
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Robert Joonas

Tracking Time on Page in Web Analytics

Bachelor’s Thesis (9 ECTS)

Supervisor Uku Täht

Supervisor Helle Hein

Tartu 2022

2

Tracking Time on Page in Web Analytics

Abstract:

This thesis explains some known Web analytics issues with tracking time on page and

attempts to build a new functionality to make the metric more accurate and reliable. In the

course of this work, a new solution is developed on top of an existing Web analytics software

called Plausible Analytics. The functionalities programmed by the author were written in

JavaScript on the front end and in Elixir on the Backend. The development process is

described step by step, bringing up the most important functionalities built and the reasoning

behind some implementation choices. Finally, the thesis assesses the performance of the

delivered solution by gathering data from the Plausible website.

Keywords: Web Analytics, time on page, Beacon API

CERCS: P175 - Informatics

Lehe külastusaja arvutamine veebianalüütikas

Lühikokkuvõte:

Käesolev bakalaureusetöö selgitab veebianalüütika levinud probleeme seoses lehe külastusaja

arvutamisega ning üritab neid probleeme lahendada uue tarkvaralahendusega. Töö käigus

integreeritakse innovatiivne lahendus olemasoleva veebianalüütika tööriista Plausible

Analytics rakendusse. Autori loodud uued funktsionaalsused on programmeeritud keeltes

JavaScript (eesliidese jaoks) ja Elixir (tagarakenduse jaoks). Töö kirjeldab järk-järgult uue

lahenduse arenduskäiku, tuues välja kõige olulisemad funktsionaalsused ja põhjendades

mõningaid valikuid implementeerimisel. Lõpuks annab käesolev töö valminud lahendusele ka

hinnangu, kasutades selleks Plausible’i ettevõtte veebilehelt kogutud andmeid.

Võtmesõnad: Veebianalüütika, lehe külastusaeg, Beacon API

CERCS: P175 - Informaatika

3

Table of contents

1. Introduction 4

2. Background 5

 2.1 Importance of time on page in Web analytics 5

 2.2 Tracking time on page in Plausible Analytics 5

 2.2.1 Plausible script and sending events on the client-side 6

 2.2.2 Using sessions to calculate time on page 7

 2.2.3 Limitations in the current solution 8

 2.2.4 The idea of improvement with Beacon API 9

3. Development 9

 3.1 Front-end script development 10

 3.1.1 Script extension 10

 3.1.2 Capturing the end of a page view 10

 3.1.3 Information to send with the Beacon requests 11

 3.1.4 Implementation 12

 3.2 Back-end changes in the Plausible application 12

 3.2.1 ClickHouse and CollapsingMergeTree migration 12

 3.2.2 Storing recent page view events 13

 3.2.3 Updating page view duration with enrich events 13

 3.2.4 Updating page view duration with subsequent page views 14

4. Preliminary assessment of results 16

 4.1 Results 16

 4.2 Discussion 17

5. Conclusion 18

6. References 18

Appendix 20

 Licence 20

4

1. Introduction

The majority of businesses today have websites for various purposes [1]. For a website

owner, Web analytics is the key to understanding how their website is actually used by

people browsing the Web. The purposes of knowing the details about the site usage can be

very different. For example, a site owner might want to see how many users are taking the

desired actions on their page and where they are coming from to make better business

decisions. Also, analytics insights are helpful in many aspects (such as identification of

bottlenecks in the design and the monitoring of website availability) of improving the user

experience [2].

There are many analytics services that provide their users with different usage reports with

different metrics and properties. This thesis explicitly focuses on the time on page metric, its

concerns, and building an innovative tracking solution to tackle the problems. Apart from the

details about the time on page metric, Chapter 2 will also run the reader through the basics of

Web analytics, including front-end tracking with JavaScript and the back-end functionality

for persisting the usage information.

The known problem with the time on page metric in Web analytics is that it cannot be

measured for the last page that the user views before leaving [3]. Google Analytics, currently

being the most popular analytics service [4], also struggles with the same limitation.

In his blog post, Matthew Edgar gives clear examples of this problem in Google Analytics.

To be able to calculate how long a user spent viewing a page, both start and end moments

need to be available. The ending moment is defined as loading the next page, but when a

visitor leaves the site, the last page viewed does not have any ending moment [5].

At the center of this piece of writing is the Web analytics software of Plausible Analytics
1
.

The company was founded in 2018 by Uku Täht, the primary supervisor of this thesis.

Plausible also struggles with the same time on page issue. Chapter 2.2 explains Plausible’s

current solution and its concerns with tracking time on page.

This thesis aims to integrate a new solution into the existing Plausible software that reports a

new type of event from the client-side to determine the ending moment of a page view.

Chapter 3 describes the development process on both the front-end script and the back-end

application.

Chapter 4 assesses the performance of the delivered new tracking behavior with actual data

gathered from the Plausible website itself by comparing the data reported by the existing and

the new tracking solutions. The collected stats for both the existing and the new solution are

publicly available online on Plausible’s production
2
 and testing

3
 domains.

1
 https://plausible.io

2
 https://plausible.io/plausible.io?period=month&date=2022-03-08

3
 https://testing.plausible.io/plausible.io?period=month&date=2022-03-08

5

2. Background

Web analytics is the process of gathering and analyzing the traffic on a website with the aim

of providing useful information to the site owner [6]. The majority of Web analytics tools use

JavaScript to send analytics events from the tracked website to their application server where

it gets processed and persisted [7].

An intuitive benefit of this knowledge is being able to analyze how a site is performing over

time. But furthermore, by knowing the details about the site usage, one might make better

business decisions. Having worked as a customer support person in a Web analytics

company, the author is familiar with numerous use cases for blogs, e-commerce sites, news

magazines and other types of websites, where knowing the user behavior can help improve

the business. For example, by knowing what campaigns are driving more visitors to the site,

the company can invest more in one specific campaign to expand its audience.

Čegan and Filip have written in 2017 that Web analytics also supports site owners in

improving their visitors' user experience. It can help identify the bottlenecks and errors in the

user interface design and monitor the site availability [2].

There are many services out there that offer Web analytics. Some of the most popular ones

amongst them are Google Analytics, Adobe Analytics and SEMRush [8]. All tools have their

own tracking methodology and provide different insights. Among the different metrics

provided is also time on page which is surfaced in many analytics tools.

2.1 Importance of time on page in Web analytics

For some site owners, it is important to know the average amount of time that the users spend

viewing a single page on their site.

As Adam Steele has written in his blog post, time on page can provide insight into how

engaging the content appears to the user. A lower average page view duration might mean

that the content is not interesting enough [9].

Moreover, the time on page metric will express whether a page is attracting the right kind of

visitors or false leads (people who mistakenly end up on the page) [10].

2.2 Tracking time on page in Plausible Analytics

Plausible Analytics
4
 is an open-source Web analytics software founded in 2018. It focuses on

privacy-friendly website tracking and provides its users with a simple yet actionable

dashboard with the key metrics in Web analytics - including time on page.

The Plausible application software is at the core of this thesis as the work focuses on building

improvements in the application to track time on page more accurately. To make the topic

easier to follow for the reader, this chapter also explains some terminology used in Chapter 3.

4
 https://plausible.io

6

2.2.1 Plausible script and sending events on the client-side

To better understand tracking time on page at the application level, it is best to be familiar

with the concept of sending analytics events. This subchapter will share some details about

how analytics events are sent from browsers.

Following the industry standard [7], Plausible uses JavaScript to send analytics events from

the browser to its application server. For simplicity, let’s say that the application consists of a

back-end application and a front-end JavaScript file called script.js. There are also other ways

to install Plausible on a website, but these are out of scope for this work.

The script.js file contains all the logic required to automatically send analytics events from a

webpage. By default, as soon as this script is loaded and executed on a webpage, it makes an

HTTP POST request to Plausible’s application server. Each such request sent from the

browser automatically includes a user agent and an IP address to uniquely determine a visitor

(see Figure 1). The body of this POST request (see Figure 2) also contains important event

parameters such as the name of the event, domain (the website to which this event belongs),

the URL to determine the exact page path on which the event happened, and some additional

properties that we are not focusing on in this thesis.

Figure 1. Request header

Figure 2. Pageview event request body

7

Every time a new page is loaded on the website where Plausible is installed, the browser

executes the JavaScript code again and sends another pageview event to the server. With the

current tracking method, every such pageview event marks the end of the prior page view in

that session (if it exists). Sessions in Plausible (and in other analytics services) represent a set

of timestamped events. Understanding sessions is necessary to comprehend both the current

solution of tracking time on page, and the development work described in Chapter 3.

Therefore, the following subchapter will give an overview of how a session is created in the

application.

2.2.2 Using sessions to calculate time on page

The application back-end is responsible for structuring all the data that is continuously sent

from browsers and persisting this information in the database. The data is stored in two

structures: events and sessions. Both these structures have their own database table in which

they are kept. The events table has a session_id foreign key field that determines exactly one

session for an event.

Tracking time on page in the existing solution is session-based, meaning that the event

structures do not include any information about how long a page was viewed. Instead, the

time on page value is calculated as the time difference between a pageview event and its

subsequent event.

In peak times, Plausible receives hundreds of events in a single second. For all these events,

to find the subsequent event, it needs to know which session they belong to. As sessions are

basically a group of events sent by one visitor, Plausible first has to uniquely determine the

visitor for the incoming event. This is done with the help of the IP address and user agent

fields in the request header. Then, these values are used to generate a unique user_id for the

visitor.

But one visitor might still visit multiple websites that are tracked with Plausible

simultaneously. As visits on different websites should not be interpreted as the same session,

Plausible also uses the domain field sent with the event request body to uniquely determine a

session.

For handling the mentioned logic, Plausible has a module called Session.Store that

implements an Elixir GenServer. This module is like a constant process running in the

application that keeps the state of all ongoing sessions. They are kept in memory as a map

data structure, with tuples of user_id and domain as keys and the session objects as values.

To not bloat the memory, sessions are dropped from the state map once 30 minutes have

passed from the last session event. This means that the session is forgotten, and there is no

way to add any more events to it.

When an event is received, the application creates an event object containing the user_id and

the domain fields. As these fields combined make up a unique key for the session, the

application will try to find a session with this unique key. If such a session is present in the

memory, the event will get its ID as the session_id value and be tied with this session.

8

Otherwise, if there is no such session in the store, a brand new session will be initiated, for

which this event will become the first one.

Figure 3 is an illustration of a session that consists of three events. The path attribute

represents the exact path of the webpage on which the pageview event happened, and the

simplified timestamp marks the time when this event was received. There is also the

session_id field which illustrates that all these three events are a part of the same session.

Having an illustration of a session with its events, it’s a good place to define a term used in

the next two subchapters – exit page. The page /subscribe in Figure 1 is the exit page of this

session, pointing to the fact that the user left the site after viewing this page.

Figure 3: Simplified session example

Following the example of Figure 3, to know how long the /blog/post-1 page was viewed, the

application uses the timestamp value to calculate the time difference with its subsequent page

view on the path /subscribe. This is currently done with specific database queries that join the

events and sessions tables which will not be further explained as it is out of scope for this

work.

2.2.3 Limitations in the current solution

A session-based time on page tracking is not the ideal solution because the duration of exit

page views cannot be calculated. On the plausible website in the year 2021, there was a

bounce rate
5
 of 62% which can also be seen on the public dashboard

6
. This means that

roughly 6 out of 10 visits only included one exit page view and did not include any

information about the view duration.

Furthermore, even the sessions where multiple pages are viewed will miss out on the exit

page view duration. The proportion of missing data is even more significant for SPA-s

(single-page applications). This is because SPA-s allow users to see all the content on the

website without requesting the whole pages from the server [11], and without reloading the

page, the JavaScript code sending the analytics events will not be executed.

5
 Bounce rate is the percentage of visitors that leave after viewing the first page.

6
 https://plausible.io/plausible.io?period=year&date=2021-05-10

9

There is no default value for time on page. Instead, all the missing values will be ignored

when calculating the average. This, in turn, makes the session-based time on page metric

unreliable.

Depending on the nature of a page, the time a visitor actually spends on it just before leaving

might vary, but cutting this large amount of data out of the equation will still make the time

on page metric very biased.

2.2.4 The idea of improvement with Beacon API

For tackling the issue and reporting a time on page value also for the exit page views in a

session, the idea was that a new type of event representing the end of a page view could be

sent from the client-side. Clearly, narrowing it down to just the exit pages was impossible as

there is no way to know whether a visitor is planning to view more pages or not. So every

pageview event had to have an ending timestamp to use in the calculation of its duration.

While the idea of the new approach was simple - capture the moment when the page is closed

and report the end event, there was one main challenge with the implementation - executing

event requests to completion when the page has been unloaded.

The current approach uses the XMLHttpRequest JavaScript object to send the POST requests

to the application server. When closing the browser tab or window, these requests are not

guaranteed to run to completion, as the browser automatically cancels all the ongoing

requests when a page is unloaded. With the use of XMLHttpRequest, a known workaround to

reliably send the data is delaying the page unload until the request has received a response

back from the server. While this is an excellent way to reliably send all the necessary

information, it does not justify hurting the user experience by creating a delay in closing the

page.

According to MDN Web Docs [12], Beacon API is used to send non-blocking requests to a

web server and run these requests to completion without expecting a response back from the

server. The documentation even mentions that the main use case of Beacon API is sending

analytics events to the server.

As this seemed to solve the issues mentioned, the plan was to implement ending page views

with Beacon API requests.

3. Development

This chapter describes the development process of integrating a new Beacon API solution

with the existing Plausible front-end script and making several modifications to the existing

Plausible back-end application to accept a new type of event and handle the new way of

calculating time on page.

10

3.1 Front-end script development

There were several steps to implementing the Beacon API tracking solution on the front end.

This chapter describes the development process and explains some reasoning behind the

implementation choices based on Web research.

3.1.1 Script extension

Plausible has the default script.js JavaScript file, which includes only the basic pageview

tracking functionality. It also allows a convenient way for injecting other specific tracking

functionalities into the script via script extensions. For example, two existing script

extensions are script.local.js (to track localhost visits) and script.manual.js (to allow manual

triggering of pageview events). Plausible compiles all the extensions into separate JavaScript

files that the clients can use by specifying the desired functionality in the filename.

As the integration of Beacon API was also expected to add extra complexity and increase the

size of the script, it was feasible to add this functionality as a script.beacon.js extension.

3.1.2 Capturing the end of a page view

The goal of this integration was to be able to send events from the browser at the end of a

page view. The initial step was to determine what browser events can be relied on to initiate

the Beacon API requests. To know this and understand how Beacon API is meant to be used,

the author did some research on the Web.

A blog post by Tero Piirainen [13] criticized the performance of Beacon API and showed its

high failure rates on many major browser versions. However, the discussion in the comment

section of the post also contained very useful information from another point of view. Ilya

Grigorik explained in his comments [13] that the main reason for failure in the study was not

the Beacon API itself but wrongly relying on the beforeunload browser event. Instead, he

claims that a combination of visibilitychange and pagehide events should be used to initiate

the requests.

In his own blog post from 2015, Grigorik [14] explains which browser events should be used

to reliably capture leaving the website. He writes that on mobile platforms, pagehide,

beforeunload, and unload events cannot be relied on, as an active application can transition

into a background state and be closed without ever triggering the events. Instead, he

recommends relying on the Page Visibility API. Based on his own testing, in the post

Grigorik [15] also shows a matrix (see Figure 4) with different mobile and desktop situations

and what events are fired in these situations.

11

Figure 4. Matrix of browser events firing in different situations [15]

Based on the matrix, to minimize the failure rate and make it as reliable as possible on

different browsers and devices, the author chose to use a combination of visibilitychange,

pagehide and beforeunload events for capturing the end of a page view.

3.1.3 Information to send with the Beacon requests

Having chosen the browser events to listen to, the author also needed to figure out what

information should be sent to the server with these requests to determine which page view is

ended.

The most straightforward approach was introducing a new field for the event object, called

event_id. This did not exist before because there was no need to uniquely determine an event.

The value for this field had to be generated. To keep the front-end script as fast and optimized

as possible, the event_id generation had to be done on the back end. This will be further

explained in the next chapter.

With the event_id generation done on the back end, it had to be returned as an HTTP

response from the server to be able to send the same value back to the application once the

page view has ended.

12

3.1.4 Implementation

Finally, coming down to the front-end logic, the author implemented the following logic:

 capturing the event_id response received from any pageview request and storing that

value as a global variable named lastEventId in the script

 adding event listeners for visibilitychange, pagehide, and beforeunload events to call

an enrich function (see Figure 5)

 implementing the enrich function that sends an enrich event to the server with the

lastEventId value in a stringified JSON object (see Figure 6)

With these functionalities in place, the script.beacon.js script extension was ready. All the

changes regarding the front-end script are publicly available for everyone to see in the

corresponding pull request in Plausible’s Github repository
7
.

Figure 5: Adding event listeners

Figure 6: Enrich function

3.2 Back-end changes in the Plausible application

Having the functionality for reporting enrich events on the front end, the back-end

application still needed many modifications to handle the new behavior. This chapter will

explain the changes made by the author and the reasoning behind the changes.

3.2.1 ClickHouse and CollapsingMergeTree migration

Plausible uses the ClickHouse database management system
8
 to allow efficient database

communication. According to their website, ClickHouse is 100-1000 times faster than

traditional database managemnet systems [16].

7
https://github.com/plausible/analytics/pull/1679/files#diff-

13b3b9d1ff01184b9b792bd47f981dd6571e7f91d15a6c6baf90e658d5ea3ac7

8
 https://clickhouse.com/

13

Among other table engines supported by ClickHouse, it provides the MergeTree and

CollapsingMergeTree engines which are both used in Plausible.

The MergeTree table engine is designed for quickly inserting large amounts of data into a

database table [17]. The events table in the Plausible database is a MergeTree table.

CollapsingMergeTree inherits all the functionality from MergeTree, and in addition,

collapses pairs of rows in the background, following a specific algorithm [18]. This gives a

very efficient way for updating the table rows. The sessions table in the Plausible database is

a CollapsingMergeTree table.

In the sessions table, updates are required on every event that belongs to an already existing

session. This is because there are fields (e.g., the number of events) that are meant to be

overwritten in the session object with every new event. To make use of the

CollapsingMergeTree engine and update the rows of the sessions table, the application needs

to store all session objects in memory that may require a database update. This is because an

update in the CollapsingMergeTree engine requires the insertion of a cancel row, which

deletes the previous instance in the table, and the insertion of a state row to represent the

instance with the new duration value. In essence, both the state and the cancel row represent

the same session object with all the different fields. This is why the update process requires

the use of the entire object and not just the unique identifier of this object.

Tracking time on page for every individual page view meant that each event instance had to

contain the duration information. Therefore, the author added a new field to the event object

called duration. To actually make use of this, it had to be possible to update the duration

value. Therefore, the author migrated the events table from the MergeTree to the

CollapsingMergeTree table engine, following the example of the sessions table.

3.2.2 Storing recent page view events

To be able to update entries in the events database table, they also had to be stored in the

application memory. In terms of database communication, the new way of storing events was

expected to be very similar to how it is done with sessions in the Session.Store module.

Following the example of Session.Store, the author added a similar module called

Event.Store. On every pageview event received, the current solution just constructs the event

object and inserts it into the database. With the addition of the Event.Store module, the

application also had to store the constructed event object inside the state to make future

updates possible.

To avoid overloading the application memory, as with sessions, the time that the events could

be kept in memory also had to be feasibly limited. An obvious choice for this limit was 30

minutes, like with sessions.

3.2.3 Updating page view duration with enrich events

As explained in Chapter 3.1, pageview events were meant to be updated with the enrich

event. This event represents an update to an already existing pageview, containing the

14

event_id value corresponding to the pageview to update. In the new solution, upon every

enrich event received, the event_id value was to be used for finding the corresponding

pageview from the state of Event.Store. Having found the pageview event to update, the next

step was to calculate a new duration value for the pageview.

When a pageview event is first constructed into an object, a timestamp field with the value of

the current time is added to it. This represents the moment when this pageview event was

received. Similarly, a timestamp had to be added to the enrich event. To calculate the

duration for the pageview, the new solution had to find the time difference between the

moments that the pageview and enrich events were received, using the two timestamp values.

The final step was to update the pageview event object in the database and give it a new

duration value.

To update a row in the ClickHouse CollapsingMergeTree table, a cancel row and a state row

have to be inserted. The difference between the two comes from an additional field called the

sign. The value of this field is -1 for a cancel row and 1 for a state row. The steps to update a

pageview were the following

 Create a cancel row by adding the sign field with the value of -1 to the pageview

object.

 Insert the cancel row into the database.

 Create a state row by adding the sign field with the value of 1 to the pageview object

and overwrite the duration field of this object with the new duration.

 Insert the state row into the database.

Having completed all four steps with two database insert queries, the update is finished. With

one row in the events table before and two more rows added to it with the update, the events

table contains three rows representing one event. These three rows are then merged into one

single row in the background with the merging algorithm in the CollapsingMergeTree table

engine.

With all these functionalities developed, the Event.Store module was ready to handle updates

on enrich events. The full code of the Event.Store module written by the author can be found

in the Plausible Github repository
9
.

3.2.4 Updating page view duration with subsequent page views

The new solution for time on page tracking was considered an addition and not the new

default behavior. Therefore, it had to maintain the functionality of being able to end page

views with the following pageview events in the same session.

To achieve this, the author added some additional logic for handling pageview events, which

also included some modifications to the existing Session.Store module.

9
 https://github.com/plausible/analytics/blob/3edf8102e63c224d25b33fc81b6b84d4f

3203261/lib/plausible/event/store.ex

15

Upon receiving a POST request representing a pageview, it is constructed into an object as

the first step. The event object is then passed to the on_event function in Session.Store

module to assign it to a session. This is done by returning the corresponding session_id from

Session.Store. Figure 7 illustrates this information flow in the application with some

pseudocode.

Figure 7: Assigning session ID to an event object

To be able to update the latest pageview in a session, the on_event function also had to return

the event_id of the previous event in the session. The author made this possible by adding an

additional field to the session object called last_event_id. In Session.Store, this field was

assigned or updated every time a new event was received for a session. This meant that the

event_id of the previous event was always available from every session and could simply be

returned from the on_event function.

Having implemented the logic for returning the last_event_id value, the Event.Store module

also had to make use of it. This implementation came down to a single function called

maybe_enrich_previous_session_event. Based on the last_event_id value, it found the

corresponding event from the state map and updated it only if its existing duration value was

0. In other words, it had not been enriched.

This behavior maintained the existing functionality of updating page views with subsequent

events as a fallback mechanism in case the enrich event has failed to update the duration. All

16

the modifications to the existing Session.Store module made by the author can be seen in the

corresponding Github pull request
10

.

4. Preliminary assessment of results

To get feedback about how the new solution would perform in the real world, it had to be

tested on an actual website. For this purpose, the new tracking script was included on the

Plausible website itself, where it gathered data throughout March 2022.

The idea was to compare the data reported by the new Beacon API solution with the data of

the original solution at the same time. This was not the ideal way of testing the new solution

as there was no actual source of truth to compare with, but for the first step of the assessment,

it was enough to see what differences it makes in the stats.

To have a convenient way of viewing the two reports side by side, the new tracking solution

was set to report events to Plausible’s testing domain. This gave the ability to present the new

set of stats in the exact same format as in the official stats dashboard.

4.1 Results

In its dashboard, Plausible shows the Top Pages report, which breaks down the usage metrics

by page path. The number of visitors and pageviews, bounce rate and time on page are all

surfaced for every page path in the details section of the Top Pages report on the Plausible

dashboard. These views can be seen on the publicly available dashboards on both testing
11

and production
12

 domains.

To have a nice visual of how the time on page value had changed between different pages

with the new solution, the author exported the top 100 pages with the most visitors from both

testing and production dashboards and created a line chart comparing the time on page

values. Figure 8 shows the comparison where each data point represents a page path on the

Plausible website visited in March 2022.

10

 https://github.com/plausible/analytics/pull/1679/files#diff-d5eb51c240465d3bed8c

54b1c86d2ca4770f2a7b2a62478f3198c794b9037a24
11

 https://testing.plausible.io/plausible.io/pages?period=month&date=2022-03-08

12
 https://plausible.io/plausible.io/pages?period=month&date=2022-03-08

17

Figure 8: Time on page comparison chart

4.2 Discussion

Due to infrastructure differences between Plausible’s testing and production domains, the

bounce rate and the total number of visitors and pageviews also showed some differences,

which are most likely not caused by the new tracking solution. With this noise in the data, the

initial assessment did not have any strict expectations or hypotheses. This is also why the

assessment of the results in this thesis does not attempt to discover all the duration

differences for every page path in the report.

There are future plans to gather data in a way that allows only seeing differences in the

tracking solutions without any additional noise, which should reveal some better quality

information about the performance of the new solution.

Due to ignoring a significant amount of data, some time on page values reported by the

existing solution are too extreme and not credible. The best example from the Plausible

website is the /sites page. The purpose of this page is to render a set of links that can be

clicked on to navigate to a stats dashboard. As the dashboard pages themselves are not

tracked, there will be no subsequent pageview events sent until the user navigates back to a

tracked page. This means that all the time a user spends viewing their Plausible dashboard is

interpreted as viewing the /sites page.

Consequently, the time on page for /sites tends to show an extreme average of about 20

minutes (see Figure 8) with the existing solution. In reality, the user is only meant to select a

site on this page and navigate elsewhere. Therefore, the duration of 70 seconds reported by

the new solution seemed credible, and the evaluation result was considered a success.

While the initial assessment did show some expected results and was considered a success,

the delivered new solution is still not ready to go to production. The main issue with the new

approach is tremendously increasing the server load with the number of requests. For every

pageview event, there can be several enrich events reported from the client-side as a user can

18

minimize the window or change the browser tab multiple times during one page view. As

serving pageview and enrich events have approximately the same volume in terms of server

resources, the server load is expected to increase at least two times with the new approach,

likely even more. Along with the plans to gather more reliable testing data to evaluate the

accuracy of the new tracking solution, there are also plans for a server load testing phase

before releasing this feature to production.

5. Conclusion

The objective of this thesis was to develop a new way of tracking time on page in Web

Analytics that would also account for the missing values in the generally known session-

based time on page tracking approach. This new solution was developed and integrated into

the existing Plausible Analytics software. The performance of this innovative tracking

approach was also measured on the Plausible website itself, where data was gathered

throughout March 2022. Due to not having the ideal testing conditions, the assessment of the

results in this thesis was only preliminary. Nevertheless, the results still revealed an important

expected difference, and the goal of this thesis was met.

While the initial assessment results were satisfactory, the delivered feature is still not ready to

be deployed to production because it still needs to be tested and analyzed more accurately.

There are future plans to continue with accuracy and server load testing, which will hopefully

reveal some more information about the performance of the delivered tracking approach and

whether it is feasible to introduce it to Plausible’s clientele.

6. References

[1] C. Onwubiko, "Exploring web analytics to enhance cyber situational awareness for the

protection of online web services," 2016 International Conference On Cyber Security

And Protection Of Digital Services (Cyber Security), 2016, pp. 1-8, doi:

10.1109/CyberSecPODS.2016.7502355.

[2] L. Čegan and P. Filip, "Advanced web analytics tool for mouse tracking and real-time

data processing," 2017 IEEE 14th International Scientific Conference on Informatics,

2017, pp. 431-435, doi: 10.1109/INFORMATICS.2017.8327288.

[3] Prockiw, C. (2012, May 8). Why Average Time on Site is a Bad Metric. Retrieved May

10, 2022, from https://www.vovia.com/blog/sem/why-average-time-on-site-is-a-bad-

metric/

[4] Dolan, J. (2022, March 24). Best Google Analytics Alternative for 2022. Retrieved May

10, 2022, from https://reflectivedata.com/best-google-analytics-alternative-for-2022/

https://www.vovia.com/blog/sem/why-average-time-on-site-is-a-bad-metric/
https://www.vovia.com/blog/sem/why-average-time-on-site-is-a-bad-metric/
https://reflectivedata.com/best-google-analytics-alternative-for-2022/

19

[5] Edgar, M. Google Analytics Time on Page. Retrieved May 10, 2022, from

https://www.matthewedgar.net/google-analytics-time-on-page/

[6] Hughes, J. (2022, March 31). What is Web Analytics? Your 101 on Analytics and How

to Get Started. Retrieved May 10, 2022, from https://themeisle.com/blog/what-is-web-

analytics/

[7] Dilmegani, C. (2022, April 4). In-Depth Guide Into Web Analytics in 2022. Retrieved

May 10, 2022, from https://research.aimultiple.com/web-analytics/

[8] Ahamed, S. (2022, February 7). Top 10 Web Analytics Tools You Should Try in 2022.

Retrieved May 10, 2022, from https://www.primeone.global/top-10-web-analytics-

tools-2022/

[9] Steele, A. (2021, December 22). What is Time on Page? Retrieved May 10, 2022, from

https://loganix.com/what-is-time-on-page/

[10] Keating, S. (2022, February 18). What is Time on Page and Why Is It Important?

Retrieved April 29, 2022, from https://jetpack.com/blog/average-time-on-page/

[11] SPA (Single-page application). Retrieved May 10, 2022, from

https://developer.mozilla.org/en-US/docs/Glossary/SPA

[12] Beacon API. Retrieved March 23, 2022 from https://developer.mozilla.org/en-

US/docs/Web/API/Beacon_API

[13] Piirainen, T. (2021). Beacon API is Broken. Retrieved April 22, 2022, from

https://volument.com/blog/sendbeacon-is-broken

[14] Grigorik, I. (2015, November 20). Don't lose user and app state, use Page Visibility.

Retrieved April 22, 2022, from https://www.igvita.com/2015/11/20/dont-lose-user-and-

app-state-use-page-visibility

[15] Grigorik, I. (2015, November 20). Don’t lose user and app state, use Page Visibility.

Retrieved April 22, 2022, from https://www.igvita.com/posts/15/xlifecycle-events-

testing.png.pagespeed.ic.drjAkz8Zye.webp

[16] Company. Retrieved May 10, 2022, from https://clickhouse.com/company/

[17] MergeTree. Retrieved April 16, 2022, from

https://clickhouse.com/docs/en/engines/table-engines/mergetree-

family/mergetree/#mergetree

[18] CollapsingMergeTree. Retrieved April 16, 2022, from

https://clickhouse.com/docs/en/engines/table-engines/mergetree-

family/collapsingmergetree/#table_engine-collapsingmergetree

https://www.matthewedgar.net/google-analytics-time-on-page/
https://themeisle.com/blog/what-is-web-analytics/
https://themeisle.com/blog/what-is-web-analytics/
https://research.aimultiple.com/web-analytics/
https://www.primeone.global/top-10-web-analytics-tools-2022/
https://www.primeone.global/top-10-web-analytics-tools-2022/
https://loganix.com/what-is-time-on-page/
https://jetpack.com/blog/average-time-on-page/
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Web/API/Beacon_API
https://developer.mozilla.org/en-US/docs/Web/API/Beacon_API
https://volument.com/blog/sendbeacon-is-broken
https://www.igvita.com/2015/11/20/dont-lose-user-and-app-state-use-page-visibility
https://www.igvita.com/2015/11/20/dont-lose-user-and-app-state-use-page-visibility
https://www.igvita.com/posts/15/xlifecycle-events-testing.png.pagespeed.ic.drjAkz8Zye.webp
https://www.igvita.com/posts/15/xlifecycle-events-testing.png.pagespeed.ic.drjAkz8Zye.webp
https://clickhouse.com/company/
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree/#mergetree
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/mergetree/#mergetree
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/collapsingmergetree/#table_engine-collapsingmergetree
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/collapsingmergetree/#table_engine-collapsingmergetree

20

Appendix

1. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Robert Joonas,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital

archives until the expiry of the term of copyright, Tracking Time on Page in Web

Analytics, supervised by Uku Täht and Helle Hein.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to

the public via the web environment of the University of Tartu, including via the

DSpace digital archives, under the Creative Commons licence CC BY NC ND 3.0,

which allows, by giving appropriate credit to the author, to reproduce, distribute the

work and communicate it to the public, and prohibits the creation of derivative works

and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection

legislation.

Robert Joonas

10/05/2022

