttes iteratsioonide planeerimiseks kasulik

tööriist.

Võtmesõnad:
Mitme eesmärgiga optimeerimine, loomuliku keele töötlus, välearendus

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-

teooria)

5

1 Introduction

In Agile Software Development, software gets delivered in short iterations that represent

small increments. Some agile methodologies such as Scrum prescribe planning phases

where work that should be completed during the iteration is selected [22]. This task

is not trivial for multiple reasons. First, it has been shown that work items to be done

in a software project grow over time and can reach thousands [14]. When developers

need to plan the work items to be completed during the next iteration, they have to go

over their descriptions and understand their content, which is a time-consuming activity

and requires knowledge about the business domain and the systems being developed.

Moreover, if the product backlog is large, there are many combinations of work items

that could be selected for the iteration, and exploring all the possible combinations is also

time-consuming. Second, the goal of an iteration is to deliver as much business value

as possible [22]. For example, urgently needed new functionality or a critical bug that

prevents users from using the system should be planned into the iteration before more

trivial work items. Third, the amount of work to be added into an iteration is limited by

the amount of work that the team can do. Choosing too many tasks means that all work

may not be completed and choosing too few means that team members could be idling at

the end of the sprint.

In addition, in open-source projects where work self-assignment is in place, devel-

opers have been shown to choose work items based on multiple factors [16]. Among

them are having previous experience with similar issues in the past and the opportunity

to learn new technology, tools, and domains. Issues, that match developer preferences

should therefore be planned into sprints. The goal is to take all of the aforementioned

aspects into consideration when choosing issues for a sprint, which makes it a multi-

objective optimization problem. Business value and developer preferences should be

maximized, while the quantity of work should remain doable. Due to the large backlogs

and time-consuming nature of sprint planning, the use of an automatic tool to support

sprint planning could make the software development of an agile team easier.

The aim of this thesis is to simplify the sprint planning activity by introducing an

approach that automatically retrieves a set of issues from the backlog for a developer.

The approach is based on a multi-objective algorithm that optimizes for business value

6

delivered, the developer’s experience with similar issues in the past, and the novelty of

the issue from the perspective of the developer. To validate the approach, quantitative

and qualitative methods are used. The quantitative evaluation includes an experiment

that uses data from open-source software projects and calculates Hypervolume. The

qualitative evaluation analyzes the results of a survey conducted on real-life developers,

where they are asked to evaluate the sprint plan generated by the approach described in

this thesis.

This thesis is structured as follows: Section 2 shows an overview of Agile Software

Development in the context of selecting work items for the next iteration. Section 3

provides an overview of related research. Section 4 describes the methodology followed

in this thesis. The results are presented in section 5 and further discussed along with the

limitations of the thesis in section 6. In section 7, I give a conclusion to the thesis and

propose future work.

7

2 Background

2.1 Agile software development

Agile software development is a practice, where the software gets delivered early and

continuously [17]. This is a stark contrast to earlier models like the waterfall model,

where all software development activities are completed linearly and sequentially, mean-

ing that only when one activity is completely finished, the project proceeds to the next

software development activity [27]. Activities like requirements engineering, system de-

sign, development, testing, and deployment are completed once and in order. This model

doesn’t allow for changing requirements. In Scrum software gets delivered often, usually

in 2-4 week increments, which are called sprints. All aforementioned activities related to

software development are done within the same increment in agile software development.

This requires cross-functional teams, meaning teams are composed of different roles,

like the developer(s), tester(s), operations engineer(s), etc [17]. Cross-functional teams

should have all the skills and knowledge to be responsible for delivering their part of the

product from beginning to end during the sprint. The outcome of each sprint is a piece of

working software. This approach promotes sustainable development and the software

team can indefinitely maintain a constant pace.

2.2 Issue reports

In agile projects, the product backlog contains a list of things to be done in a project [1].

Issue tracking systems (e.g. JIRA1) are usually used to keep track of work in projects.

Within these systems, issue reports are the work items. Issues have many properties

related to them, like textual summary, textual description, type, estimation, priority,

status, assignee, and the creation date and completion date. Most systems allow for

adding custom fields. The summary is one sentence long and contains the most important

information about the task. The textual description contains a detailed overview of what

needs to be done in the context of this issue. The types are usually predefined and the

most common ones are feature requests and bug reports. Priority shows how important is

the issue from the client’s perspective. It can be represented numerically where a larger

1https://www.atlassian.com/software/jira

8

Figure 1. An example of a JIRA issue

value corresponds with higher priority and a smaller value with lower priority. Estimation

is usually represented as story points. Story points are relative units of measure, that

show how much effort is required to complete the issue. Relative means that an issue

with 2 story point estimation requires twice the amount of work when compared to an

issue with 1 story point estimation.

9

2.3 Sprint planning

Scrum is one of the most popular agile software development frameworks. It defines the

activities that facilitate the development process. One of these events is sprint planning,

where it is decided what will be done in the next sprint [22]. During sprint planning,

the sprint goal is defined. The sprint goal expresses the business value delivered during

the upcoming sprint. The team then decides which work items match the sprint goal

and then selects them for the sprint. It is important to account for the team’s capability

when choosing the set of issues to be included in the sprint [22]. When choosing too

few issues, then the work could be completed before the end of the sprint and cause idle

time for team members and additional resources are needed to select more tasks for the

sprint. When choosing too many issues, then the work might not get done during the

sprint. The capability of the team is measured with velocity [19]. Velocity is calculated

by taking the average of story points completed by the team in previous sprints. Velocity

therefore can be used to estimate the number of story points the team is able to complete

in the upcoming sprint. The sum of story points of the issues selected in the sprint should

match the team velocity as close as possible. Some software projects don’t use story

points, which means that the number of issues represents the velocity in these projects.

2.4 Issue self-assignment

Self-assignment is a practice used by agile self-organizing teams, where individuals

choose to work for themselves [15]. It is used less than other agile practices. While the

concept is simple, it is difficult to take it into practice because of different challenges

related to the relationships between the team and the individual traits of team members.

In some cases, software team managers have insufficient trust in their team members to

choose and complete the required work or self-assign tasks that have a higher priority or

business value. In some cases, developers lack the confidence to pick tasks themselves.

Self-assignment is also more difficult for new team members. It has been shown that

self-assignment is more popular in open-source projects since they work differently

compared to corporate closed-source projects. Open-source projects usually have a small

number of main contributors and a larger amount of volunteer developers contributing

in parts of interest. Self-assignment is the most popular task allocation method in open

10

source projects and it has been observed that micro-management or task delegation

through project managers is not prevalent [15].

2.5 Importance of accounting for developer preferences

Lately, there has been a lot of research into employee well-being and its effect on

employee performance [7, 8]. The happy/productive worker thesis has been around

since the 1920s and more recently the effect on the happiness and unhappiness of

employees has been studied in the context of software development. Studies have

shown that unhappiness in developers has multiple negative consequences: low cognitive

performance and reduced motivation of the developer, lower code quality, and discharging

code (deleting parts of code or whole repositories) [7]. Also, unhappiness causes

developers to be less productive, causing more delays in projects, that stem from glitches

in communication activities and disorganized workflow. All these factors mean, that it is

in the interest of software companies and software team’s interest to keep their developers

happy. While it is not feasible for a software company to influence factors that are not

related to work and have an effect on employee well-being, it is possible to influence

developer well-being with processes and tasks related to software development.

Developers have noted that they are happier and more motivated when they can assign

issues to themselves [15]. This is because they have some level of ownership of these

tasks and they see value in what they are doing. Low quality of work was described as

the outcome of someone else assigning tasks since usually managers were not aware of

the assignee’s skill set.

In projects where self-assignment is in place developers consider a set of motivat-

ing factors when assigning issues [16]. Among the developer-based factors are the

developer’s technical ability to perform the task, previous experience with similar tasks

(developer experience), and the opportunity to learn new technology, tools, or domains

(novelty). In this research, we will handle two of the latter factors in the sprint planning

approach.

11

2.6 Multi-objective optimization

Multi-objective algorithms have been used to solve many real-life problems in the fields

of economy, finance, engineering, and programming [10]. They are useful in cases

where multiple objectives need to be considered. The objectives are often conflicting

and trade-offs have to be made. An example of an optimization problem is buying a car,

where the cost, comfort, power, and fuel consumption are considered. A car with more

power has worse fuel consumption and a more comfortable car costs more. Considering

all objectives at once is a complex task.

Evolutionary algorithms are popular for solving multi-objective problems [33]. The

result of multi-objective optimization is a set of solutions that form the Pareto front,

where Pareto efficiency can be observed [21]. It is a state, where it is not possible

to improve any of the objectives without making others worse. This means that all

solutions in the set are optimal, but the objective values vary between all the individuals.

Scalarizing is one way to narrow down the output to a single solution [18].

12

3 Related work

Tuarob et al. [29] proposed a recommendation algorithm (RECAST) that would recom-

mend suitable team members in different roles for a given software task. The authors

proposed 20 different features derived from knowledge graphs, that encoded collabora-

tion history, task similarity, and team members’ skills. Task similarity graph was built

using Latent Dirichlet Allocation (LDA). The algorithm was used to build topic models

of the tasks. To calculate task similarities cosine similarity of the topic distribution

vectors (TDV) was used. One of the features that used the data from the task similarity

graph was task familiarity, which indicated the team’s experience dealing with similar

issues in the past. The topic model of the issues of the proposed team members was

compared to the topic model of the issue at hand - the issue for which the team is being

recommended. Machine learning algorithms were compared for the team-fitness scoring

function. The best performing algorithm for this was Random Forest. The max-Logit

algorithm was used to find the best team recommendations with regard to the team-fitness

function out of a vast number of combinations. Tuarob et al. [29] solved a different

problem (team composition for a task) compared to my research, which is about sprint

planning. But this thesis will use the methods described in Tuarob et al. [29] research

to extract topics and compare developer experience to backlog tasks using LDA and

compare topic distribution vectors using cosine similarity.

Multi-objective optimization algorithms have been studied in the context of sprint

planning [34]. Al-Zubaidi et al. [34] proposed an algorithm to aid with sprint planning.

The multi-objective search-based iteration planning (MOSBIP) algorithm was guided

simultaneously by two objectives: maximizing the business value delivered in the sprint

and also maximizing the alignment with the iteration’s goal. Business value was defined

as the product of priority and story points value of the issue. The issue description’s

alignment with the sprint goal was measured using textual similarity metrics like term

frequency and inverse document frequency. They compared their sprint planning algo-

rithm’s output to the actual sprints composed by software teams in different projects using

widely used metrics, like precision, recall, and F-measure. Their algorithm significantly

outperformed random guessing in all the project datasets. They compared different

multi-objective optimization algorithms and found that NSGA-II was the best performer.

13

They also compared multi-objective optimization algorithms to single-objective ones

and found that the multi-objective algorithms performed better. The main difference

between this research and Al-Zubaidi et al. [34] is that in this research we will take

a more developer-centric approach and consider developer well-being as an important

aspect of a software project. In their research, they used LDA to construct sprint goals for

sprints that didn’t have them explicitly described. In this thesis, LDA is used to extract

topics from issues and developer issue completion logs to evaluate developer experience

and issue novelty to developers. Also, they compared the output of MOBSIP to actually

planned sprints and compared the results. In our case, there is no ground truth since we

cannot assume, that these projects considered developer experience when composing

sprint plans.

14

4 Methodology

4.1 Research goal

The aim of this thesis is to propose a multi-objective sprint planning approach, that

optimizes for business value delivered during the sprint, the developer’s experience with

similar issues in the past, and the novelty of the issue. This research aims to answer the

following research questions:

• RQ1 - What is the performance of the multi-objective sprint planning approach,

that optimizes for business value, developer experience, and issue novelty?

• RQ2 - What is the utility of the approach perceived by developers?

4.2 The approach

An overview of the approach is shown in Figure 2. The first step consists of acquiring the

data from multiple open source software projects. The data includes issue reports from

Jira issue tracking software. The following step includes cleaning and pre-processing the

data. Next, the dataset is divided into completed issues and incomplete issues.

To represent the topics related to a project, I apply topic modeling techniques to the

description of the issue reports. A topic in topic modeling consists of a set of terms

that together suggest a shared theme. In an issue report dataset context, the topics may

be related to software components, programming languages, and different parts of the

system. LDA is used for topic modeling. Before the topic model is built, LDA-specific

preprocessing has to be done. Then, the topic model is built using the completed issues.

The completed issues are grouped by the assigned developer. The topic distribution

vector is calculated for each developer by applying the LDA model to the corpus of

all the completed issues by that developer. The topic distribution vector represents the

experience of the developer related to each of the topics discovered from the project.

The topic distribution vector is also calculated for every backlog issue using the

LDA topic model. This vector shows how prevalent each of the project’s topics is in the

backlog issue.

15

Since the goal of this approach is to find a set of issues from the backlog that are

optimized for business value, developer experience, and issue novelty, these objectives

have to be quantified. I define a fitness function for each objective for this purpose. The

functions take into account the properties of the issue report, the topic distribution vectors

of the issue and the developer, and calculate a single value for each objective. Later, this

value is maximized by the optimization algorithm. The business value is based on the

priority of the issue. The developer experience and novelty are calculated by comparing

the developer TDV and backlog issue TDV to understand how much experience the

developer has with the topics of the issue and how novel this issue is from the perspective

of the developer, respectively.

The retrieved set of issues should contain an amount of work that represents the usual

effort made by the developer. This is calculated based on the issue completion history of

the developer and in the approach, it is set as the constraint - the number of issues in the

output must not exceed the amount of work the developer can complete.

NSGA-II optimization algorithm is used to find the optimal solutions (Pareto front),

where each solution is a set of issues. To narrow the output down to a single best solution,

I use an achievement scalarizing function (ASF).

4.3 Dataset

The dataset consists of issue reports of multiple open-source projects and a single closed-

source project. Different versions of the open-source dataset have been used in recent

studies [23, 25, 24]. Table 2 shows the overview of the projects in the dataset.

4.4 Data preprocessing

4.4.1 Closed-source project

The dataset of the closed-source project used in this thesis is collected from the Asana

issue tracking tool. The dataset has to be conformed to JIRA naming rules. This means

that additional preprocessing has to be done for this dataset. The following steps are

needed:

• Dictionary containing priority information is retrieved from ”custom fields” list of

an issue and it’s ”display value” is taken and renamed to ”status.name”.

16

Figure 2. Diagram of approach proposed in this thesis

17

• ”display value” of ”assignee” dictionary is taken and renamed to ”assignee.name”.

• Based on the ”completed” boolean value ”resolution.name” and ”status.name” are

filled. For completed issues resolution ”Done” is assigned. For incomplete issues

status ”Backlog” is assigned.

• ”gid” is renamed to ”key”.

• ”name” is renamed to ”summary”.

• ”completed at is renamed to ”resolutiondate”.

After this is done, this dataset is handled uniformly with the rest of the project

datasets.

4.4.2 Preprocessing

JIRA software has customizable priority values. Different projects use different priority

values and they have to be mapped to numerical values so that the business value could be

calculated. For each project, a mapping function is defined. For example, the MOBILE

project uses priorities like "Blocker", "Critical", "Major", "Minor", and "Trivial". Project

TIMOB uses statuses "Critical", "High", "Low", "Medium", "Trivial" and "None". These

values will be mapped to integer values. In the MOBILE example "Trivial" will be

mapped to 1 and "Blocker" to 5.

The status and resolution values are also customizable in JIRA, which means different

projects have different statuses for done and open issues and different resolutions for

done issues. To define done issues all of the corresponding resolutions were collected,

which imply doneness. These were across all projects: "Done", "Fixed", "Complete",

"Resolved", and "Implemented". Issues that have one of these resolutions are considered

done. In order to determine all of the backlog issues similar things had to be done, but

with statuses. All statuses that imply the issue being in the backlog were "Open", "To

Do", "New", "Backlog", "To Develop", and "Ready for Work". The issues that had a

status in that list and do not have an assignee, are considered backlog issues. Issues,

that do belong to the backlog or the done issues set, are removed from the dataset. The

removed issues include issues in progress or issues that are closed but aren’t solved for

some reason etc.

18

4.4.3 LDA preprocessing

Some LDA-specific preprocessing is also required. First, the textual description and

summary will be merged into one field. This will be done because these fields contain all

the textual information about the issue. Next, the resulting text is split into words and

the words are lower-cased. All punctuation is removed. All stop words and words, that

have fewer than 3 characters are removed. Stop words convey no meaning in natural

language processing and some examples are "all", "over", "just", "not", "someone",

"them". Python library gensim and its list of stopwords are used [20]. Then all the words

are lemmatized and stemmed. Stemming reduces words to their original root. This is

to make words in multiple forms and tenses uniform. Lemmatization allows grouping

together different forms of the same word. For lemmatization and stemming Natural

Language Toolkit (nltk) python library is used, more specifically WordNetLemmatizer

and SnowballStemmer implementations [2].

4.5 Topic extraction

Topic extraction is a natural language processing (NLP) technique, that is used for

discovering abstract topics from a collection of documents [30]. LDA is used for topic

extraction in this thesis [4]. It is an unsupervised learning method, which means that the

topics are not known beforehand. A topic in topic modeling is a set of terms, that suggest

a common theme. For a dataset consisting of issue reports, the topics could be related

to software components, tools, domains, and programming languages. The built topic

model is used to determine which topics are included in unseen documents. The result

of that is a topic distribution vector, where each topic represents a dimension in vector

space. Each topic has a value, that represents how prevalent this topic is in a document.

In this thesis, the LDA model is trained on completed issues and is used to determine

the topic distribution of every backlog issue. A TDV of a backlog issue shows which

topics have to be known by the assigned developer to solve the issue. TDV is also

found for the corpus of all issues completed by the developer. This shows how much

experience the developer has with each of the topics. These vectors are used to determine

the developer experience and novelty objectives.

Gensim’s implementation of LDA is used in python. First, dictionaries of words

19

are built. They will contain each word and the number of times a word appears in the

document. The dictionary is then filtered. The words that appear in less than 5 documents

are removed along with words that appear in more than 50% of the documents. Then

100000 most frequent words are kept in the dictionary. The next step is to train the LDA

model using the dictionary. For this, some hyperparameters need to be defined. The

parameter selection is explained in the section 4.7. The resulting model contains topics,

which include words and corresponding weights. The weight shows how related the

word is to the topic.

4.6 Optimization algorithm overview

For optimization Non-dominated Sorting Genetic Algorithm (NSGA-II) is used [5]. It

is a popular, fast, and elitist multi-objective evolutionary algorithm. Elitism strategy

ensures that the most fitting individuals are allowed to move to the next generation,

without the operators like mutation and crossover worsening their fitness. Elitism can

also speed up the performance of genetic algorithms. A python library called pymoo is

used as the implementation of the algorithm [3].

4.6.1 Candidate solution

It is important to describe the chromosome or the candidate solution when working with

genetic algorithms. The chromosome is represented as a binary list. Since the goal of the

thesis is to retrieve a set of issues from the backlog, the list is the length of the backlog,

where each list position corresponds with an issue in the backlog. The number 1 means

that issue belongs to the candidate solution and 0 means that it doesn’t. As an example, if

the backlog consists of 5 issues: Issue-1, Issue-2, Issue-3, Issue-4, and Issue-5. A bit list

of [0,1,0,1,0] would mean that the solution set consists of 2 issues: Issue-2 and Issue-4.

4.6.2 Fitness functions

NSGA-II requires us to provide the fitness functions that will be used to evaluate the

candidate solutions. Each of the objectives has a corresponding fitness function.

The first objective maximizes business value. In this thesis, the business value is

defined as the sum of the priority of the issues in the candidate solution. The reasoning

20

behind it is that in a software project the issue reporter determines the issue priority

based on how important it is business-wise.

The second objective aims to maximize developer experience. The developer experi-

ence value for a single issue is calculated using the backlog issue TDV and the developer

experience TDV. First, topics that the issue doesn’t include are discarded. The remaining

topics represent the topics that have to be known by the developer to solve the issue. The

same topics that were removed from the issue TDV are also removed from the developer

experience TDV, since these topics are not relevant - being experienced in these topics do

not help with solving the issue. For example when the issue TDV initially looks like [0,

0.2, 0.5] and the developer experience TDV looks like [0.4, 0.2, 0], then after discarding

irrelevant topics they look like [0.2, 0.5] and [0.2, 0]. Next, the cosine similarity is

calculated between these vectors. A larger cosine similarity means that the developer and

issue vectors are more similar and thus the developer has the required skills to complete

the issue. In the fitness function, the goal is to maximize the sum of cosine similarities of

all issues in the solution set.

The third objective is to maximize issue novelty. Issue novelty is also defined using

the issue TDV and the developer experience TDV. The highest topic value is found from

the issue vector and the same topic value is checked from the developer experience

vector. If this topic value is 0 for the developer, then the issue is considered novel for

that developer and the novelty value for this issue is 1. If this topic is higher than 0 in the

developer vector, then it is not considered novel and the novelty value is 0. This means

that the objective is to maximize the sum of novelty values of the issues in the solution.

4.6.3 Constraint

The retrieved set of issues represents the issues that a developer must complete within

a sprint. For this reason, the developer’s work capacity must be considered during

the sprint planning. The presented approach includes this constraint by limiting the

number of retrieved issues. NSGA-II allows defining constraints to discard all candidate

solutions, that violate these constraints. The approach proposed in this thesis will have

a single constraint - the aforementioned developer work capacity. It will be provided

as a parameter to the NSGA-II algorithm. The constraint is defined as follows: the

number of issues in a feasible solution can not be higher than the number of issues given

21

as a parameter. This means that when the estimated number of completed issues for a

developer is 5 then the retrieved set of issues must include 5 issues at most.

The estimated number of completed issue reports is calculated as the average number

of completed issues in a 2-week time period. Time periods, where the developer was not

active (no issues were completed) are not taken into account.

4.6.4 Performance Indicator

Analyzing the performance of the algorithm is critical to understanding how good

the solutions are. There are several performance measures used for multi-objective

optimization algorithms such as Generational Distance (GD), Generational Distance

Plus (GD+), Inverted Generational Distance (IGD), Inverted Generational Distance

Plus (IGD+), and Hypervolume (HV) [12, 6]. GD, GD+, IGD, and IGD+ are used

to measure the distance from the solution to the Pareto front that represents the most

optimal solutions. This obviously means that the Pareto front has to be known for the

problem, which is not the case in this thesis. HV doesn’t require the Pareto front to be

known and instead uses a single user-defined reference point, which means it is a suitable

performance measure for the problem described in this thesis.

HV is an indicator that calculates the area/volume from a reference point to possible

solutions. In this thesis, 3 objectives are used which means HV is measured in 3-

dimensional space. Figure 3 shows HV in the case of 2 objectives. The goal is to

maximize HV as a larger value indicates better performance.

HV is widely used because of its multiple properties. First, it is Pareto compliant,

which means that maximizing HV guarantees, that the solutions are Pareto optimal [26].

Second, HV can evaluate the convergence and the diversity of the solution simultaneously

[26]. Third, one reference point needs to be specified for HV [26].

The reference point for HV is usually defined as a slightly worse point than the

Nadir point [11]. The Nadir point specifies the worst possible solution. Due to the

implementation of the pymoo package, the objective functions have to be minimized,

which means the objective values are either 0 in the worst case or negative. For this

reason, the selected reference point in this thesis is [1.1, 1.1, 1.1].

22

Figure 3. Hypervolume in the case of 2 objectives [6]

23

4.6.5 Termination criterion

There are different ways to determine when the optimal solutions are found and the

execution of the algorithm should be terminated. The simplest way is to define a fixed

number of generations. The problem with this approach is that for datasets of different

sizes, finding optimal solutions requires a different number of generations. This approach

is not suitable because 16 datasets with a different number of issues are used.

Another popular method is to monitor a chosen performance metric during the

execution of the algorithm. When the improvement of the metric becomes insignificant,

the algorithm is terminated. This is the chosen approach since it works for different

dataset sizes. More specifically, after every 10 generations, the HV of the previous 10

generations is analyzed. The minimum and maximum HV are compared and if their

difference is less than 0.001, the execution is terminated.

It is important to note that while the HV is a suitable metric to evaluate the conver-

gence of the algorithm, its computation time increases exponentially with the increase of

dimensions [26]. This thesis uses 3 objectives, which means HV calculation is still fast.

In cases with more objectives, the chosen termination criterion might not be suitable,

since HV is calculated after every generation.

I extended pymoo’s functionality and implemented the termination criterion chosen

for this thesis since it wasn’t available by default. The implementation is available in the

thesis repository.

4.7 Hyperparameter selection

4.7.1 LDA

LDA requires the definition of multiple hyperparameters - the number of topics, α and

η need to be defined [4]. The number of topics determines how many topics will be

extracted from the corpus. α controls the document-topic distribution. There are 2

possible distributions: symmetric and asymmetric. For a symmetric distribution, a small

α value leads to a document belonging largely to one topic, while a larger value causes

the document to include a mix of topics. For asymmetric distribution, higher α causes a

more specific topic distribution for a document. The η parameter controls how many

words topics contain. When a symmetric distribution is used, topics include more words

24

with a larger eta value and fewer with a smaller value. Asymmetric distribution causes a

more specific word distribution for a topic.

In order to select the hyperparameters for LDA, an experiment is conducted. A range

of values is defined for each hyperparameter and for each combination an LDA model is

built for each project. To build the model, I took a random sample of 200 issue reports

from each project’s dataset. I used the coherence score (Cv) to evaluate the performance

of each model. Cv is considered as a proxy for topic quality, that shows correlation with

human topic ranking [28]. The hyperparameters of the LDA model with the highest

coherence score are selected. The values considered for each project are the following:

• Number of topics: 2-10

• α

– Symmetric: 0.01, 0.31, 0.61, 0.91, 1

– Asymmetric: fixed normalized asymmetric distribution for each topic that is

calculated as 1.0/(TopicIndex+
√

NumberO f Topics)

• η

– Symmetric: 0.01, 0.31, 0.61, 0.91, 1

For each project, 270 LDA models were built. Table 1 shows the hyperparameters of

the LDA model with the highest Cv for each project, that are selected for the approach.

4.7.2 NSGA-II

In this section, I explain the parameters used for the NSGA-II algorithm. The parameters

are selected based on the problem at hand, but they are not tuned in any way, because of

the lack of computing resources and time restrictions. Also, the parameters depend on

the problem, which means it is not possible to choose the parameters based on previous

literature as this problem has not been studied before. Thus reasonable parameters and

operators are selected from a set of commonly used values.

NSGA-II is a genetic algorithm and a common way of generating the initial population

is creating it randomly [32]. This method is also used in this thesis. More specifically

binary random sampling is used since our problem doesn’t allow duplicates - it doesn’t

25

Table 1. Best LDA hyperparameters

project topics alpha eta coherence

compass 5 1 0.31 0.33

datacass 3 0.91 0.31 0.49

fab 10 0.91 0.31 0.37

is 2 asymmetric 0.31 0.39

mdl 8 0.61 0.01 0.32

mobile 3 0.61 0.61 0.68

stl 2 0.01 0.01 0.23

apstud 3 asymmetric 0.91 0.5

dnn 2 asymmetric 0.31 0.51

mesos 5 asymmetric 0.61 0.37

mule 6 0.91 0.31 0.43

nexus 7 0.31 0.61 0.47

timob 10 0.91 0.31 0.56

tistud 9 0.91 0.91 0.63

xd 2 asymmetric 1 0.47

bondora* 8 asymmetric 1 0.40

*Dataset only used for RQ2

make sense to have an issue in the solution set more than once. So each gene on the

chromosome will be initialized as either 1 or 0. In pymoo the exact sampling value is

"bin_random". 200 individuals are chosen as the initial population size.

Since it is not known which crossover operator is best for the problem in this thesis,

one is selected randomly from a set of common crossover operators. Half-uniform

crossover is chosen. First, it is determined in which places the parents are different.

Then at half of these indices, the values are swapped to produce the offspring. In pymoo

crossover value should be "bin_hux".

The mutation operator in genetic algorithms is used to introduce variation into

the solutions. Since the goal of the mutation in our context is to randomly include

or exclude an issue in an individual to get more diverse result sets the binary bit-flip

mutation operator is selected. The probability of a mutation occurring at any point on

the individual is selected as 1 divided by the number of issues in the backlog. In pymoo

mutation value should be "bin_bitflip".

26

4.8 Quantitative validation

In order to answer RQ1, an experiment is conducted. A detailed explanation of the

experiment:

• Dataset is cleaned and preprocessed. The steps are described in section 4.4.

• Dataset is grouped by project and all the following steps are done for each project

separately.

• Project dataset is divided into done and backlog issues.

• Hyperparameters are retrieved for LDA. These are calculated beforehand in an

experiment described in section 4.7.

• LDA model is trained using done issues. This is done once per project and the LDA

model training time is measured. The time starts when the dataset is preprocessed

because in practice this can be done offline. This means that extracting backlog and

done issues are included in the time in addition to retrieving the LDA parameters

since these steps have to be done for each execution. The time stops when the

LDA training is finished.

• Topic distribution vectors are calculated for all backlog issues using the LDA

model. Backlog issues are iterated and LDA model is applied to the combined

description and summary of each issue.

• All done issues are grouped by the assigned developer, which means that the

following steps are done for each developer separately.

• Issues done by the developer are extracted from done issues. Using the developer

issues, the developer velocity is calculated. This step is explained in the section

4.6.3.

• The text of all developer issues is combined into a corpus. The developer experi-

ence vector is calculated using the trained LDA model and the corpus.

27

• Issue similarity and novelty are calculated for every backlog issue by comparing

the issue topic distribution vector to the developer experience vector. This is

described in section 4.6.2.

• Novelty, issue similarity, and business value from the backlog issues are passed

to the NSGA-II algorithm as objectives and velocity as the constraint. Parameter

selection for the algorithm is explained in section 4.7.2. The results are generated

by running the optimization algorithm. The result of the optimization is a non-

dominated set of solutions. The time is measured from the optimization execution

start time until the results are generated.

• Hypervolume of the non-dominated set of solutions is calculated. The info about

this metric is explained in section 4.6.4.

• The project name, developer name, HV of the non-dominated front, LDA execution

time, optimization time, and velocity are recorded.

Since the objective functions are defined as sums in this thesis, the recorded HV is

higher for a set of solutions that includes more issues. The number of issues in solutions

is determined by the issue completion history of the developer. To compare the results of

developers and projects, it is necessary to measure the per issue HV of solutions. The

average performance of the project is calculated as weighted average - HV of the sets of

solutions found for each developer are the items and the number of issues are the weights.

This gives us the per-issue performance of the project.

I compare the weighted average HV of the project to the per issue HV of the best

solution found in the project and calculate the percentage to evaluate the quality of the

solutions found with the approach described in this thesis. This measure represents how

good the solutions are on average when compared to the best solution.

In this thesis, a personal laptop with 16 GB of RAM and an Intel(R) Core(TM)

i7-9750H processor is used for running all the experiments. The source code of the

approach and the results of the experiments are available in the thesis repository2. The

repository also includes the code for a prototype web app, where the approach can be

tested using the open-source datasets used in the experiment.

2https://github.com/sanderjenk/thesis

28

4.9 Qualitative validation

To answer the second research question a survey is conducted with real-life developers.

A set of issues that represent a partial sprint plan for each developer is retrieved from a

project backlog and a questionnaire is used to collect evaluations on the output of the

algorithm. The developers and the dataset are selected based on convenience sampling.

Bondora is a private company with closed-source software systems. The company

provides multiple products related to loans and investing. The questionnaire is created

for a single software team in the company that includes 5 developers. Other teams do not

use issue priorities which means it is not possible to use the approach described in this

thesis with the selected business value definition.

The same pipeline is used to generate the sets of issues as in the quantitative analysis

for each developer. In the quantitative analysis, the performance of the optimization is

measured by evaluating the set of solutions - the whole non-dominated front. In order to

find the best solution from the non-dominated front, an additional step is needed. An

Achievement Scalarization Function (ASF) is a widely used method in multi-objective

optimization to narrow down the set of solutions to a single solution [18]. Pymoo’s

implementation of that function is used. ASF requires the definition of weights for each

objective. In this thesis, the weights are all equal as the goal is to optimize business

value, developer experience, and novelty equally. The best set of issues is found for each

developer to be used in the survey.

The questionnaire is created in Google Forms. The questions are described in section

7. The first section of the survey includes demographic questions, questions about the

preferences of developers when choosing issues, and an estimation of the developer’s

self velocity.

The second section includes a task for the developers, where they are asked to choose

their preferred issues for the upcoming 2-week sprint from a snapshot of their project’s

backlog. They are required to pick the same amount of issues as the velocity calculated

in the previous step (described in section 4.6.3) so that the manually picked issues could

be compared to the output of the proposed sprint planning tool. In addition, they are

asked how long did it take to select these issues and what was the most difficult part.

The goal of the third section is to let developers evaluate the best set of issues found

for them. The first questions are about the accuracy of the estimation. The next questions

29

ask how prevalent are each of the three objectives in the set of issues with comments

from the developers. Finally, it is asked how happy the developer would be with the

assigned issues. Survey questions that use the Likert scale are plotted on Likert plots.

The set of issue reports selected by the developers in section 2 is compared to the

non-dominated front generated by the optimization algorithm. Generational distance

(GD) is used to evaluate how close the hand-picked set of issues is to the calculated

Pareto front. The goal is to see how the approach proposed in this thesis rates the

hand-picked solution. The hand-picked solution and the best solution along with the rest

of the non-dominated front are plotted and displayed in this thesis.

30

5 Results

5.1 Dataset description

The whole dataset consists of 15 open-source projects and one closed-source project.

Table 2 shows general information about the dataset, which includes the project ID,

a short description, and the company responsible for the project. The initial dataset

consists of 111501 total issues. After pre-processing the dataset size is 75072 issues,

which means 36329 issues were removed. MDL is by far the largest project with 64859

issues, 508 developers, and also the longest-running project, where the earliest issue was

created in 2002. The next largest project is FAB with 13053 issues. The project with

the smallest number of issues is BONDORA, with only 453 total issues. The number of

developers ranged from 5 to 508. The issue and developer count for all projects can be

seen in Table 3.

Table 3 also shows the number of completed issue reports (Done), the number of

issue reports in backlog (Backlog), the date of the first issue (From), and the date of the

most recent issue (To)

Table 2. Dataset description

Project ID Description Developer

XD Spring XD Pivotal Software, Inc.

APSTUD Aptana studio Aptana Inc

TISTUD Appcelerator Studio Appcelerator Inc

MOBILE Moodle mobile Moodle

MDL Moodle Moodle

DNN DNN Platform DNNSoftware

MESOS Cluster management software Apache Software Foundation

MULE MuleSoft integration platform MuleSoft

NEXUS Nexus artifact manager Sonatype

TIMOB Titanium Command Line (CLI) Appcelerator, Inc

COMPASS MongoDB Compass MongoDB

FAB Hyperledger Fabric Hyperledger

DATACASS Data Cassandra Apache Software Foundation

STL Sawtooth Distributed Ledger Hyperledger

IS Indy distributed identity ledger Hyperledger

BONDORA* Bondora Bondora Solutions OÜ

*Closed-source project

31

Table 3. Number of issues

Project Total After preprocessing Done Backlog Devs From To

COMPASS 6212 3300 2852 448 12 2016-07-25 2020-03-19

DATACASS 735 605 577 28 10 2013-05-29 2020-03-31

FAB 13053 9414 8860 554 373 2016-07-28 2020-03-13

IS 1516 1164 953 211 79 2017-05-24 2020-04-03

MDL 64859 40919 31606 9313 508 2002-04-25 2020-02-19

MOBILE 3273 2638 2303 335 24 2011-02-14 2020-04-01

STL 3310 3210 2280 930 50 2016-07-18 2020-03-26

APSTUD 886 766 538 228 11 2006-06-05 2015-01-14

DNN 3328 1417 1321 96 11 2012-01-16 2016-04-12

MESOS 2304 1806 1740 66 67 2012-11-19 2016-05-06

MULE 1497 1296 1202 94 35 2011-01-31 2016-05-06

NEXUS 1268 956 914 42 21 2008-08-14 2016-05-05

TIMOB 2144 1847 1724 123 48 2011-04-15 2016-04-20

TISTUD 2879 2557 2386 171 29 2011-03-01 2016-03-29

XD 3784 2983 2361 622 31 2013-04-12 2016-03-31

BONDORA* 453 194 176 18 5 2020-11-23 2022-04-21

*Closed-source project

5.2 Performance results (RQ1)

RQ1 is an inquiry about the performance of the proposed approach. To answer this

question, the results of two main aspects are reported:

• the computational time required to find the solutions when the approach is used

• the quality of the solutions found by the approach

Table 4 shows the results grouped by the project. The approach is run once for

each developer in the project. The minimum, maximum, standard deviation, and mean

weighted HV values are calculated along with the proportion of the mean weighted HV

out of the maximum.

Figure 4 shows the weighted average HV of all projects. The solutions with the high-

est HV on average were found in COMPASS. The weighted average HV of the project is

49.37. The overall best solution was also found for a developer in the COMPASS project

with 200.24 per issue HV. On average, the worst solutions were found in the DATACASS

project, where the recorded weighted average HV was 4.65. The overall worst solutions

were found in DNN and MESOS with 3.7 per issue HV. COMPASS also had the highest

32

Table 4. Hypervolume of projects

project Min Max Std Weighted Avg % from best

COMPASS 11.08 200.24 53.02 49.37 24.65

DATACASS 3.83 9.63 1.77 4.65 48.28

FAB 3.92 100.56 12.46 19.44 19.33

IS 4.15 37.92 4.71 7.53 19.85

MOBILE 4.62 16.06 2.88 7.0 43.56

STL 4.01 37.82 7.16 9.61 25.41

APSTUD 4.72 27.8 7.09 10.68 38.42

DNN 3.7 26.67 7.55 9.44 35.39

MESOS 3.7 49.17 9.22 19.17 38.99

MULE 3.98 14.55 3.86 7.45 51.23

NEXUS 4.27 29.04 6.55 13.7 47.19

TIMOB 4.83 66.64 12.73 24.19 36.31

TISTUD 4.74 54.7 15.0 26.73 48.87

XD 4.35 32.84 8.17 12.35 37.61

BONDORA* 5.7 12.32 2.71 7.88 64.02

*Closed-source project

standard deviation of mean weighted HV (53.02) while the next highest value was 15.0 in

the TISTUD project. The lowest standard deviation was 1.77 in the DATACASS project.

An interesting observation to emerge from the data is that solutions with higher HV

are found for developers with a higher number of issues as seen in figure 5. The most

striking part of the diagram is that it is divided into 2 parts. In one case the HV increases

steeply while in the other case the increase is milder. When exploring the 2 extremes in

the diagram, it becomes instantly clear why this happens. Both of the cases exist in the

COMPASS project. The algorithm finds a lot of novel issues in all the solutions in the

Pareto front for the data point with the highest HV. In contrast, no novel issues are found

for the data point with 24 issues and relatively low HV value - the other extreme. This

happens because the HV measures the volume of the Pareto from the reference point.

Novelty is defined in this thesis in a way that if the highest topic value of the issue is

0 on the developer experience vector on the same topic then the issue is novel for the

developer. In cases where the developer has some experience in every topic, no issue

can be novel. This means that the novelty objective can only be 0 in the objective space

and significantly limits the HV value since one dimension is missing. In addition, it can

be seen in Figure 6, that projects with a larger number of LDA topics had larger HV

values. Having more topics increases the probability that one or more of them is 0 for

33

Figure 4. Weighted average HV of projects

34

Figure 5. Relation between per issue HV and number of issues

a developer on the experience vector. This increases the HV of the solutions since the

solutions with novel issues have significantly higher performance.

What stands out from the data is that a single outlier caused the high average per-

formance of the COMPASS project. The optimization algorithm found solutions with

a per-issue HV of 200.24 for one developer, while the next best solution in the project

was 67.86. Out of all the projects the next best solution found was in FAB with 100.56,

which means the outlier value in COMPASS was almost 2 times better than the next best.

The outlier also caused the high standard deviation of the weighted average HV in the

COMPASS project and a lower percentage from the best since the best value was so high.

The highest average performance when compared to the highest HV was in the

BONDORA project. The weighted average HV was 64.02% from the best solution. The

highest percentage among open-source projects was MULE with 51.23%. The lowest

performance was observed in the FAB project with 19.33%.

35

Figure 6. Hypervolume in relation to number of topics

36

Table 5 shows the execution time of the approach for each project. In each project,

the approach is run for each developer and the execution times are aggregated. LDA

model training time was the shortest for DATACASS with 3.42 seconds and longest

for FAB with 11.99 seconds. These projects also had the smallest and largest number

of done issues amongst the open-source projects, respectively. BONDORA the only

closed-source project had the lowest amount of done issues but required more time to

train than DATACASS. The relationship between the number of done issues and LDA

training time can be observed in Figure 7. The lowest mean optimization time was

also recorded for the DATACASS project (0.64 seconds) and the highest for STL (7.8

seconds). These projects also had the fewest (28) and most (930) backlog issues. The

average optimization time overall was 3.93 seconds. The relation between backlog size

and the mean optimization time of the project can be seen in Figure 8.

Table 5. Execution time data

Execution time in seconds

Project LDA Opt_max Opt_min Opt_mean Opt_std Backlog Done

COMPASS 8.68 17.93 2.95 7.41 4.13 448 2852

DATACASS 3.42 1.11 0.32 0.64 0.26 28 577

FAB 11.99 28.99 2.92 5.26 3.0 554 8860

IS 6.94 5.85 1.06 1.75 0.75 211 953

MOBILE 8.19 15.91 2.05 4.86 3.0 335 2303

STL 7.26 11.12 6.05 7.8 1.15 930 2280

APSTUD 6.07 3.74 1.19 2.33 0.87 228 538

DNN 7.58 5.93 0.69 2.76 1.77 96 1321

MESOS 7.98 1.87 0.45 0.82 0.31 66 1740

MULE 6.74 3.93 0.61 1.39 0.73 94 1202

NEXUS 6.9 2.85 0.31 0.87 0.51 42 914

TIMOB 8.79 5.98 0.7 1.87 1.22 123 1724

TISTUD 7.82 11.32 0.98 3.13 3.01 171 2386

XD 7.31 6.81 3.91 5.38 0.76 622 2361

BONDORA* 4.4 0.75 0.61 0.65 0.06 18 176

*Closed-source project

It was also observed that optimization took longer for developers with a larger number

of issues. Figure 9 shows the relation between optimization time and the number of

issues. An example of higher optimization time because of the higher number of issues

is a developer in the COMPASS project with 24 estimated number of issues. While the

project’s mean optimization time was 7.41, for the developer with large number of issues

the optimization took 17.93 seconds.

37

Figure 7. LDA training time in relation to the number of done issues

38

Figure 8. Optimization time in relation to the number of backlog issues

39

Figure 9. Optimization time in relation to the number of issues.

40

For the MDL project, it wasn’t possible to generate solutions as the optimization

algorithm for a single developer did not finish in 20 minutes. The project had a signifi-

cantly larger backlog compared to other projects. Their backlog included 9313 issues

while the next largest was STL with 930 issues, which makes MDL project over 10 times

larger. This size difference has a large effect on the performance of the algorithm since

the search space is increased significantly and for the algorithm to converge, a large

number of generations is needed.

In summary, the software project that uses this approach could expect to get solutions

with quality from 20%-75% of the best result (the best HV). It is also difficult to evaluate

the solutions based on the HV since the optimal solutions are not known. The LDA

training time for software projects with less than 3000 done issues should remain under

9 seconds and for projects with close to 10000 done issues it takes over 12 seconds.

In practice, LDA training can be done offline. This means that optimization time is

a more relevant performance metric in this approach. For projects with less than a

thousand backlog issues, the optimization algorithm finishes in about 8 seconds. With

significantly larger backlogs the approach proposed in this thesis might not be viable

since the optimization times become longer. Although HV is widely used to evaluate

the quality of the solutions in multi-objective optimization algorithms [6, 26], it is also

difficult to interpret. For this reason, a qualitative study was conducted to inquire about

the quality of solutions generated by the approach from real-life developers.

5.3 Survey results (RQ2)

RQ2 explores the utility of the approach as perceived by developers. A survey is carried

out among the developers of a software team. The team is a development unit at an

Estonian company, Bondora Solutions OÜ. The developers were asked to evaluate the

output of the approach described in this thesis.

Table 6 shows the results of running the approach for each developer in BONDORA

project. This is the unaggregated data from the quantitative experiment. For developers

of BONDORA additional step was performed. The best solution was calculated from the

non-dominated set using ASF and saved to be used in the survey.

All developers involved in the BONDORA project answered the survey. The re-

spondents include a team lead and 4 developers and the respondent’s experience varied

41

Table 6. Bondora performance data

Project Assignee HV Opt time LDA time Nr of issues Picked GD from PF

BONDORA Developer 1 17.72 0.65 4.4 2 0.6167

BONDORA Developer 2 17.56 0.66 4.4 2 0.5534

BONDORA Developer 3 17.10 0.61 4.4 3 0.7884

BONDORA Developer 4 17.59 0.75 4.4 3 0.9725

BONDORA Developer 5 24.63 0.61 4.4 2 1.4687

between 1 and 7 years in their current roles. In section 1 of the survey, the developers

were asked how much they consider the 3 objectives of this thesis when self-assigning

issues. All developers answered that they take business value, experience with similar

issues in the past, and issue novelty into account - none of them answered with 1 on the

Likert scale. The Likert plot with these answers can be seen in Figure 10. The figure

also shows that the developers consider these 3 objectives equally important. Developers

like working on issue reports related to topics that they have experience with the most.

Working on issue reports that are novel to them is the least popular objective and selecting

issue reports according to the business value falls between the other 2 objectives.

In section 1, developers are also asked to give an estimation of how many issues they

could finish in a 2-week sprint. The answers are used to validate the estimated number

of completed issues per sprint since the quality of the sprint plan generated relies to

some extent on the correctness of the estimation. As a result, one of the answers shows

an unrealistically high value (15), while the calculated estimation based on the issue

completion history for that developer was significantly smaller (3). Another answer

coincided with the estimated value, and the remaining 3 answers were values that differed

in 1 issue.

In the last section of the survey, developers are given a set of issues that are generated

by the multi-objective approach. Then, developers evaluate the prevalence of the 3

objectives in the set of issues. Figure 11 shows the Likert plot of the answers to these

questions. One developer answered that the generated set of 2 issues did not include

any business value. The developer explained that the retrieved issues were unimportant

bugs: "these are small bugs". The definition of business value is linked to the priority of

the issue in this thesis and thus the priority of the issue report can be investigated. The

priority of the retrieved issues is "High" and "Low". The low priority issue is marked as a

"Bugfix" type and seems to be a small issue, where redirects happen before navigating to

42

Figure 10. Survey section 1 answers

a page. The issue with high priority is marked with a type "Maintenance" and seems to be

of higher impact. From the issue description, it can be understood that some functionality

of a payments integration is not working properly in some cases. This could suggest

that the issue was incorrectly prioritized or the developer evaluated the business value

incorrectly. Also, there could be a mismatch between the developer’s idea of priority and

the idea of business value. Additionally, at the time of analyzing the answers, the high

priority issue was completed by the developer, for whom it was recommended to prove it

had business value, and the low priority issue is still in the backlog.

Another developer answered that the set of retrieved issues did not include any topics

that he had experience with (1 on the Likert scale) and it included topics that are new

to him (5 on the Likert scale). For that developer, 2 issues are in the set found for him.

For one issue the tool correctly evaluates the issue as new for the developer and also

recognizes that the developer experience objective is very low. The issue is prioritized

as "High", which means that it was included in the set because 2 of the objectives had

very high values and developer experience didn’t matter as much. For the second issue

on the other hand the developer experience objective is very high, the priority of the

issue is "Low" and the issue is not recognized as being novel. This means that the tool is

completely wrong on this issue since this issue is in the set only for the high developer

43

Figure 11. Survey section 3 answers

experience objective. The problem with this issue might be in the issue description.

The description includes 2 vague sentences without any details being described and it is

probably difficult to understand which topics are included in the issue.

In the second section of the survey, developers manually select issue reports. The

fitness function scores are calculated for each objective for the set issues and compared

against the fitness function scores of generated set of issues. The picked set of issues

represents a good solution from the perspective of the developer and thus the multi-

objective approach should rate this set of issues highly. GD is used to measure the

distance of the picked set from the Pareto front. A smaller distance indicates a better

solution since the Pareto front represents the most optimal solutions. The distances

can be seen in Table 6. For developer 1 the hand-picked solution is close to the best

solution as can be in Figure 12. Business value and novelty objectives are equal, but

the experience objective is slightly lower. GD was second-lowest for this developer

which means that the hand-picked solution is also rated highly by the tool. The approach

also rates the hand-picked set of issues of developer 2 highly, which is proved by the

44

Figure 12. Developer 1 Petal diagram comparing the objective values of the picked

solution to the generated solution

lowest GD. For this developer, the distribution of objectives is different between the

generated and hand-picked solutions, which can be seen in Figure 13. The generated

solution includes a novel issue report, but the experience objective is lower compared

to the manually selected set. For developer 3, experience and business value are both

worse for the picked solution and neither solution includes any novelty as seen in Figure

14. Figure 15 shows that the picked issues included more business value at the expense

of experience for developer 4. The picked solution of developer 5 is rated poorly by

the tool since all of the objectives are worse compared to the generated one. GD of the

picked solution to the Pareto front is also the largest for this developer. This can be seen

in Figure 16. I looked further into the data since the generated sets for developer 3 and 4

are optimized for only business value and experience. I found that the backlog doesn’t

include any novel issues for these developers. In cases where novel issues are available

for developers, the approach optimizes for all 3 objectives.

Additionally, developers are asked how long it took to go over the backlog and

manually select the issues for the next sprint. Four out of five developers reported that the

task takes a few minutes: "1 minute", "5 minutes", "2 minutes" and "a couple of minutes"

were the reported answers. One answer was not considered as it was not realistic (2

seconds). When comparing this time with the execution time of the tool, the automatic

tool retrieved the set of issues in over 0.6 seconds out of the backlog containing 18 issues.

In addition to the time, they were asked what was the most difficult part when picking

45

Figure 13. Developer 2 Petal diagram comparing the objective values of the picked

solution to the generated solution

Figure 14. Developer 3 Petal diagram comparing the objective values of the picked

solution to the generated solution

46

Figure 15. Developer 4 Petal diagram comparing the objective values of the picked

solution to the generated solution

Figure 16. Developer 5 Petal diagram comparing the objective values of the picked

solution to the generated solution

47

the issues. Among the answers were "reading" and "no idea what 99% of these issues

entail", confirming that the task is not trivial and requires effort.

An interesting answer was "finding relation to the current OKR", which means

that the issues are not always considered in isolation. OKR references a goal-setting

framework used by teams and organizations that encourages the definition of measurable

goals and tracking of their outcomes. In Bondora, quarterly cycles are used and each

quarter new business goals are set. This means that issues planned into sprints should

be about helping achieve the goals set that quarter. Similar to Al-Zubaidi et al. [34],

an additional objective could be considered in future works, which allows to state the

current business goal and find issues that align with that goal.

None of the respondents rated the assigned set of issue reports negatively. 60% of

the answers were neutral (3 on the Likert scale) and 40% were rated highly (5 on the

Likert scale). The comparison of manually selected issues and the generated set of issues

showed that the approach works well in some cases. It optimizes for all 3 objectives

in cases where the backlog is rich in terms of the availability of all objectives. A large

benefit of the proposed approach is the time performance. In the survey, it took 1-5

minutes for the developers to pick 2-3 issues from the backlog that consisted of 18 issues

while it took about half a second for the tool proposed in this thesis. For reference, in

the open-source dataset, most projects had more than 100 issues in the backlog, which

increases the manual composition of the sprint plan by a lot or makes it infeasible. For

that reason, the tool would be beneficial in the sprint planning processes of software

projects.

48

6 Discussion

6.1 Research questions

The LDA execution time results show that projects with a larger number of done issues

require more time as seen in Figure 7. It is possible to build the models offline and save

them into files for later. In case that new issue reports are added to the project, the model

requires an update. LDA does not require re-training the model since it supports the

update of the model by simply adding unseen documents to the model. This incremental

update presents an advantage of the approach. Similarly, it is also possible to calculate

the developer experience and topic distributions of backlog issues offline, which reduces

the total execution time required to generate a set of issues for a developer.

NSGA-II optimization time increases as the backlog size increases (Figure 8). A

larger backlog means that the search space is larger and the algorithm requires more

time to explore that space and find optimal solutions. For this reason, the approach

requires more computational power for projects with more than 8000 issue reports in

their backlog. In the dataset used, this is the case of the MDL project. Sprint planning

usually doesn’t take place with a higher frequency than a week and the fact that the

average optimization time is less than 8 seconds for projects with under 1000 issues is

acceptable from the user experience standpoint.

The survey responses show that developer preferences are in accordance with previous

research [16]. Every developer in this survey takes novelty, experience with the topics of

the issue, and business value into account. Novelty is the least popular characteristic of

the issue followed by the business value of the issue. The most popular property of the

issue when self-assigning was the developer’s experience with similar issues in the past.

The presented approach currently considers these preferences for selecting the set of

issues but the optimization algorithm assigns equal importance to the preferences (i.e., the

objectives). This configuration doesn’t match the preferences shown by the developers

who answered the survey. The answers show that the preferences are individual and

suggest that different weights for each objective should be taken into account when

running the algorithm.

The formula used to quantify the business value might impact on the quality of

the solutions. Business value is linked to the priority of the issue report in this thesis.

49

As one developer indicates, there are cases where the approach considers a small bug

important and the developer doesn’t, despite the bug being highly prioritized. This

indicates that there could be a mismatch between the developer’s idea of business value

and the definition used in this thesis. There is no agreement about what business value

means. As shown by Gregory et al. [9], the idea of business value varies from team to

team.

6.2 Limitations

This study presents several limitations that are worth mentioning. First, the limited access

to developers willing to participate in the study led to a small sample of survey responses.

Although the findings obtained from the survey analysis cannot be generalizable, they

are useful to explain the quantitative results and form hypotheses for further research.

The respondents were also my colleagues at the time of writing this thesis, which might

have included bias in the results.

The quantitative research revealed several edge cases with high HV and a high number

of issues. Since the number of developers, who completed the qualitative research is

low, there isn’t enough data to explain the reasons behind the edge cases or improve the

approach and thus more research is needed.

Second, the dataset used in the qualitative research included only 18 backlog issues,

which might not be representative of a larger software project. For example, the backlog

could randomly include issues with higher business value than a more representative

sample would.

The algorithm used for optimization is NSGA-II, which is one of the most popular

multi-objective algorithms [31]. Although NSGA-II showed acceptable results, there

are several multi-objective algorithms that can be used. Therefore, there might be other

optimization algorithms that perform better than NSGA-II.

LDA is used for topic modeling in this thesis. The algorithm is one of the most

popular for this purpose in the field of Natural Language Processing [13]. There are

many LDA variants and other alternatives, which could be explored to improve the topic

modeling performance.

50

7 Conclusions and future work

Automatic tools for iteration planning are beneficial to software teams using Agile

methodology in order to save time. This is especially relevant for projects with large

backlogs. Accounting for developers’ preferences in addition to the business value

aims to increase developers’ motivation and productivity when composing the sprints.

Taking these statements into account, an automatic approach is proposed in this thesis,

that retrieves issues from the backlog for a developer based on their past velocity and

optimizes for the business value of the issue, developer’s previous experience with similar

issues, and the novelty of the issue. The approach uses LDA to extract topics from the

issues, which helps to define the developer experience and novelty objectives. NSGA-II

is used as the optimization algorithm to extract the best combinations of issues from the

backlog.

The thesis set out to answer 2 research questions: what is the performance of the sprint

planning approach and what is the utility of the approach as perceived by developers.

A performance of 20%-64% from the highest weighted average HV is expected for

software projects that want to implement this approach. The best results are found in less

than 8 seconds for projects with less than 1000 backlog issues. For projects with larger

backlogs, the approach might not be viable, since calculation takes too much time.

Plenty of topics should be considered for future works. NLP models and optimization

algorithms should be compared to find out the best methods for generating sprint plans.

In addition, a different optimization algorithm might be more suitable for very large

backlogs as the proposed approach is not viable for such cases. Also, it would be

interesting to use the sprint planning tool on a dataset with complete story points data.

This would allow using a business value definition that includes story points and also

help to generate solutions that include a more accurate amount of work compared to

the amount of work developers are able to complete. Future works should also take

into account the differences in developer preferences when choosing issues for a sprint.

Practical implementations should allow users to define the weights of the objectives to

get more personalized results. The survey conducted in this thesis should also be used

on a larger sample of developers in order to thoroughly validate the usefulness of the

approach in real-life scenarios. Since the performance was difficult to evaluate based on

51

the selected experiment and performance metric, other approaches should be considered

for future works.

52

References

[1] Pekka Abrahamsson et al. “Agile Software Development Methods: Review and

Analysis”. In: Proc. Espoo 2002 (Jan. 2002), pp. 3–107.

[2] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with

Python: analyzing text with the natural language toolkit. " O’Reilly Media, Inc.",

2009.

[3] J. Blank and K. Deb. “pymoo: Multi-Objective Optimization in Python”. In: IEEE

Access 8 (2020), pp. 89497–89509.

[4] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent Dirichlet Allocation”.

In: J. Mach. Learn. Res. 3.null (Mar. 2003), pp. 993–1022. ISSN: 1532-4435.

[5] K. Deb et al. “A fast and elitist multiobjective genetic algorithm: NSGA-II”. In:

IEEE Transactions on Evolutionary Computation 6.2 (2002), pp. 182–197. DOI:

10.1109/4235.996017.

[6] C.M. Fonseca, L. Paquete, and M. Lopez-Ibanez. “An Improved Dimension-

Sweep Algorithm for the Hypervolume Indicator”. In: 2006 IEEE International

Conference on Evolutionary Computation. 2006, pp. 1157–1163. DOI: 10.1109/

CEC.2006.1688440.

[7] Daniel Graziotin et al. “Consequences of Unhappiness While Developing Soft-

ware”. In: (Jan. 2017).

[8] Daniel Graziotin et al. “Unhappy Developers: Bad for Themselves, Bad for Pro-

cess, and Bad for Software Product”. In: May 2017, pp. 362–364. DOI: 10.1109/

ICSE-C.2017.104.

[9] Peggy Gregory et al. “STAKEHOLDER PERCEPTIONS OF IT BUSINESS

VALUE IN A PUBLIC SECTOR IT DIGITALISATION PROJECT”. In: May

2020.

[10] Nyoman Gunantara. “A review of multi-objective optimization: Methods and its

applications”. In: Cogent Engineering 5.1 (2018). Ed. by Qingsong Ai, p. 1502242.

DOI: 10.1080/23311916.2018.1502242. eprint: https://doi.org/10.1080/

53

https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/CEC.2006.1688440
https://doi.org/10.1109/CEC.2006.1688440
https://doi.org/10.1109/ICSE-C.2017.104
https://doi.org/10.1109/ICSE-C.2017.104
https://doi.org/10.1080/23311916.2018.1502242
https://doi.org/10.1080/23311916.2018.1502242
https://doi.org/10.1080/23311916.2018.1502242

23311916.2018.1502242. URL: https://doi.org/10.1080/23311916.2018.

1502242.

[11] Hisao Ishibuchi et al. “How to Specify a Reference Point in Hypervolume Calcu-

lation for Fair Performance Comparison”. In: Evolutionary Computation 26 (May

2018), pp. 1–29. DOI: 10.1162/evco_a_00226.

[12] Hisao Ishibuchi et al. “Modified Distance Calculation in Generational Distance and

Inverted Generational Distance”. In: Evolutionary Multi-Criterion Optimization.

Ed. by António Gaspar-Cunha, Carlos Henggeler Antunes, and Carlos Coello

Coello. Cham: Springer International Publishing, 2015, pp. 110–125. ISBN: 978-

3-319-15892-1.

[13] Hamed Jelodar et al. “Latent Dirichlet allocation (LDA) and topic modeling:

models, applications, a survey”. In: Multimedia Tools and Applications 78.11

(June 2019), pp. 15169–15211. ISSN: 1573-7721. DOI: 10.1007/s11042-018-

6894-4. URL: https://doi.org/10.1007/s11042-018-6894-4.

[14] Bart Luijten, Joost Visser, and Andy Zaidman. “Assessment of issue handling effi-

ciency”. In: 2010 7th IEEE Working Conference on Mining Software Repositories

(MSR 2010). 2010, pp. 94–97. DOI: 10.1109/MSR.2010.5463292.

[15] Zainab Masood, Rashina Hoda, and Kelly Blincoe. “How agile teams make self-

assignment work: a grounded theory study”. In: Empirical Software Engineering

25 (Nov. 2020), pp. 1–44. DOI: 10.1007/s10664-020-09876-x.

[16] Zainab Masood, Rashina Hoda, and Kelly Blincoe. “Motivation for Self-Assignment:

Factors Agile Software Developers Consider”. In: 2017 IEEE/ACM 10th Inter-

national Workshop on Cooperative and Human Aspects of Software Engineering

(CHASE). 2017, pp. 92–93. DOI: 10.1109/CHASE.2017.18.

[17] Gurpreet Matharu et al. “Empirical Study of Agile Software Development Method-

ologies”. In: ACM SIGSOFT Software Engineering Notes 40 (Feb. 2015), pp. 1–6.

DOI: 10.1145/2693208.2693233.

[18] Yury Nikulin, Kaisa Miettinen, and Marko Mäkelä. “A new achievement scalariz-

ing function based on parameterization in multiobjective optimization”. In: Op-

erations Research-Spektrum 34 (Aug. 2012), pp. 69–87. DOI: 10.1007/s00291-

010-0224-1.

54

https://doi.org/10.1080/23311916.2018.1502242
https://doi.org/10.1080/23311916.2018.1502242
https://doi.org/10.1080/23311916.2018.1502242
https://doi.org/10.1080/23311916.2018.1502242
https://doi.org/10.1162/evco_a_00226
https://doi.org/10.1007/s11042-018-6894-4
https://doi.org/10.1007/s11042-018-6894-4
https://doi.org/10.1007/s11042-018-6894-4
https://doi.org/10.1109/MSR.2010.5463292
https://doi.org/10.1007/s10664-020-09876-x
https://doi.org/10.1109/CHASE.2017.18
https://doi.org/10.1145/2693208.2693233
https://doi.org/10.1007/s00291-010-0224-1
https://doi.org/10.1007/s00291-010-0224-1

[19] Samir Omanovic and Emir Buza. “Importance of stable velocity in agile mainte-

nance”. In: 2013 XXIV International Conference on Information, Communication

and Automation Technologies (ICAT). 2013, pp. 1–8. DOI: 10.1109/ICAT.2013.

6684044.

[20] Radim Rehurek and Petr Sojka. “Gensim–python framework for vector space

modelling”. In: NLP Centre, Faculty of Informatics, Masaryk University, Brno,

Czech Republic 3.2 (2011).

[21] Marco Tulio Ribeiro et al. “Multiobjective Pareto-Efficient Approaches for Recom-

mender Systems”. In: ACM Transactions on Intelligent Systems and Technology

(TIST) 5 (2014), pp. 1–20.

[22] Ken Schwaber and Jeff Sutherland. “Der Scrum Guide”. In: (2014).

[23] Ezequiel Scott, Khaled Nimr Charkie, and Dietmar Pfahl. “Productivity, Turnover,

and Team Stability of Agile Teams in Open-Source Software Projects”. In: 2020

46th Euromicro Conference on Software Engineering and Advanced Applications

(SEAA). 2020, pp. 124–131. DOI: 10.1109/SEAA51224.2020.00029.

[24] Ezequiel Scott and Dietmar Pfahl. “Using Developers’ Features to Estimate Story

Points”. In: Proceedings of the 2018 International Conference on Software and

System Process. ICSSP ’18. Gothenburg, Sweden: Association for Computing

Machinery, 2018, pp. 106–110. ISBN: 9781450364591. DOI: 10.1145/3202710.

3203160. URL: https://doi.org/10.1145/3202710.3203160.

[25] Ezequiel Scott, Tanel Tõemets, and Dietmar Pfahl. “An Empirical Study of User

Story Quality and Its Impact on Open Source Project Performance”. In: Software

Quality: Future Perspectives on Software Engineering Quality. Ed. by Dietmar

Winkler et al. Cham: Springer International Publishing, 2021, pp. 119–138. ISBN:

978-3-030-65854-0.

[26] Ke Shang et al. “A Survey on the Hypervolume Indicator in Evolutionary Mul-

tiobjective Optimization”. In: IEEE Transactions on Evolutionary Computation

25.1 (2021), pp. 1–20. DOI: 10.1109/TEVC.2020.3013290.

[27] Marian Stoica, Marinela Mircea, and Bogdan Ghilic-Micu. “Software Develop-

ment: Agile vs. Traditional”. In: Informatica Economica 17 (Dec. 2013), pp. 64–

76. DOI: 10.12948/issn14531305/17.4.2013.06.

55

https://doi.org/10.1109/ICAT.2013.6684044
https://doi.org/10.1109/ICAT.2013.6684044
https://doi.org/10.1109/SEAA51224.2020.00029
https://doi.org/10.1145/3202710.3203160
https://doi.org/10.1145/3202710.3203160
https://doi.org/10.1145/3202710.3203160
https://doi.org/10.1109/TEVC.2020.3013290
https://doi.org/10.12948/issn14531305/17.4.2013.06

[28] Shaheen Syed and Marco Spruit. “Selecting Priors for Latent Dirichlet Allocation”.

In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC).

2018, pp. 194–202. DOI: 10.1109/ICSC.2018.00035.

[29] Suppawong Tuarob et al. “Automatic team recommendation for collaborative

software development”. In: Empirical Software Engineering 26.4 (May 2021),

p. 64. ISSN: 1573-7616. DOI: 10.1007/s10664-021-09966-4. URL: https:

//doi.org/10.1007/s10664-021-09966-4.

[30] Theresa Velden et al. “Comparison of topic extraction approaches and their results”.

In: Scientometrics 111.2 (May 2017), pp. 1169–1221. ISSN: 1588-2861. DOI:

10.1007/s11192-017-2306-1. URL: https://doi.org/10.1007/s11192-

017-2306-1.

[31] Shanu Verma, Millie Pant, and Vaclav Snasel. “A Comprehensive Review on

NSGA-II for Multi-Objective Combinatorial Optimization Problems”. In: IEEE

Access 9 (2021), pp. 57757–57791. DOI: 10.1109/ACCESS.2021.3070634.

[32] Darrell Whitley. “A genetic algorithm tutorial”. In: Statistics and Computing

4.2 (June 1994), pp. 65–85. ISSN: 1573-1375. DOI: 10.1007/BF00175354. URL:

https://doi.org/10.1007/BF00175354.

[33] Aimin Zhou et al. “Multiobjective evolutionary algorithms: A survey of the state

of the art”. In: Swarm and Evolutionary Computation 1.1 (2011), pp. 32–49.

ISSN: 2210-6502. DOI: https://doi.org/10.1016/j.swevo.2011.03.

001. URL: https : / / www . sciencedirect . com / science / article / pii /

S2210650211000058.

[34] Wisam Haitham Abbood Al-Zubaidi et al. “Multi-Objective Iteration Planning in

Agile Development”. In: 2018 25th Asia-Pacific Software Engineering Conference

(APSEC). 2018, pp. 484–493. DOI: 10.1109/APSEC.2018.00063.

56

https://doi.org/10.1109/ICSC.2018.00035
https://doi.org/10.1007/s10664-021-09966-4
https://doi.org/10.1007/s10664-021-09966-4
https://doi.org/10.1007/s10664-021-09966-4
https://doi.org/10.1007/s11192-017-2306-1
https://doi.org/10.1007/s11192-017-2306-1
https://doi.org/10.1007/s11192-017-2306-1
https://doi.org/10.1109/ACCESS.2021.3070634
https://doi.org/10.1007/BF00175354
https://doi.org/10.1007/BF00175354
https://doi.org/https://doi.org/10.1016/j.swevo.2011.03.001
https://doi.org/https://doi.org/10.1016/j.swevo.2011.03.001
https://www.sciencedirect.com/science/article/pii/S2210650211000058
https://www.sciencedirect.com/science/article/pii/S2210650211000058
https://doi.org/10.1109/APSEC.2018.00063

Appendix

I. Interview questionnaire

7.0.1 Survey introduction

The topic of the thesis is proposing an automatic sprint planning helper that retrieves a

personalized set of issues for a developer for the upcoming sprint. With this survey, I ask

you to provide information about your preferences when selecting issues and evaluate

the personalized set of issues retrieved by the automatic tool.

All the information you provide in this survey is strictly treated as confidential,

that is, your name, the issue reports, or any other sensitive data will not be disclosed.

Your answers will be used only for academic purposes and only aggregated data will

be published in the thesis report. This survey is unrelated to Bondora or any other

commercial company.

7.0.2 Section 1: Demographic

Questions:

1. • Question: What is your name?

• Type: Short text

• Required: Yes

2. • Question: What is your job title?

• Type: Short text

• Required: Yes

3. • Question: What are your responsibilities?

• Type: Short text

• Required: Yes

4. • Question: How long have you been in the role at your current company?

• Type: Short text

57

• Required: Yes

5. • Question: How much do you like to work on issue reports that are new to

you (issues reports that are related to a topic you haven’t worked on or seen

before)?

• Type: Likert scale, 1-5

• Required: Yes

6. • Question: How much do you like to work on issue reports related to topics

that you have experience with?

• Type: Likert scale, 1-5

• Required: Yes

7. • Question: How much do you like to work on issue reports that are a priority

for the business value.

• Type: Likert scale, 1-5

• Required: Yes

8. • Question: How many issue reports do you usually complete in a 2-week

sprint?

• Type: Short text

• Required: Yes

7.0.3 Section 2: Choosing the desired sprint plan

Intro to section 2:

Now, please complete the following task: The following list of issue reports is taken

from a recent backlog of the project. Please select a set of issue reports that you would

like to work on in during the next sprint.

When selecting the issue reports, please take into account the following points:

Questions:

9. • Question: Select 2 issue reports from the following backlog:

58

• Type: Checkboxes

• Options: Backlog issues (summary and link to issue tracking system)

• Required: Yes

• Validation: Selected number of issues have to match the developer’s calcu-

lated velocity

10. • Question: Select 2 issue reports from the following backlog:

• Type: Checkboxes

• Options: Backlog issues (summary and link to issue tracking system)

• Required: Yes

• Validation: Selected number of issues have to match the developer’s calcu-

lated velocity

11. • Question: How long did it take to select these issues?

• Type: Short text

• Required: Yes

12. • Question: What was the most difficult part?

• Type: Short text

• Required: Yes

13. • Question: If you had problems with selecting the issues, explain them here.

• Type: Short text

• Required: No

7.0.4 Section 3: Evaluating the generated set of issues

Intro to section 3: The list below contains a set of issue reports that were automatically

selected from your team backlog according to your profile.

[Set of issues retrieved for the developer]

If these issue reports were assigned to you to be completed in the next sprint, ...

59

14. • Question: Would it be feasible to complete these issue reports in the next

sprint?

• Type: Multiple choice

• Options:

– Yes

– No

• Required: Yes

15. • Question: The amount of work is...

• Type: Multiple choice

• Options:

– Underestimated - too little work for 2 weeks

– Correctly estimated

– Overestimated - the amount of work cannot be completed in 2 weeks

• Required: Yes

16. • Question: How much would these issue reports increase the business value

of the product increment?

• Type: Likert scale, 1-5, 1-Not much, 5-A lot

• Required: Yes

17. • Question: Please explain the answer in more detail.

• Type: Long text

• Required: Yes

18. • Question: How much experience do you have with the topics of these issue

reports?

• Type: Likert scale, 1-5, 1-I don’t know the topics, 5-I know the topics

• Required: Yes

19. • Question: Please explain the answer in more detail.

60

• Type: Long text

• Required: Yes

20. • Question: To what extent do these issues contain topics that are novel to you?

• Type: Likert scale, 1-5, 1-The issues are known, 5-The issues are unknown

• Required: Yes

21. • Question: Please explain the answer in more detail.

• Type: Long text

• Required: Yes

22. • Question: How happy would you be with the assigned issue reports?

• Type: Likert scale, 1-5, 1-Unhappy, 5-Happy

• Required: Yes

23. • Question: Please explain the answer in more detail.

• Type: Long text

• Required: Yes

24. • Question: Any further comments?

• Type: Long text

• Required: No

61

II. Prototype

A prototype web app was built, where the approach can be tested using the datasets used

in the quantitative experiment. The prototype web app uses Flask3 backend and Angular4

frontend. Figure 17 shows the dataset selection view. After selecting the desired dataset,

the user is redirected to the optimization page, shown in Figure 18. The developer

drop-down includes a list of all developers in the selected dataset. After selecting the

developer, the number of issues that represent the work capacity is calculated for the

developer. The input is automatically filled with the computed number. Submitting the

form generates the optimal set of issues and displays values of all objectives in a radar

diagram.

3https://flask.palletsprojects.com
4https://angular.io

62

Figure 17. Dataset selection view

63

Figure 18. Optimization view with the results and a radar diagram depicting the values

for each objective.

64

III. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Sander Jenk,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace

digital archives until the expiry of the term of copyright,

A multi-objective optimizer to retrieve issue reports based on developer expe-
rience and business value,

(title of thesis)

supervised by Ezequiel Scott, PhD.

(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available

to the public via the web environment of the University of Tartu, including via

the DSpace digital archives, under the Creative Commons licence CC BY NC

ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,

distribute the work and communicate it to the public, and prohibits the creation of

derivative works and any commercial use of the work until the expiry of the term

of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection

legislation.

Sander Jenk

17.05.2022

65

	Introduction
	Background
	Agile software development
	Issue reports
	Sprint planning
	Issue self-assignment
	Importance of accounting for developer preferences
	Multi-objective optimization

	Related work
	Methodology
	Research goal
	The approach
	Dataset
	Data preprocessing
	Closed-source project
	Preprocessing
	LDA preprocessing

	Topic extraction
	Optimization algorithm overview
	Candidate solution
	Fitness functions
	Constraint
	Performance Indicator
	Termination criterion

	Hyperparameter selection
	LDA
	NSGA-II

	Quantitative validation
	Qualitative validation

	Results
	Dataset description
	Performance results (RQ1)
	Survey results (RQ2)

	Discussion
	Research questions
	Limitations

	Conclusions and future work
	Appendix
	I. Interview questionnaire
	Survey introduction
	Section 1: Demographic
	Section 2: Choosing the desired sprint plan
	Section 3: Evaluating the generated set of issues
	II. Prototype
	II. Licence

