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Stop Detection and Location Accuracy Improvement in Mo-
bile Positioning

Abstract:

Mobile operators collect data about their clients’ activity in the mobile network. Each
event made in the mobile network has reference to the antenna the mobile device
was connected to at that time. By knowing the coverage areas of the antennas the
peoples’ trajectories throughout the day can be approximated. Its spatial coarseness
and temporal sparseness makes extracting information from this data a compelling
task requiring specially crafted algorithmic tools. Detecting when and where did
the mobile device stopped is a crucial step that serves as a basis for subsequent
data analysis tasks on this data. Here a state of the art stop detection algorithm
is analysed and some shortcomings of it identified. The proposed improvements to
these have been shown to improve the performance of the stop detection algorithm
significantly. Additionally, the possibility of improving the location accuracy by
incorporating periodicity into the movement models is investigated.
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Peatuste tuvastamine ja mobiilpositsioneerimise asukohatäp-
suse parandamine

Lühikokkuvõte:

Mobiilioperaatorid koguvad andmeid oma klientide tegevuse kohta mobiilivõrgus.
Igal võrgusündmusel on viide mastile, mille külge oli seade parasjagu ühendatud.
Teades mastide kattealasid, saab hinnata inimeste trajektoore läbi terve päeva. Nende
trajektooride halva ruumilise lahutuse ja ajalise hõreduse tõttu on neist kasuliku
informatsiooni eraldamine väljakutsuv ülesanne, mis vajab spetsiifilisi algoritmilisi
lahendusi. Trajekotooridest paigalseisude tuvastamine on aluseks mitmetele küsimus-
tele lahenduse leidmisele. Selles töös on uuritud ühte paigalseisude leidmise algoritmi
ning on tuvastatud mõned selle puudujäägid. Nende puuduste parandamisel muu-
tus algoritm märksa täpsemaks ja töökindlamaks. Lisaks on uuritud trajektooride
perioodilisuse kaasamise mõju mudelite asukohahinnangutele.

Võtmesõnad:
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1 Introduction

1.1 Motivation

Mobile operators collect data about their clients’ activity in the mobile network.
This data can be used internally to improve the quality of the service by optimizing
the mobile network. Several techniques have been designed to automatically detect
faults in the network [1,2]. Researchers have also taken interest in the possibilities
of this data - it contains a very large portion of the total population. The location
information in it can be used to perform different large-scale mobility analysis [3, 4].
There has also been a lot of research into applications that potentially hold significant
business value: road usage analysis [5], smart city design [6] and even identifying
potential clients for businesses [7].

All these applications rely on the accuracy of the location data and the ability to
reliably extract information from it. One of the most fundamental information that
can be extracted is when and where did the mobile device stop. With this knowledge
a wide range of questions can be answered, such as ”Where do they live,” ”Which
establishments are they visiting,” ”Were they held up in a traffic jam?”

1.2 Structure of the Thesis

In the introductory chapter, the field of mobile positioning data analysis is introduced
and its appeal to researchers and businesses is described. A brief overview of the
research done in this field is given and finally, the contributions of this work are listed.
Chapter 2 focuses on improving a state of art stop detection algorithm. In chapter
3 a method to incorporate periodic mobility patterns into trajectory modelling is
proposed. In chapter 4 the developed algorithms are applied to real data and their
performances are evaluated. Chapter 5 summarizes the work done in this thesis. In
the appendix there is the list of used acronyms and the licence.

1.3 Background

The overview of the field of mobile positioning is largely based on the work of T.
Vajakas [8].

1.3.1 Network Events

The data collected by the mobile operator about its clients is a timestamped series
of events made in the network. These events can be caused by users activity on the
phone or they can be initialized by the network. Each mobile positioning data record
has an attribute identifying the mobile network cell the mobile device was connected
to, known as the Cell Global Identity (CGI). A cell is a geographical area where
it is possible to connect to the transceiver of a base station. The operators design
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smaller cells in regions of high population density, so cell would service approximately
the same number of devices. This makes the location information in urban areas
significantly more accurate. The neighbouring cells have a considerable overlap
making it possible to connect to several cells from any location [8].

Mobile operators have approximated the shapes of all the cells in their network.
The real cell shape depends on many factors, such as antenna radiation pattern and
height, network load [9], signal attenuation on the landscape [10], signal reflections
and radio interference [11], network configuration parameters such as handover
threshold and neighbour cell lists [12]. All the models used in this work operate
under Gaussian uncertainty assumption, hence the cell has to be approximated by a
binomial Gaussian probability distribution. Throughout this work, this is done such
that the 1σ radius covers the cell.

1.3.2 Related Work

Extracting mobility patterns from mobile data can face a lot of noise due the ”ping-
pong handover” phenomena. This is due to the device being handed over between
antennas when an overload of the network occurs. This phenomenon creates a sort
of noise in the trajectories or mobility episodes. Thus, several techniques have been
developed to reduce ”ping-pong” distortions [8, 13–15].

When it comes to mobility episode there is a interesting research focusing on handling
noisy trajectories in stops detection. Fiadino et al presented a study on trajectory
reconstruction, where they used a ”ping-pong” suppression method that ignores
events where the device connects back to the previous cell within a predefined time
window [13]. In [14] the authors describe a method for computing edit distances
between event sequences where short-term handovers to another cell and repeated
events can be ignored.

For the mobile network data Calabrese et al [15] used a method that was inspired by
earlier work for GPS data in [16] and [17], which performs a clustering of measurement
points and replaces original events with the barycenter of the cluster. Clustering
has been used also for example in form of sequence analysis providing very good
computational throughput [8] or requiring more computations with density-based
clustering [18].

Another approach that dealt with detecting the mobility episodes was proposed
in [19], where the authors presented a technique based on Switching Kalman filter
(SKF) for differentiating between the movement episodes - Stay, Jump and Move.
This method is further analysed in chapter 2.

1.4 Contributions of This Work

The main goal of this work is improving the algorithms that are used for mobile
positioning data analysis. The first contribution of this work is analysing the
Switching Kalman filtering algorithm proposed by Batrashev et al [19]. Three
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shortcomings of that algorithm are identified and solutions to overcome them are
proposed. The effectiveness of the improvements is evaluated on a real data.

The second contribution is designing a method to incorporate periodic movement
patterns into the trajectory models and evaluating the effectiveness of this for location
accuracy improvement. For this method, some limitations have been detected, that
require further investigation.
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2 Methodology of Stop Detection

One state of the art approach to stop detection is a Switching Kalman filtering based
algorithm proposed by Batrashev et al [19]. Although they achieved good results
with their methods, there were some implicit assumptions made, that rarely hold for
mobile network events. In this work three of such limitations have been identified
and solutions proposed for them. Two of these assumptions were related to the
time differences between consecutive events made by a device in the mobile network.
The third limitation involved overconfident location accuracy for stationary devices,
caused by correlated measurement errors.

Before addressing these limitations, a concise overview of Kalman filtering (KF)
and Switching Kalman Filtering has to be given. In this section KF and SKF are
introduced similarly how they were in the original publication by Batrashev et al
and then the shortcomings are analysed and improvements proposed in the following
subsections. In this section time is viewed as discrete time steps t− 1, t, t+ 1, etc.
Quantities that change through time have the time step t marked in the subscript.

2.1 Kalman and Switching Kalman Filtering

Kalman filter is a recursive algorithm for finding maximum likelihood estimations
(MLE) for the hidden state of a linear dynamic system [20]. This is done by collecting
observations that are related to the hidden state. All the observations are assumed
to have a Gaussian white noise with known covariance. Formally there are two main
equations, that define the dynamic liner system, upon which the Kalman filter will
be applied:

xt = Ftxt−1 + qt (1)
yt = Htxt + rt (2)

Equation (1) describes the change of the hidden state x from time step t − 1 to
time step t. The matrix Ft is known as the state transition matrix and this can be
different for each time t. Vector qt is a Gaussian noise with covariance matrix Qt.
Equation (2) relates the hidden state with the observations. Ht is the observation
matrix, unlike Ft this does not have to be a square matrix. The Observation noise
rt has covariance Rt and yt are the observations made.

The actual value of xt will remain unknown and so the best prediction given observa-
tions up to time t′ is used: x̂t|t′ . This prediction also has an error estimate, that can
be described by a covariance matrix: Pt|t′ . Kalman filtering algorithm for finding
these optimal estimates requires the following equations to be applied for every time
step t:
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x̂t|t−1 = Ftx̂t−1|t−1 the noise is centered at zero (3)
Pt|t−1 = FtPt−1|t−1FT

t + Qt (4)

êt = yt −Htx̂t|t−1 measurement residual (5)
St = HtPt|t−1HT

t + Rt residual covariance (6)
Kt = Pt|t−1HT

t S−1
t optimal Kalman gain (7)

x̂t|t = x̂t|t−1 + Ktêt updated estimate (8)
Pt|t = (I−KtHt)Pt|t−1 updated estimated covariance (9)

Kalman filtering provides optimal estimation given only the past information. This is
ideal for real-time applications, but it can be improved for offline uses. Fixed interval
smoothing is used to obtain the MLE for the hidden state and its the covariance of
errors, that uses the all the observations up to time T > t. The algorithm for this is
named after its creators Rauch, Tung and Striebel (RTS):

Ct = Pt|tFT
t+1P−1

t+1|t RTS gain (10)
x̂t|T = x̂t|t + Ct(x̂t+1|T − x̂t+1|t) smoothed state (11)
Pt|T = Pt|t + Ct(Pt+1|T −Pt+1|t)CT

t smoothed state covariance (12)

These formulas are applied iteratively, starting from time T , as a result, the MLE
for all the hidden states given all the observations are found [21].

If the nature of the underlying process changes in time, then this can be modelled
by changing the matrices Ft, Qt, Ht and Rt correspondingly. In the context of this
work, the most important change in the process is whether the observed mobile
device is moving or staying still. Classical Kalman Filter requires that this change
is known in advance. To overcome this limitation an algorithm called Switching
Kalman filter has been designed [22].

Switching Kalman filter requires a fixed set of Kalman filters to be chosen, such that
each state transition could be described by a linear combination of these. All of
these Kalman filters are applied to every time step t and the measurement residuals
êt are used for finding the probabilities for each of the models that this transition
occurred according to that model. In some cases these probabilities can be even more
important results of the algorithm than the estimation of x̂t|t, that is the weighted
average of the predictions of all the models.

In this work three mobility types are distinguished and corresponding models asso-
ciated with them: Stay, Jump and Move. The Stay model describes a stationary
device. Jump and Move are both describing a non-stationary device: under the
Jump model the device changes location without leaving a trail of events during
the actual movement, the Move model, on the other hand, is describing the change
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in location that is accompanied by a sequence of events during the movement. In
the Jump model, the change in location is modelled by having a very large location
uncertainty for a short period. The Move uses the speed of the device as the main
cause for the location change.

For even more powerful estimation, a model switching matrix Zt can be specified.
An element of this matrix Ztij is the probability that if the transition to time step
t − 1 was made according to the model i, then the transition to time step t will
be done according to model j. The most common use of this matrix is forcing the
consecutive transitions to be more likely made by the same model, meaning that
the diagonal elements would be significantly larger than the off-diagonal elements.
The only exception to this is the Jump model: several consecutive jumps should be
covered by the Move model.

When modeling the movements of mobile devices, the hidden state vector has four

components: xt =
(
x
y
ẋ
ẏ

)
, two for location and two for speed. Observation vector on

the other hand has only two components: yt = ( xy ) [19].

The observation matrix is time-independent and same for all the models:

Ht =
(

1 0 0 0
0 1 0 0

)
.

For Stay and Jump models, the state transition matrix Ft is a unit matrix. State
transition matrix of the Move model corresponds to simple linear movements:

Ft =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 . (13)

In this equation ∆t is time between time steps t − 1 and t. For each model, the
covariance matrix of the observation noise corresponds to the size of the coverage
area of the antenna, where the device was connected to.

The most significant difference between the models comes from their state transition
noise covariance matrices Qt:

• The Stay model should have the smallest variance in both speed and location.
The real hidden state does not change at all according to this model, but the
prediction can vary when new observations are acquired.

• In the Move model, the uncertainty of location is also small, but speed is allowed
to vary greatly to model more complex movements: turning, acceleration, etc.

• While Jump model includes a change in location, it is not caused by the speed,
but by very high uncertainty in the location. The variance in speed is set to
be as low as in the Stay model.
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Finding optimal values for these covariances can be done with parameter optimization.

Similarly to the Kalman filter, the Switching Kalman filter also considers only the
past observations when computing the maximum likelihood estimations. Fortunately,
the SKF also has the possibility for a smoothing step. The set of equations for this
is significantly more complex and is very well covered in the original article [22].

2.2 Proposed Improvements to Current Method

2.2.1 Sampling Rate Independent Model Switching

The time between two consecutive events in the mobile network can differ greatly
between different devices and also throughout the day for any particular device.
While actively using mobile internet, the network can register several events per
minute, but when the device stays idly, there can be up to two hours between events
and sometimes even more. An event density distribution for a real mobile network
is depicted in Figure 1. Noticeable features on that distribution are the peaks at
some times, for example, 42.5 min and 2 h. These can be caused by some internal
procedures of the mobile network or by some devices that periodically provide some
updates. Exact locations of these peaks can change for different mobile operators,
but the general shape stays the same.

00:00:00 00:33:20 01:06:40 01:40:00 02:13:20
Time difference

10 3

10 2

10 1

100

101

%
 o

f e
ve

nt
s

Distribution of time differences

Figure 1. Distribution of time differences between consecutive successful network
events for a mobile device. This distribution has very long and thin tail that is
clipped from the plot.

In the overview of the Kalman and Switching Kalman filters, at two places an implicit
10



assumption was made that the time difference between two consecutive events is
constant. In reality, it can change at least two orders of magnitude. First of these
was made, when the model switching matrix Zt was chosen to be fixed. In the article
it was proposed to use the following values:

Zt =

 0.8 0.1 0.1
0.1 0.8 0.1
0.45 0.45 0.1

 .
The ordering of the models is Stay, Move, Jump. This sort of matrix defines a discrete
Markov chain (MC) between these three states [23]. To illustrate how the change in
the frequency of the events changes the model, a toy example can be considered. A
person is standing still at time t = 0, its change in mobility type is described by a
Markov chain with Zt as its transition matrix. When disregarding the observations,
then its probability to be staying still after time t has passed is shown in Figure
2. It is paradoxical, that the persons behaviour should change depending on the
number of events it does in the mobile network. The use of fixed probabilities Zt
causes devices, that make more events, have a higher chance to change its movement
model without having any extra evidence for it.

When using the given values for Zt, then the asymptotic value of the probability for
staying still is 45 %. This is independent of the sampling rate and should express the
probability of staying still when there have been no observations from this device
in a long time. Mobile devices are most commonly carried by people with them, so
it is reasonable to assume that the mobility patterns of mobile devices are rather
similar to those of people. Analysis of peoples mobility in urban areas has shown,
that on average every person takes 2.8 trips every day, with the average length of 26
minutes [24,25]. This is about 5 % of the day on the move - 11 times less than the
55 % proposed by the values in Zt.

One method for calculating the values of Zt in such way that the sampling rate
has no effect on the outcome is using a continuous-time Markov chain (CTMC).
Unlike discrete Markov chain, that is parametrized with transition probabilities, the
continuous-time MC is parametrized with transition rates [23]. The non-negative
transition rates λij express the number of transitions that take place on average in a
unit of time from state i to state j. Transitions from state i to i are not modelled.
These values are arranged in a generator matrix A, such that for off-diagonal elements
Aij = λij and the diagonal elements are chosen such that all rows add up to 0. By
solving either the Kolmogorov forward or backward equations, an expression for Zt

is obtained
Zt(∆t) = eA∆t,

∆t is the time between time step t and t− 1 [23]. Matrix exponentiations is done
using the eigenvalue decomposition A = BΛB−1 and Taylor expansion. Resulting
in the following equation:

Zt(∆t) = BeΛ∆tB−1.

Λ is a diagonal matrix and the result of exponentiation of a diagonal matrix is another
diagonal matrix whose elements are elementwise exponents of the initial matrix. The
computational cost of this negligible compared to the rest of the algorithm.
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Figure 2. The probability that a stationary person is stationary after time t depending
on the choice of Zt and sampling rate. It is important to note that the person does
not have to be stationary for the entire duration..

The need for separate Move and Jump models does not come from peoples mobility
patterns, but from the behaviour of the mobile network. Because of this, statistical
papers cannot be used to differentiate these models. The mobile network data shows
that about 10 % of trips are happening according to the jump model and others
are taking place according to the Move model. When also considering the average
length of a trip and the average number of trips in a day, the generator matrix can
be estimated:

A =

−0.125 0.113 0.012
2.31 −2.31 0
2.31 0 −2.31

 transitions
h . (14)

The ordering of the models is Stay, Move, Jump. As a comparison, the probability
that a stationary person, who behaves according to the generator matrix A, is
stationary after time t is added to the Figure 2.

2.2.2 Sampling Rate Independent Process Noise

In the original article, the values for process noise covariance Qt were fixed [19]. This
simplification assumes that the time difference ∆t between time steps is constant. As
seen in the previous subsection, this assumption does not hold. To get a better under-
standing about the effect this assumption has, a simple example can be considered:
a person with known initial location and speed (x(0) = 0 m, ẋ(0) = 1 m

s ) is observed
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over a period of 1 h. Its movement is modelled as linear (F =
(

1 ∆t
0 1

)
) with fixed

process noise Q =
(

0.01 0
0 0.01

)
. Its predicted location (x̂) and its variance are

depicted in Figure 3. The predicted location is precisely the same for any sampling
rate. The confidence in this prediction of the other hand decreases as sampling
rate increases. This implies that while the state transition matrix Ft is correct, the
process noise covariance Qt should depend on ∆t somehow.

0
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Figure 3. Predicted location and its variance for a person, whose initial position and
velocity are perfectly known. All three lines on the x̂ plot overlap perfectly.

The following derivation of Qt(∆t) is based on the article of P. Axelsson and F.
Gustafsson [26]. The state transition equation (1) is a discretized version of stochastic
differential equation

dx(t) = Ax(t)dt+ dβ(t), (15)

where β(t) is a Brownian motion with

E[dβ(t)dβ(t)T ] = Sdt. (16)

Discretization is done by integrating the equation (15) over time interval [tt−1, tt].
The integration results is

x(tt)︸ ︷︷ ︸
xt

= eA∆t︸ ︷︷ ︸
Ft

x(tt−1)︸ ︷︷ ︸
xt−1

+
∫ tt

tt−1
eA(τ−tt)dβ(τ)︸ ︷︷ ︸

qt

. (17)

13



Using the definition of covariance of the white noise E[qt1qt2 ] = Qt1δt1t2 , the covariance
matrix Qt can be expressed as

Qt =
∫ ∆t

0
eAτSeAT τdτ. (18)

Solving this sort of integral for a general case is a rather complicated problem, but
there are some approaches to it - for example using Lyapunov equations. When all
of the eigenvalues for matrix A are zeros, then this integral will have an analytical
solution. This condition holds for all three of the models: Stay, Move and Jump. For
Move model the matrix A is

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

for Stay and Jump models, it is zero matrix. The solution to integral (18) under the
assumption that all the eigenvalues of A are zeros is

Qt =
p−1∑
i=0

p−1∑
j=0

∆t1+i+j

i!j!(1 + i+ j)AiSAjT ,

where p is the dimensionality of the square matrix A. Because of the sparsity of A
in these models, most of the the terms are 0, resulting in simplified expression for
Qt, for Stay and Jump model it will be

Qt = S∆t (19)

and for move Model it will be

Qt = S∆t+ (AS + SAT )∆t2
2 + ASAT ∆t3

3 . (20)

There is no reason to believe that the noise for different components of x would be
directly correlated, so matrix S can be a diagonal matrix. The values on diagonal
can satisfy the same conditions that were proposed for a fixed Q. Selection of these
values by parameter optimization is discussed in the results section.

2.2.3 Correlation and Overconfidence

One of the preconditions for applying Kalman Filter is that the process noise qt and
the observation noise rt have to be uncorrelated in time [20]. There is no reason to
believe that this assumption does not hold for the process noise, but there is one
case where it does not hold for the observation noise. When the device is stationary,
it is rather common, that it will keep connecting to the same cell over a long period.
When considering each of these connections as an uncorrelated measurement, then
the predicted hidden state will converge to the observation, as depicted in Figure 4.
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Figure 4. Behaviour of Kalman filters predicted location and covariance with
correlated measurements. At time 0 the prior probabilities are shown.

This results in unrealistically overconfident predictions. Completely ignoring these
consecutive events for Stay model would also be unwary, because even when fully
correlated, they might be still carrying information with them.

There has been some work done to design a Kalman filter generalization for correlated
noise. Here the results of Petovello et al [27] are considered. In their work, they
generalized observation equation (2) to also include correlated error:

yt = Htxt + ut. (21)

In this new relation, ut is time-correlated error, with correlation expressed through
equation

ut = Ψtut−1 + rt. (22)
As in the original Kalman filter, the error rt is a white Gaussian noise with covariance
Rt. A concise overview of filtering a dynamic system, that follows this relation has
been given by Wang et al, along with a comparison to alternative approaches [28].

As stated before, the correlation does not effect the Jump or Move models. The
improved Stay model will have two possible cases:

• If the observation is different from the previous, then under this model there
is no correlation and the matrix Ψt is zero. In this case, the regular Kalman
filter can be applied.

• If observation yt is the same as the previous one yt−1, then under this model
the correlation transition matrix Ψt is a unit matrix and there is no added

15



white noise, meaning that Rt is zero.

When substituting these assumptions along with the state transition matrix for Stay
model Ft = I into the new update formulas presented in [28], then they will simplify
significantly:

x̂t|t = x̂t−1|t−1, (23)
Pt|t = Pt−1|t−1. (24)

According to this result, correlated measurements have no effect on the estimated
hidden state x̂, but they will compensate the effects of the process noise on the
covariance of the prediction P. This can be taught as a stationary device, that stays
connected to the same cell, is suspended in time according to the observer, until
it will connect to a new cell. An example how this kind of model behaves under
correlated measurements is depicted in Figure 4. As expected, the correlation aware
model does not converge to an overconfident prediction but stays at a realistic value.

When using a Switching Kalman filter with regular Move and Jump models along
with correlation aware Stay model, then there will still be some convergence, because
the final result is a weighted average of these three models. This is not a problem to
be solved, but a sign of the predictive power of SKF. When there is strong evidence,
that the device is stationary, then the weight of stay model will be very close to 1
and the convergence is negligible.

The RTS smoothing algorithm also requires changes for it to work with correlated
measurements. Just like in the filtering case, this is only applied to the Stay model.
If observation yt is not the same as the next one yt+1, then regular RTS smoothing
equations can be used. Otherwise, the correlation aware update equations must be
used:

x̂t|T = x̂t+1|T , (25)
Pt|T = Pt+1|T . (26)
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3 Incorporating Periodicity into Trajectory Mod-
els

Modelling trajectories as series of points is a reasonable simplification, that still
retains a significant amount of its predictive power. In this work, it has provided
predictions of movement types and also predicted the location of the mobile device
with improved accuracy. There are still questions about trajectories, that can not be
answered with the results obtained so far. A common task, that arises when doing
trajectory analysis is to give a prediction of the location of the subject at an arbitrary
time t, that might not have a measurement associated with it. This prediction must
contain both the most likely location and a covariance matrix of the prediction error.
Some sort of regression model would be appropriate for this task.

A seemingly unrelated question to this is how can more domain knowledge about
peoples movements be included in the models, to improve their predictive power. It
has been shown that peoples trajectories contain a lot of periodic patterns [3]. Using
these periodic patterns could give significantly more accurate location predictions
for periods with very sparse measurements.

One possible regression model, that has a natural way to deal with periodic functions
is Gaussian process regression (GPR). In this section, an overview of GPR is given
and its viability as a tool for a trajectory analysis assessed. As an improvement over
Gaussian process regression, a GPR mixture model (GPRMM) is introduced and
an alternative to the expectation maximisation algorithm of GPRMM is proposed.
GPR will be used as a second layer upon the outputs of the switching Kalman filter.

3.1 Gaussian Process Regression

The theoretical overview of Gaussian process regression is based on the book of
Rasmussen and Williams [29]. An intuitive definition for Gaussian processes proposed
by them is ”a Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution”. Gaussian processes can be used for
both regression and classification, but only regression is covered in this work.

3.1.1 General Overview

Gaussian process is completely specified by two functions: mean m(t) and covariance
k(t, t′). Although in this work m(t) is considered to be constant for a trajectory,
equalling to the geometric centroid of the trajectory, in the following formulation of
GPR a general mean function is used. Trajectories have two coordinates, because
of this there have to be two separate means: one for easting (mE(t)) and other for
northing (mN(t)). It is shown that peoples trajectories tend to be very anisotropic,
meaning there have to be also separate covariance functions for easting (kE(t, t′))
and northing (kN(t, t′)) [3]. To avoid modelling the covariance between easting and
northing at any time the trajectory is transformed into its principal components,
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that are uncorrelated with each other [30]. These components will still be referenced
to as easting and northing. The correlation between them in reintroduced later by
the covariance of the input uncertainty.

To use GPR, two sets of time points t1 and t2 have to be specified and corresponding
values of the mean (m(t1) andm(t2)) and covariance (k(t1, t1), k(t2, t2) and k(t1, t2))
computed. Let t1 be the times from where training points are from and t2 the set
of times, where the regression function will be evaluated. The coordinates of the
training points are yE and yN and the corresponding coordinates for the times,
where the regression is evaluated at are y∗E and y∗N . These values come from a
multivariate Gaussian distribution:

yE
yN
y∗E
y∗N

 ∼ N


mE(t1)
mN(t1)
mE(t2)
mN(t2)

 ,

kE(t1, t1) 0 kE(t1, t2) 0

0 kN(t1, t1) 0 kN(t1, t2)
kE(t2, t1) 0 kE(t2, t2) 0

0 kN(t2, t1) 0 kN(t2, t2)


 (27)

The distribution defined by equation (27) is actually two independent multivariate
distributions: one for easting and other for northing. If the covariance in easting
and northing is not interesting, then these two can be split up, but in this work
dependence between them is restored when the observations are included. For
convenience the notation can be simplified by merging the easting and northing:(

y
y∗

)
∼ N

((
m1
m2

)
,

(
K11,K12
K21,K22

))
.

When the values of y are known, then these values can be used to update the
distribution for y∗:

y∗ ∼ N (m∗,K∗), (28)
m∗ = m2 + K21K−1

11 (y−m1), (29)
K∗ = K22 −K21K−1

11 K12. (30)

These equations would be correct, if the values of y are perfectly known. In the
context of this work the values of y are the predicted locations from the switching
Kalman filter and they have covariance Σ associated with them. The matrix Σ
contains the error variances for both coordinates for each time step and also the
covariance between the easting and northing for each time step. Adding this to the
covariance matrix K11 will result in new equations describing the distribution of y∗:

m∗ = m2 + K21(K11 + Σ)−1(y−m1), (31)
K∗ = K22 −K21(K11 + Σ)−1K12. (32)

The final thing that needs to be done, before GPR can be applied, is defining the
covariance function k(t, t′), that is also called kernel. Although there are infinitely
many kernels, not every function is a valid covariance function. Proving that a
function is a valid kernel, is not a trivial task and is out of the scope of this work.
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In this work, two known kernels are used: the squared exponential (SE) covariance
function and a periodic kernel. Both of these are isotropic kernels, meaning that
they depend only on the absolute value of time difference |t1 − t2|.

The square exponential kernel is defined as

kSE(r) = a exp(− r
2

2l2 ) (33)

and has two parameters: the scale parameter a and the length scale l. Because of its
simplicity, it is the most commonly used kernel. The periodic kernel

kP (r) = ap exp(−
2 sin2( r

T
π)

l2p
) (34)

has a similar form, but one extra parameter - period T . An important detail, that is
often omitted is that the length scales l and lp have different units. In the square
exponential kernel, l has the same units that r has, in this case, units of time. In
the periodic kernel lp is a unitless quantity. There is no single correct method to
relating these two quantities. One option is to leave them to be independent and
optimize them separately. Another approach would be to make the main peak of the
periodic kernel have the same shape as the SE kernel. To achieve this the values of
kernels with the same scale parameters (a = ap) can be equated at value r = l and
the resulting relationship between lp and l is

lp = 2 sin( l
T
π). (35)

Although these kernels will equal only at points r = 0 and r = l, they are visually
indistinguishable at the main peak, as seen in Figure 5. The difference between them
is less than 1 %. This property holds only when l is much smaller than T .

Existing kernels can be combined to form new ones: the sum of any valid covariance
function is also a valid covariance function. The sum of periodic and squared
exponential kernels corresponds to a periodic regression model that puts more
emphasis on local evidence (time-wise) and less on evidence from other periods. The
weight of these is controlled by the scale parameters a and ap. This combined kernel
will still be referred to as a periodic kernel.

3.1.2 Correlated Measurement Errors

In section 2.2.3 correlated measurement errors were covered in the context of Kalman
filtering. Even though the correlation aware model was applied to the data, the
resulting predictions for the location will still have the same correlation in them. This
has to be accounted for when using the Gaussian process regression. Similarly to the
SKF, here also it will be assumed, that the correlation mainly affects measurements
of stationary devices. Unlike the SKF there is no separate stay model, but the stop
episodes have been identified by the SKF. Among these stop episodes, clusters of
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Figure 5. Periodic and squared exponential kernel with unit scales and length scales
related by the equation (35). Period is 24 h and the length scale l = 30 min.

very similar predictions can be detected. It is assumed that in each of these clusters
all the measurement errors are correlated.

This correlation can be included into the model by changing the values of Σ in
equations (31) and (32). Currently, there are the estimated uncertainties for each
time step for both easting and northing. As an improvement, the correlations among
the detected clusters will be also included. Setting the correlation value close to
1 makes the inference algorithm numerically unstable. Correlation values below
0.5 resulted in a covariance matrix that was numerically stable. Using such low
correlation values is an improvement over using no correlation but not enough to
avoid the uncertainties in the predictions getting unreasonably low. The reasons for
this numerical instability and methods to avoid it must be investigated in future
works.

3.2 Mixture of Gaussian Process Regressors

Although a large part of human mobility follows a periodic pattern, there are still
mobility episodes that are completely out of the pattern. Using Gaussian process
regression with the periodic kernel on these aperiodic episodes can be detrimental to
the whole regression accuracy. A generated example of this case is shown in Figure 6:
the regression line in the aperiodic part gravitates towards the measurements of the
periodic parts. A way to tackle this problem would be using two GPR models: one
that has only aperiodic kernel and other has a periodic kernel. These models would
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be used only for regions that are appropriate for them. A known tool for this is
Gaussian process regression mixture model proposed by Volker Tresp [31]. Similarly
to most other mixture models it uses an iterative expectation maximisation algorithm
for finding which model corresponds to what part of the data. As comparison a
regression line of mixture model is added to Figure 6. Its fit is significantly better
than a plain periodic model, especially for the aperiodic part. This mixture model
is not fitted with the algorithm proposed by Tresp, but by technique proposed in
section 3.3.
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Figure 6. One dimensional trajectory of an object is recorded over 5 days, on four
of them its coordinate follows a periodic pattern, but in one it deviates from this
pattern. Given noisy measurements, two regression models are fitted: one GPR with
a periodic kernel and other is GPRMM of periodic and aperiodic models.

3.3 Hidden Markov Model Based Gaussian Process Regres-
sion Mixture Model

The mixture model algorithm introduced by Tresp requires three sets of Gaussian
process regressors to be fitted iteratively [31]. This approach is far too slow when
hundreds of thousands of trajectories have to be analysed. In this section, an
alternative method for fitting GPRMMs is proposed. There are slight differences
when applying this method for periodic and aperiodic kernels. These differences are
discussed in the following subsections.

A key point for solving this task is estimating how well is the value of a training
point predicted by all other training points. This process is called leave one out
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cross-validations (LOO-CV). For many machine learning algorithms, this requires
refitting the model n times, where n is the number of training points. Fortunately,
for Gaussian process regression, this can be done by fitting the model on the data
only once [29, Chapter 5.4.2]. In the context of this work, when there are n training
points then the vector y has length 2n because each training point has both easting
and northing. The difference between LOO estimate for i-th point and the measured
value at that point is also a Gaussian distribution with mean vector[

[(K11 + Σ)−1](i,i+n),(i,i+n)
]−1

[(K11 + Σ)−1(y−m1)]i,i+n (36)

and covariance matrix [
[(K11 + Σ)−1](i,i+n),(i,i+n)

]−1
. (37)

The matrix (K11 + Σ)−1 and vector (K11 + Σ)−1(y −m1) both contain only the
training points and are already computed during fitting the model. Indices i, i+ n
mean taking a subvector (with length 2) or a submatrix (with shape 2x2) of these.
The computational cost of this is negligible compared to finding the inverse of K11+Σ.
The value of this Gaussian at the origin is the likelihood that this point follows this
model. By comparing these likelihoods for different models the one can be chosen
for each point.

3.3.1 Aperiodic Kernels

Gaussian process regression mixture models with aperiodic kernels have been used
to model functions whose behaviour differs for different input values - narrower
kernels are better at capturing quicker changes and wider kernel behave better
are smoother areas. In the article by Tresp observation from step function were
modelled by mixture model with kernels that had three different length scales [31]. A
reconstruction of this example is depicted in Figure 7. The mixture achieves better
results than all of its component models.

The proposed method for fitting a GPRMM with aperiodic kernels is:

1. All of the GPR models are fitted on the entire training data.

2. LOO-CV log-likelihoods are computed for each training point for each GPR
model.

3. A hidden Markov model (HMM) is constructed to model this system [32]. The
log-likelihoods are the emission scores for each training point and the transition
probabilities are estimated using a continuous time Markov chain, like in the
section 2.2.1.

4. The Viterbi algorithm is used to find the most probable model for training
point [33]. In between consecutive points with the same model, it is assumed
that the model does not change. There can be different strategies used to
select model between input points where a transition from one model to other
happens - here the transition is chosen to always happen in the middle of these
points.
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Figure 7. Recreation of a toy example of fitting a step function with three different
GPRs and a GPRMM of them. It is unknown which type of kernels were originally
used - here square exponential kernels are used. The regression line is overshooting
the step, this hints that the kernel might be too smooth for this problem [29,
Chapter 4.2.1].

5. Models can be refitted only on the inputs they describe, to speed up the
inference process for later uses. It is advisable to include some training points
surrounding the models’ domain to avoid edge effects of the regression.

This algorithm results in hard clustering - meaning that every input corresponds to
only one model, not to a weighted sum of several. Unlike the classical mixture model
algorithm, this does not require an iterative fitting of the models, resulting in several
times faster runtime. There is no guarantee that this gives optimal GPRMM, but
empirically the results are just as good as the original algorithm when using only
aperiodic kernels.

If possible, the transition rates of the generator matrix used in the continuous time
Markov chain should be estimated using some domain knowledge. Alternatively,
there are some iterative methods for estimating them, but this might nullify the
performance gain of this algorithm [34].

3.3.2 Kernels With Periodic Components

While it is good to have an algorithm that works with aperiodic kernels, in this
work it is important to have a method, that can make an optimal choice between a
periodic and aperiodic kernel. When applying previously introduced algorithm in
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such case, then most likely the periodic model will be excluded from the final model
entirely. When a periodic model is trained on the entire dataset it will give worse
predictions because parts of the training data that do not follow the periodic pattern
pollute the model. The model tries to average up all the periods. This effect can be
seen in Figure 6.

To tackle this problem a special case of the previously proposed algorithm has to
be designed. Here the mixture model will contain only two regressors: one with an
aperiodic kernel and other with a periodic kernel. The new algorithm consist of the
following steps:

1. The aperiodic model is fitted on the entire training data.

2. This model is then sampled at evenly spaced times such that each period of the
periodic kernel will have the sampling points at the same times. The number
of sampling points is a free parameter of this algorithm.

3. The sampling results are shifted by one period and overlapped with itself. The
shifted and unshifted data points are compared pairwise and the likelihood of
them overlapping is be computed. The threshold for the overlapping is another
free parameter of this algorithm. Both points in a pair whose likelihood is
above the threshold are marked as potentially periodic.

4. Points in the training data that are between two potentially periodic points
are marked as potentially periodic.

5. The periodic model is fitted on the potentially periodic training points.

6. LOO-CV log-likelihoods are computed for each training point for each GPR
model. If a point was not part of the training points for the periodic model,
then the training value is simply compared with the predicted value.

7. Similarly to the previously proposed algorithm, a HMM is constructed, then
the Viterbi algorithm is applied and finally both models are refitted. This time
the refitting is not optional because some training points that were not marked
as potentially periodic could still be included in the final training set of the
periodic model.

This version of the mixture model fitting algorithm was used to fit the mixture model
in Figure 6.

24



4 Results and Discussion

4.1 Data Description

To assess the effectiveness on the developed tools, a sample trajectory is needed. This
trajectory must contain both the mobile network events and also accurate location
data, such as GPS track. For this work, a single person was tracked over a period of
one month. During that time the subject travelled in an area with a radius of 35 km.
There are in total 40 000 mobile events made by its device, with an average gap of
67 s between them. The distribution of time differences between subjects network
event is depicted in Figure 8. This subject is a bit more avid mobile user than the
average - for the entire population 95 % of events happen with less than 5 min after
previous, but for this subject, it is 3.5 min.
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Figure 8. Distribution of time differences between consecutive successful network
events for the subjects mobile device. This does not have as prominent tail as the
entire population depicted in Figure 1.

This person moves mainly along the shore of a body of water. This makes its
trajectory rather anisotropic: 90 % of its location variance is explained by its first
principal component. Because of this, on the following visualizations, only its
movement in the direction of the first principal component can be shown without
any significant loss in information. To preserve the anonymity of the subject and
the mobile operator, absolute coordinates are avoided and all the coordinates are
deviations from the trajectories’ centroid.

4.2 Switching Kalman Filter

The main purpose of using the Switching Kalman filter is detecting if the subject is
moving or not. Improved location accuracy is a secondary result of this algorithm.
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For this reason, the quality of the model is assessed by its ability to correctly locate
the times when the subject was stationary. The probabilities (p̂stopt

) calculated from
the SKF do not describe the observation times t, but the transitions from previous
observation t − 1 to this. For each of these transitions from the GPS track, it is
found if the device was moving during that time or not. The probability from GPS
(pstopt

) is either 0 or 1. These probabilities are combined into a time-averaged log
loss:

−
∑
t(pstopt

log(p̂stopt
) + (1− pstopt

) log(1− p̂stopt
))∆t∑

t ∆t . (38)

4.2.1 Parameter Optimization

The Switching Kalman filter has two set of parameters: the values of the generator
matrix, that determine the values of the model switching matrix Z(∆t) and the value
of the process noise covariance matrices S. The values of generator matrix A are
computed using the results of statistical research papers and are shown in equation
(14). Each of the movement type model (Stay, Jump, Move) has its own unique
process noise covariance matrix. To avoid having fit too many parameters, the same
assumptions are made, that were proposed by Batrashev et al [19]:

• The model is isotropic - the uncertainness in the easting and northing will grow
in time at the same rate.

• The covariance matrix will have non-zero values only on its main diagonal.

• Stay and Jump models will have the same noise for speed.

• Stay and Move models will have the same noise for location.

These assumptions reduce the number of parameters to four: two location noises and
two speed noises.

The trajectory was split into two equal length parts - on the first half the parameter
optimization was done and on the second half, the model performance was evaluated.
As a result of parameter optimization, the following values resulted in the minimal
log-loss:

26



Sstay =


96 m2

s 0 0 0
0 96 m2

s 0 0
0 0 6.8 m2

s3 0
0 0 0 6.8 m2

s3

 (39)

Sjump =


1500 m2

s 0 0 0
0 1500 m2

s 0 0
0 0 6.8 m2

s3 0
0 0 0 6.8 m2

s3

 (40)

Smove =


96 m2

s 0 0 0
0 96 m2

s 0 0
0 0 22 m2

s3 0
0 0 0 22 m2

s3

 . (41)

4.2.2 Effect of the Improvements to the Algorithm

Three independent improvements were proposed to the original algorithm. To get a
quantitative understanding of the effects of these, the loss function was evaluated on
the second half of the trajectory with all different combinations of these improvements
applied to it. These results are summarised in Table 1. It is reassuring to see that the
worst performing model is the one with none of the improvements applied and the
one with all of them is the best performing model. It is also important to note that
adding an additional improvement to any of the models improves the performance.

Table 1. Log-loss values for different variations of the Switching Kalman filter.

Model switching matrix Process noise Correlation awareness Log-loss
Original Original Original 0.2089
Original Original Improved 0.1889
Original Improved Original 0.2011
Original Improved Improved 0.1787
Improved Original Original 0.2056
Improved Original Improved 0.1855
Improved Improved Original 0.2006
Improved Improved Improved 0.1749

Majority of the performance gains comes from the third improvement - correlation
aware stay model. A common example of a situation, where this improvement helps
is depicted in Figure 9. Before and after the depicted time there was a long period
of correlated measurements making the prediction of the original algorithm have
unreasonably low uncertainty in the location of the device. This made the new
observations significantly less impactful and the predicted location just drifted from
one location to another without opting for the Move model. The improved variant
was justifiably much less certain in its prediction and followed the new data more
willingly.
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Figure 9. Comparison of the outputs of the original switching Kalman filter and a
improvement with correlation aware Stay model.

Making the process noise Q depend on the time difference ∆t was the second-best
improvement. For the Stay and Jump models the process noise scales linearly in
time (equation (19) and for the Move model the scaling is with a cubic equation
(20). When only this improvement is applied, then the major differences between
models should occur at time points that have unusually large gaps between them.
One of such cases is demonstrated in Figure 10. The original algorithm models this
movement as two distinct jumps, the improved model puts more emphasis on the
measurements are correctly identified as one continuous movement.

The least significant improvements came from making the model switching matrix
Zt depend on the time difference ∆t. Similarly to the process noise, it has most
significant effect in the regions with unusually large ∆t - an example of this is
depicted in Figure 11. Unlike two previous examples, there is almost no change in the
predicted location nor its covariance - only slight change in the model probabilities.

These are the results when the improvements are used one at a time. By using all of
them together the score improves even further, but the observations made on the
partial result also hold for the complete model. It is important to note, that these
changes to the model can in some parts of the data make the prediction slightly
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Figure 10. Comparison of the outputs of the original switching Kalman filter and a
improvement with sampling rate dependant process noise.

worse, but unlike the improvements, these do not seem to be systematic effects, but
rather random fluctuations.

4.3 Gaussian Process Regression Mixture Model

For Gaussian process regression, the main result is the location prediction. To assess
the quality of this model, the predictions are compared with the GPS location.
Besides the location accuracy, it is also important to have a good estimate of the
uncertainty of the prediction. The predictions for any time will be a Gaussian
distribution - the additive inverses of logarithms of these distribution values at the
GPS points locations will be evaluated and used as the log-loss.

4.3.1 Parameter Optimization

The Gaussian process mixture model contains two regressors: one has a square
exponential kernel and other has a kernel that is a weighted sum of a periodic and a
square exponential kernels. All of these kernels will have the same length parameter
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Figure 11. Comparison of the outputs of the original switching Kalman filter and a
improvement with sampling rate dependant model switching probabilities.

- for the periodic, the correction in equation (35) has to be applied. This model will
have two parameters that have to be optimized: the length scale for kernels and
the weight for the periodic kernel. Half of the trajectory is used to find parameters
that minimize the average log-loss. The optimal for the length scale is 1.5 h and the
optimal weights are such that the central peak is 30 % higher than all the others.

4.3.2 Effects on Location Accuracy

After the optimal parameter values are found, the model can be applied to the rest
of the data and the results compared to the GPS track. In the Table 2 the mixture
model is compared to the results of a GPR with just a square exponential kernel
and the results of just using the Switching Kalman filter. For both of the Gaussian
process models, the inputs are the values from the Switching Kalman filter. Because
the log-loss values are not intuitive to interpret, the average distance between the
predictions and real locations is also included.

Firstly it seems that the regression model does not have any effect on the location
accuracy. The 20 m change in the values is in the range of noise and there is no
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Table 2. Log-loss values for models predicting the location of a mobile device.

Model Average log-loss Average distance
Kalman filter 22.4 420 m
GPR 41.2 440 m
GPRMM 43.7 420 m

systematic improvement. The values of the loss function get significantly worse,
when using the GPR model and even more with GPRMM. The main reason for this
is correlated inputs, that make the prediction unrealistically confident. While it was
partially compensated, it is clearly not enough and more work has to be done with
it to use this regression model as a viable method for trajectory analysis.

Besides location predictions, it might be also interesting to take a look at when
did the periodic model apply and when the aperiodic one. The device followed the
periodic model 80 % of the time. Length of an average periodic pattern was 25 h,
aperiodic episodes were much shorter - 2 h on average. The longest periodic sequence
was almost 4 days and the longest aperiodic was 12 h. Most of the aperiodic episodes
started after the end of a workday: between 5 pm and 8 pm, and ended around 11
pm. While this model did not add any value to the location accuracy, the changes
between periodic and aperiodic behaviour might be an interesting future research
subject.
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5 Conclusion

Mobile operators have access to a sizeable source of data about its clients’ mobility.
Its vast amounts and potential business value make it appealing to researchers and
entrepreneurs alike. Its spatial coarseness and temporal sparseness makes extracting
information from this data a compelling task requiring specially crafted algorithmic
tools. Detecting when and where did the mobile device stopped is a crucial step that
serves as a basis for subsequent data analysis tasks on this data.

In this work, a particular method for stop detection was studied and three short-
comings of it were identified. Potential solutions, that based on the peculiarities of
the mobile network, were proposed to these problems. The effectiveness of these
solutions was evaluated on a real data. Each of these three changes individually
improved the performance and combining them resulted in an even better model.

As a potential way to improve the accuracy of the location predictions, using the
prominent periodic patterns of human mobility was investigated. During this, an
alternative approach to fitting Gaussian process regression mixture models was
developed and tested. Due to the inability to sufficiently include the correlation of
inputs into the model, the results did not improve compared to the baseline. Despite
this, it was shown that periodicity is a common property of trajectories. Developing
the algorithms further so that they can handle correlated inputs is a potential future
research topic.
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Appendix

I. Acronyms

CGI Cell Global Identity
GPR Gaussian Process Regression
GPS Global Positioning System
HMM Hidden Markov Model
KF Kalman Filter
MC Markov chain
MLE Maximum Likelihood Estimation
MM Mixture Model
RTS Rauch, Tung and Striebel (smoothing algorithm)
SE Square Exponential (kernel)
SKF Switching Kalman Filter
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