
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Martin Kisand

Serverless Data Pipelines for IoT Data in
Edge and Cloud Environments using

Microsoft Azure

Bachelor’s Thesis (9 ECTS)

Supervisor(s): Shivananda. R. Poojara, MSc

Tartu 2023

Serverless Data Pipelines for IoT Data in Edge and Cloud Environ-
ments using Microsoft Azure

Abstract:
Advancements in wireless connectivity and smart device technologies have contributed to
the fast growth of Internet of Things (IoT) devices. Growth of IoT networks is generating
increasing amounts of heterogeneous raw data that has to be analysed in real time to
enable effective data based decision making. Challenges with latency, bandwidth and cost
of cloud centric IoT solutions have driven adoption of edge computing paradigm to bring
computing closer to data source. To harness edge and cloud computing resources together
for continuous IoT data, serverless data pipelines can be designed taking advantage
of Function as a Service (FaaS) paradigm. In this paper serverless data pipeline is
proposed for real time IoT use case using Microsoft Azure cloud computing platform.
Proposed forced audio to text alignment pipeline was tested to evaluate its performance
consistency, reliability and how performance was affected by computing resources in
pipeline. Pipeline proved to be mostly reliable with few failures but end-to-end execution
times were rather inconsistent. Adding CPU and working memory to serverless function
performing forced alignment lowered function execution times with increase of working
memory from 3.5GB to 7GB. Raising working memory further to 14GB did not achieve
better results compared to 7GB with current test scenario. Lowest working memory
setting proved to be most cost effective because pricing is based on available computing
resources and doubling or quadrupling resources did not have that much of an impact
on performance as it had on cost. With proposed serverless pipeline implementation
Azure did not seem to offer cost effective FaaS options considering smaller scale IoT
applications that need custom functionality because premium plan can not scale to zero
instances and lowest working memory setting is 3.5GB. In case of smaller scale IoT
applications where functionality offered by Azure function consumption plan is not
sufficient other cloud service providers could offer more suitable solutions with lower
costs.

Keywords:
Internet of Things, cloud computing, edge computing, serverless data pipelines, Function
as a Service (FaaS)

CERCS: P170 Computer science, numerical analysis, systems, control

2

Serverivabad andemkonveierid esemevõrgu andmete töötlemiseks
kasutades servtöötlust ja pilvtöötlust Microsoft Azure platvormil
Lühikokkuvõte:

Arengud traadita andmeside võimekuses ja nutikate seadmete tehnoloogias on panus-
tanud asjade interneti seadmete arvukuse kiiresse kasvu. Asjade interneti kasv toodab
järjest suuremas koguses erisuguseid töötlemata andmeid, mida on vaja reaalajas analüü-
sida, et nende abil saaks tõhusalt teha andmepõhiseid ostuseid. Pilvepõhised esemevõrgu
andmetöötluslahendused on problemaatilised seoses kõrge latentsuse, hinna ja ribalaiuse
kasutusega ja sellest lähtuvalt on rohkem hakatud kasutama servtöötluse põhist lähe-
nemist, et tuua admetöötlus andmete tekkimise kohale lähemale. Selleks et saada kasu
voona tekkivate esemevõrgu andmete töötlemiseks nii pilv- kui servtöötlusest samaaeg-
selt, on võimalik luua serverivabu andmekonveiereid, mis kasutavad ära eeliseid, mida
pakub funktsioon teenusena lähenemine. Selles töö käigus pakutakse välja serverivaba
andmekonveieri lahendus esemvõrgu andmete reaalajas töötlemiseks kasutades Mic-
rosoft Azure pilvearvutusteenuste platvormi. Välja pakutud andmekonveierit heli- ja
tekstifaili jõuga vastavusse viimiseks testiti katsete käigus, et hinnata selle järjepidevust
ja usaldusväärsust ning kuidas kasutatava arvutusvõimsuse muutmine mõjutab jõudlust.
Välja pakutud serverivaba andmekonveier oli küllaltki vastupidav ja esines vaid mõni
ebaõnnestunud katse, kuid andmekonveieri töötluseks kuluv aeg ei olnud eriti järjepidev.
Protsessori võimsuse ja töömälu lisamine serverivaba funktsiooni tarbeks, mis tegeles
heli- ja tesktifaili vastavusse viimisega, vähendas ülesandeks kuluvat aega, kui töömälu
suurendati 3.5 gigabaidilt 7 gigabaidini. Praeguse testimise käigus täiendav töömälu
suurendamine 14 gigabaidini enam funktsiooni täitmiseks kuluvat aega ei vähendanud.
Kõige madalam töömälu seadistus osutus kõige kulutõhusamaks, sest serverivabade
funktsioonide hind tuleneb kättesaadavate arvutusressursside hulgast ja nende kahe-
või neljakordistamise tagajärjel tõusevad ka kulud kaks või neli korda, kuid jõudlus ei
paranenud enamasti samas suurusjärgus. Lähtudes selles töös välja pakutud serverivaba
andmekonveieri lahendusest jäi mulje, et Azure ei paku väiksemate rakenduste jaoks
kulutõhusaid võimalusi, kui need vajavad rohkem funktsionaalsust, kui suudab pakkuda
tarbimispõhine plaan. Võimekam premium plaan suudab küll pakkuda vajaliku funkt-
sionaalsust, aga seda pole võimalik vähendada alla ühe töötava instantsi ja väikseim
seadistatav töömälu maht on 3.5GB, mistõttu tekib pidevalt arvestataval määral kulusid,
isegi kui tegelikult andmeid ei töödelda. Väiksemate rakenduste puhul, mis vajavad
rohkem funktsionaalsust, kui pakub Azure’i pakutav tarbimisplaan, tasuks kaaluda tei-
si teenusepakkujaid, kes pakuvad selliseks olukorraks sobivaid lahendusi madalama
hinnaga.
Võtmesõnad:
esemevõrk, pilvtöötlus, servtöötlus, serverivaba andmekonveier, funktsioon teenusena
CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)

3

Contents
1 Introduction 5

2 Background 7
2.1 Internet of Things . 7

2.1.1 Use cases and challenges of IoT systems 8
2.1.2 IoT Architecture . 9

2.2 Edge computing . 10
2.3 Serverless Data Pipelines for IoT data 12

3 Related Work 14

4 Real Time IoT Use Case 15

5 Proposed Serverless Data Pipeline for IoT Use Case 17
5.1 Edge tier . 17
5.2 Cloud tier . 18

6 Experimental Design 21

7 Results and Discussions 22

8 Conclusion 27

References 32

Appendix 33
I. Glossary . 33
II. Licence . 34

4

1 Introduction
As a result of recent developments in the areas of wireless networking and smart device
technologies there has been a fast growth of Internet of Things (IoT) devices. Many
embedded devices like vehicles and manufacturing equipment that previously were part
of isolated systems are now equipped with smart device capabilities and are able to
connect to the internet. In 2019, IoT devices made up half of internet connected devices
with 10 billion active connections and this number is predicted to rise to 29.7 billion by
2027 [36].

Increasing adoption of IoT technology enables to generate high amounts of raw
data from different types of sensors [29]. This data can provide valuable insight about
observable systems improving decision making and helping to automate tasks but in
addition has to be processed and analysed to extract usable information [39]. Considering
that processing high amounts of data needs sufficient computing power there is a need
for local servers or cloud services. Cloud services are the more practical choice in
many scenarios offering easier setup and lower costs as well as being scalable when
necessary [15]. In order to use cloud computing for processing IoT data, this data has
to be transferred to the cloud. Deployment of 5G wireless technology has improved
connectivity of smart devices but struggles to keep up with huge amounts of data
generated by IoT networks [28]. Given that IoT applications are often event driven, there
is a requirement to process incoming data in real-time to react effectively. This poses
challenges on how to achieve low latency and bandwidth while processing data fast and
reliably [3].

Working with heterogeneous data stream from IoT systems can be simplified by
designing serverless data pipelines [13]. This approach takes advantage of the Function-
as-a-Service (FaaS) paradigm [4] where data pipeline is divided to separate containerized
stateless functions that consume input data and produce an output. Leading cloud service
providers like Amazon Web Services1 and Microsoft Azure2 are offering pay-per-use
FaaS solutions that can be seamlessly integrated with IoT networks. Building serverless
data pipelines minimizes development effort because service provider takes care of
the infrastructure management ensuring on demand scalability while keeping costs
predictable.

In order to reduce network load and increase security and reliability of IoT applica-
tions some data processing tasks can be completed prior to transferring data to the cloud
[3]. With the edge computing model idle computing resources of smart devices can be
utilized to process data close to the source. This enables to filter or compress data that
will be sent to the cloud decreasing network load, encrypt data to enhance security and
make mission critical applications more resilient in the case of networking problems.

1https://aws.amazon.com/lambda/
2https://azure.microsoft.com/en-us/products/functions/

5

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/products/functions/

Designing serverless data pipelines with products like AWS Greengrass3 and Azure IoT
Edge4 makes running serverless functions easy on the edge devices.

The aim of this thesis is to propose a simple architecture for serverless data pipeline
using Microsoft Azure, and measure its performance with tests. Proposed serverless
data pipeline design takes into consideration the scope of the real time IoT use case.
During testing performance, durability and effectiveness of the pipeline are measured
in simulated scenarios where multiple edge devices would generate data. Conclusions
are made about the results of testing with following suggestions for possible future
improvements.

This paper consists of following chapters: Section 2 describes overall background
of this work, covering internet of things use cases and architecture, motivation to use
edge computing and using serverless pipelines for IoT data. In Section 3 most relevant
previously done work is represented. Section 4 describes real time IoT use case for audio
data and in Section 5 pipeline implementation is proposed for the use case. Section
6 gives overview how experiment was set up and conducted. In Section 7 results are
presented and discussed. Finally Section 8 ends the paper with conclusions.

3https://aws.amazon.com/greengrass/
4https://azure.microsoft.com/en-us/products/iot-edge

6

https://aws.amazon.com/greengrass/
https://azure.microsoft.com/en-us/products/iot-edge

2 Background
This section covers background that is relevant for this paper. Section 2.1 gives general
overview of IoT and different situations that can benefit from using this paradigm. Main
elements of IoT and architecture is described. Section 2.2 explains how edge computing
can benefit IoT systems increasing their efficiency and reliability. In Section 2.3 covers
using serverless data pipelines for event driven IoT data.

2.1 Internet of Things
The Internet of Things refers to the interconnectedness of physical objects like devices,
vehicles, buildings, and other items embedded with electronics, software and sensors
which enables these objects to collect and exchange data [23]. IoT device is an item that
is part of the IoT network playing the role of generating and exchanging data. IoT devices
are connected to the existing internet infrastructure allowing to gather information in real
time and to control devices remotely. This means IoT devices can be a broad range of
different items. It can be minimalistic RFID tag with sensor capabilities [41] to transfer
information about it, something more complex like smart household thermostat that is
connected and controlled through local network or smartphone, and even highly complex
self-driving autonomous vehicle. Multi-purpose devices including smartphones and
personal computers can act as IoT devices depending on how they are used.

Main characteristics of IoT could be seen as following [37]:

1. Each smart device must have unique identification. As the number of devices in a
network will get very high there must be suitable solution for addressing such as
IPv6.

2. Devices with sensors that can collect information from physical world.

3. Communication with devices to access collected data and change device state.
This could be achieved with wired connections in some cases but most likely by
using wireless communication technologies like RFID, Bluetooth, Wi-Fi etc.

4. Collected data must be stored and analysed to extract usable information. This
means that network contains centralized infrastructure with storage space and
analytical tools with capable algorithms for processing raw data that can support
heterogeneous platforms.

5. Visualization to enable users to interact with analysed data through application
solutions to get information about physical environment.

The IoT has the potential to revolutionize everyday life and industrial systems by
connecting objects to the internet and allowing them to send and receive data enabling

7

to access information from remote sensors and control physical world [23]. On one
hand, This enables to automate more processes that previously depended more on human
intervention and decision-making, making these processes more efficient. On the other
hand, there are still multiple challenges to be addressed before IoT could reach its true
potential. The concept of IoT itself is not new [18] but its current relevance lies in
accessibility and quickly growing usage and capabilities thanks to the technological
improvements.

2.1.1 Use cases and challenges of IoT systems

There is wide area of situations where using IoT systems can offer considerable value. In
general, increasing number of IoT devices and networks leads to increased amounts of
real time data collection [29]. IoT data is automatically transferred using M2M protocols
and can be processed near real time offering up to date insight of the state of systems and
environments [19]. Having near real time awareness of physical properties measured by
sensors on IoT devices enables efficient decision making and controlling of IoT systems.
Developments in areas like machine learning, quantum computing and 5g/6g wireless
technologies create new opportunities to get even more value from IoT data [28]. These
new technologies help IoT data to be collected and processed more efficiently and reliably
whilst also helping to keep up with increasing amounts of generated data. Although
earlier predictions of future numbers of IoT devices have been somewhat reduced it’s
still clear that growth is going to continue and predicted to reach 29.7 billion IoT devices
by 2027 [36].

There are multiple examples of IoT use cases. Considering the scope of factories
where industrial machinery is used, predictive maintenance can be implemented to
observe conditions of machinery and predict when some part of equipment could fail
[10]. In this case machinery will be equipped with sensors that gather data about its
operation for example vibrations. When signs of wearing out are seen, maintenance will
be scheduled to avoid unscheduled off time and reduce further possible damage. IoT
can be also used for supply-chain optimization by tracking inventory levels, monitoring
shipments and providing real time insights for logistics and distribution [1]. Combining
IoT with technologies like blockchain could further increase transparency and traceability
of supply-chain processes. In agriculture, IoT sensors and analytics can be used to
monitor soil conditions, weather patterns and crop health [17]. This enables farmers
to make data-driven decisions optimizing resource usage, resulting in higher yields.
IoT solutions in electrical grids enable to optimize electricity distribution and demand
management to keep grids balanced and improve overall stability [33]. In healthcare
smart wearables can track health metrics providing valuable data for individuals and
healthcare professionals raising chances for preventive healthcare and giving patients
suggestions to increase their well-being [9].

Currently there are still multiple challenges that are slowing the growth of IoT

8

systems. Ongoing chip shortage has been one of the most recent problems reducing
available components to manufacture IoT devices and thus increasing cost of production
[27]. Organizations planning to use IoT solutions also have to consider the increase of
risks in data security and privacy and how to cope with it [20]. IoT devices can collect
vast amounts of data about behaviour of individuals that could result in the decrease of
anonymity and increase the ability to predict the habits and preferences of the individual.
This information could be used for business interests resulting damage to the users and
the breach of data privacy regulations. Mistakes in information-handling could cause
data leaks whilst cyber attacks can result in data breaches [16]. Having more internet
exposed IoT devices also increases attack surface. In addition to possible data related
issues, IoT devices can increase risk of service disruption in case of cyber attacks causing
downtime or the malfunctioning of IoT systems. This is especially relevant in context
of vital services like smart electrical grids or mission critical devices like autonomous
vehicles. the current state of IoT landscape is diverse and dynamic where different orga-
nizations and vendors are developing multiple technologies, communication protocols
and applications [14]. There are multiple notable efforts to promote standardization for
IoT systems like work done by Industry IoT Consortium5. Despite of this, there is still
lots of diversity reducing the interoperability of IoT applications increasing effort of
implementing safe and compatible IoT solutions. Researchers and organizations keep
working to solve current and emerging challenges of IoT and with further maturing of
the IoT field, industry standards will likely continue to evolve.

2.1.2 IoT Architecture

There is no officially adopted IoT reference architecture. Main reason behind this
is that under IoT concept there are multiple different technologies and application
domains which has resulted in having a great variety of different solutions [14]. IoT data
processing solution presented in this paper is based on three tier reference architecture
presented in ‘Cloud Customer Architecture for IoT (CCAIoT)’ [24]. This three tier
architecture pattern consists firstly of the edge tier with the goal of collecting data from
edge nodes using proximity network. Secondly, the platform tier which is hosting a
service platform that covers data transformation, analytics and operations. In addition,
it acts as a middle layer mediating upstream data flow and downstream control flow.
Thirdly, the enterprise tier is controlling other tiers while implementing domain-specific
applications, decision making systems and providing interfaces to end users.

Currently described architecture however has no focus on utilizing edge computing
for data processing. To accommodate the use of edge and cloud computing together a
more suitable architecture could be derived by splitting the edge tier into two separate
tiers (device and edge tier) and a third one as cloud tier [31]. This as seen on Figure 1,

5https://www.iiconsortium.org/

9

allows some of the data to be already processed in the edge tier which was previously
was only done in cloud tier.

Figure 1. High level Three tier IoT architecture [31]

2.2 Edge computing
As numbers of IoT devices are growing quickly it raises challenges on how to access
data generated by them. In many cases IoT networks can grow into vast systems that
can generate high amounts of raw data. For example, in the setting of an industrial IoT
environment like a manufacturing plant, there can be machinery, equipment, surveillance
systems, vehicles, inventory and warehouse systems that are all embedded with sensors
generating and sharing data [25]. One solution to process this raw data is to send it to
cloud where there are enough computing resources available to handle this task. This
however can be demanding on the network, especially because IoT devices are often
connected with wireless technologies that are more limited in bandwidth and latency.
There can be even larger IoT systems like smart cities [38] and electrical grids [33] that
generate even more data. In other use cases like environmental monitoring systems, the
number of devices can be lower in specific areas but they might be positioned in remote
locations with poor available network connection and limits on power consumption
[6]. As there is often requirement to analyse IoT data near real time [40] there should
be good enough network capability to achieve this. New wireless technologies like
currently deployed 5G and upcoming 6G [28] can help with this challenge but might
require costly investments and thus they are only part of the solution. Amounts IoT data

10

is predicted to keep increasing in the future and it’s more likely that improvements of
wireless technology help to keep up with this increase rather than being able to upload
all IoT raw data in all situations cost efficiently.

To reduce the amounts of IoT data needed to upload to the cloud some of it could be
processed close to the source of creation. Distributed computing paradigm called edge
computing can be used to utilize locally available computational resources to pre-process
IoT data on the same hardware that is collecting it [22]. IoT devices can have some
built-in processing power needed for their usual operations that has some idle time during
which it could be used for local data processing. In context of video data [26], this
locally available computing resource could be used to reduce the amount of uploaded
frames, compress data before uploading or only starts sending data when movement
is detected on footage. For this use case there are existing solutions like Apache NiFi
for creating edge computing clusters that combine resources of available edge devices
[12]. This approach could significantly reduce network load. Main constraints of edge
computing are having limited computing resources related to small form factor, low
power consumption and cost considerations of edge devices.

Besides edge computing, fog computing [5] could be used for similar purpose to
bring computation closer to the source of data. Fog and edge computing are used inter-
changeably in some cases but fog layer is generally considered to be a local intermediate
layer between edge devices and cloud. Fog layer could have dedicated fog servers for
performing computations or use local network devices like gateways and routers that
are close to edge devices and have idle processing power available. Fog devices have
generally more processing power than individual edge devices. Fog computing and edge
computing could be used together or as standalone solution depending on the available
resources and requirements.

In addition to relieving stress on network by reducing bandwidth usage and keeping
latency low, edge computing can also improve security of IoT systems by keeping
sensitive data localized and pre-processing it before uploading [43]. This can reduce
risks of possible situations where privacy or compliance requirements would not be
fulfilled. In addition to keeping data safe, edge computing can considerably improve
resilience of mission critical systems [35]. In situations where failure or downtime of
edge device would impose safety risks or cause severe operational disruptions, usage
of embedded processing capabilities can ensure that critical functionality is provided
in situations of offline operation or poor internet connection. For example, IoT devices
like autonomous vehicles should be able to maintain sufficient functionality while losing
network connection to provide safety and avoid disrupting traffic and thus can greatly
benefit from embedded edge computing capabilities.

11

2.3 Serverless Data Pipelines for IoT data
Data pipeline refers to the collection of data processing elements that are connected
in series where the output from one element is used as an input for the next one. This
type of automated data processing enables to feed raw data from multiple sources to the
first element of pipeline and extract processed information from the data sink after the
last processing element. After setup, data pipelines offer a quick and simple solution
to process data without constantly focusing on all individual processing steps. As
pipeline elements can be independent from each other they are able to run simultaneously,
catering for continuous incoming data stream. Data pipelines can be part of the solution
to simplify processing real time heterogeneous IoT data from multiple types of sources
[32].

Data pipelines processing elements could be run using cloud services and local
hardware or a combination of them. Because of the event driven nature of IoT data the
need for processing power can fluctuate a lot [8]. Investing in local servers that can
handle situations where pipelines need sufficient scaling would be costly and this would
be inefficient in case where most of the time this resource would stay idle. A similar
situation would apply to the use of cloud based virtual machines where billing is based
on the number of machines not on their usage and event driven load would lead to cost
inefficiency. There are also cloud centric IoT data collection platforms that offer simple
out of the box solutions like Cayenne6, Thingspeak7. These solutions mostly send data
from IoT devices to the cloud where analytics and processing will take place as well as
managing and controlling devices. Using cloud centric solutions can lead to latency and
bandwidth problems when amounts of data increase and network struggles to keep up
with it [31].

Integration of function as a service (FaaS) cloud computing paradigm into data
processing pipelines results in the creation of serverless data pipelines. Serverless
function is a stateless function that is initiated on demand [7]. It consumes input data,
performs processing and returns output data. After producing output, serverless function
is terminated and computing resources used by it are released. Because of such nature
they are not suitable for data storage and additional storage solution should be added to
retain data after function instance has been terminated. Serverless functions offer good
scalability because new instances can be created at need and service provider allocates
necessary resources for them to run. Serverless functions are generally priced for actually
used recources and number of function runs. This makes them a good choice for real
time IoT use cases where the need for computing recources can fluctuate considerably
[32]. Serverless pipelines can make use of FaaS by including serverless functions as
pipeline elements to build efficient and scalable pipelines for processing high amounts
of IoT data in real time. With this approach, developers can write standalone functions

6https://developers.mydevices.com/cayenne/features/
7https://thingspeak.com/

12

https://developers.mydevices.com/cayenne/features/
https://thingspeak.com/

that will be initiated when needed and don’t need to consider infrastructure and scaling.
Pipelines data processing functions can be designed to run both on cloud through service
provider or on local hardware using solutions that emulate serverless environment like
AWS Greengrass and Azure IoT Edge [11]. In edge computing use cases, this approach
can be used to utilize available local computing resources together with cloud computing
in order to increase pipeline efficiency. In such situations developers need to just write a
function once and initiate it on the optimal environment in any given scenario.

13

3 Related Work
In this section, relevant research is covered about using serverless computing in data
pipelines to cater for applications working with real time IoT data.

Poojara et al. [32] proposed three serverless data pipeline approaches looking at
different video and audio processing scenarios like forced alignment, speech to text con-
version and real time object identification. Proposed serverless data pipeline approaches
were based on off-the-shelf data flow tool, object storage service and MQTT queue.
Experiment results showed that MQTT delivered best results with forced alignment and
data flow tool with video processing. Object storage service managed to produce decent
results compared to other solutions.

With another work Poojara et al. [31] investigated differences between main cloud
computing service providers AWS, Microsoft Azure and Google Cloud in context build-
ing serverless data pipelines for IoT data. In this work, authors proposed AWS and
Azure based data pipeline solutions and implemented them for the use case of predictive
maintenance for industrial machinery. While testing implementations, they found that
there was considerable performance difference between edge tier solutions of these
platforms caused by different architectural deployments. Results showed that Azure
based pipelines used more memory and CPU power compared to AWS because AWS
runs edge modules on native host environment whereas Azure uses Docker containers as
extra layer. However, AWS pipeline implementations were slower in terms of processing
time caused by extra messaging queues.

Study conducted by Pogiatzis and Samakovitis [30] developed and presented ar-
chitecture for event based ETL using serverless technologies provided by AWS. They
followed with evaluating their pipeline proposition with tests to assess its performance,
consistence and reliability as well as cost effectiveness. They concluded that proposed
solution is suitable for numerous IoT related fields using event based reactive systems
while reducing infrastructural overhead. This model was especially suitable for sparse
event processing needs.

Das et al. have [11] presented framework for optimizing performance using dynamic
task placement in serverless edge-cloud platforms. They were able to develop models
for predicting end-to-end cost and latency while running functions in edge or cloud
environments. This approach allows to create systems that can dynamically choose when
to run serverless functions on edge or cloud layer to maximize efficiency.

14

4 Real Time IoT Use Case
In this paper, focus lies on real time IoT use cases where IoT data is produced in
continuous streams and needs to be processed near real time. Real time processing for
IoT data is useful in multiple situations providing immediate insight and decision making
that enables to take event based actions effectively when needed for example in context
of medical systems, traffic control or safety and security systems. It also enables to build
synergy in vast IoT systems like smart cities [38]. If data is processed in real time, IoT
devices in different parts of network can exchange data and use joint decision making to
better understand and influence processes happening in the physical world.

One of the data types that could be used in the scenario of near real time IoT use case
is audio data. Audio data could be used to manage urban traffic, monitor public spaces,
detect gunshots and other emergency sounds, monitor livestock in farms or to observe
smart home environment [34]. Depending on the situation, different approaches can be
used to analyse this audio data. Pattern recognition or sound classification algorithms
[21] could be used to monitor environment of interest. Speech recognition and voice
biometrics could be used to identify individuals and to extract information from their
speech [42].

Figure 2. Flow of Aeneas data pipeline

Aeneas is a forced alignment tool that takes an audio file and a text file as input and
creates a synchronization map based on the text fragments that are recognized8. This
Python/C based library is suitable to investigate the processing of IoT audio data and
will give general representation of different methods that could be used in this case.
Audio data is on average considerably larger and more resource intensive to analyze
compared to text based data. When multiple IoT devices are recording and uploading
audio files it can become bandwidth intensive and put strain on the network. In addition,
considerable amounts of computing power will be needed to process collected data.

8https://www.readbeyond.it/aeneas/docs/

15

https://www.readbeyond.it/aeneas/docs/

Thus it’s a challenging scenario for real time IoT use case that could benefit from using
serverless pipelines for data processing.

Figure 2 describes flow of Aeneas based real time IoT application:

• IoT devices record audio data

• Audio data is compressed in edge tier to reduce network load

• Data is uploaded to cloud server

• Data is decompressed in cloud

• Aeneas creates synchronization map based on audio file and given text

• Synchronization map is stored in cloud storage

16

5 Proposed Serverless Data Pipeline for IoT Use Case
Considering the use case described in the previous section, serverless data pipeline is
designed using commercially available services of Microsoft Azure9 cloud computing.
Azure is one of the main cloud computing service providers besides others like AWS and
Google [2]. Azure was chosen because of it’s wide use and that it was available to use
under student licence. Tools provided by Azure can cover all needs for implementing
serverless pipeline for current use case. Main focus is to keep this build simple and
straightforward using most intuitive tools available in Azure suite while following
serverless pipeline architecture for use case described in this paper.

Architecture of pipeline implementation can be seen on Figure 3. In edge tier are
devices that are collecting audio data, compressing it and uploading compressed data to
Azure blob storage container in cloud. When new file upload is detected, SF1 is triggered
that decompresses audio data and forwards output to second storage container. From
that container SF2 is triggered that uses Aeneas module to perform forced alignment
and resulting synchronization map is stored in final third storage container where it
can be accessed for further use. All modules and serverless functions in this project
were developed using versions of Python 3. It’s a suitable language in the current
situation because its simple implementation and wide use in data analytics. However
the programming language that is most supported by Azure platform is C# and some
functionality is not supported in other languages. IoT edge runtime has a capability to
run serverless functions on an edge device but at the current time this is only possible
when functions are written using C# and are not available for Python. This reduces
options when designing this pipeline. All code written for this paper is accessible in
public Github repository10.

5.1 Edge tier
In IoT systems there are usually numerous similar edge devices in the edge layer that
simultaneously generate data. During this implementation for practical reasons a single
RPi 4B with running ARM32 Raspbian OS was used to simulate edge layer. This was
achieved using Azure IoT Edge runtime that enables to create edge device deployment
on RPi. Edge runtime is installed on edge devices where it enables to deploy, run and
manage containerized modules using Moby engine11. Once modules are developed
with providing suitable dependencies, they can be run on different hardware using IoT
Edge taking care of module management on local hardware. If Python based serverless

9https://azure.microsoft.com/en-us/
10https://github.com/mk-3rd/serverless_data_pipelines_for_IoT_data_in_edge_and_cl

oud_environments_using_microsoft_azure
11https://mobyproject.org/

17

https://azure.microsoft.com/en-us/
https://github.com/mk-3rd/serverless_data_pipelines_for_IoT_data_in_edge_and_cloud_environments_using_microsoft_azure
https://github.com/mk-3rd/serverless_data_pipelines_for_IoT_data_in_edge_and_cloud_environments_using_microsoft_azure
https://mobyproject.org/

Figure 3. Architecture of serverless pipeline implementation with Azure

functions would be supported on IoT edge, they would be a more convenient choice for
the preprocessing of data on edge devices and could be run on cloud as well.

In this design single Python 3.7 edge module is created for edge runtime to compress
sample .mp3 data files with python zipfile and upload them to cloud storage using
BlobServiceClient during each pipeline run. To connect edge device to cloud, IoT
Hub service is used that is central part of Azure IoT suite. This service takes care of
device management, bidirectional communication, security, monitoring and diagnostics
simplifying working with numerous IoT devices. For commercial use IoT Hub has 3
paid tier levels. Suitable tier should be selected considering per day message and data
limits. For current work free tier was suitable with message limit of 8000 messages per
day.

5.2 Cloud tier
The cloud layer of the current pipeline implementation consists of two main elements
fig2: blob storage containers and serverless functions. All three containers are based
on the same storage account12. To host serverless functions on Azure cloud platform,
there are different function plans to choose from based on available computing resources
and functionality. Function plans can host multiple different functions and take care of
scaling up when higher amount of function runs are detected.

From two main options, first is to use consumption plan13. This plan is the best
available option to use with a serverless computing approach with pay per use pricing

12https://azure.microsoft.com/en-us/products/storage/blobs
13https://learn.microsoft.com/en-us/azure/azure-functions/consumption-plan

18

https://azure.microsoft.com/en-us/products/storage/blobs
https://learn.microsoft.com/en-us/azure/azure-functions/consumption-plan

model. This plan will scale down to zero and up to 100 instances with linux based
functions but there is no available information from Azure how much resources one
instance would have exactly. Scaling down to zero will mean that there is higher impact
of cold starts but it manages to reduce costs.

One relevant constraint with the function plan is that it does not support custom
containers or Kudu14 service to run commands in function container and thus installing
Python modules is mainly constrained to using python package installer pip. Installing
Aeneas module is very error prone because of dependencies failing to install and using
pip for it can’t be relied on. Custom container is needed to forward bash commands and
run scripts to manually install Aeneas using specific github repository15. So Premium
plan16, which is the second function plan option covered in this paper should be used to
run Aeneas function for this pipeline implementation. Besides proving more functionality
compared to consumption plan, premium plan is priced differently. Premium plan has
three tiers with different resources available for single instance. Plan 1 has single core
and 3.5GB working memory, Plan 2 has two cores and 7GB working memory and Plan 3
has four cores and 14 GB working memory. For both premium and consumption plans
costs are calculated based on usage time of vCPU cores and working memory, but for
consumption plan there is a generous free grant17. Premium plans offer option to use pre-
warmed instances that help reduce cold starts. Lowest setting for pre-warmed instances is
one, meaning that the Premium function plan cannot scale down to zero instances and is
thus generating costs even when there are no function executions. Especially with lower
intensity applications this would have major impact on the overall cost of the pipeline.

When compressed audio files are uploaded to first to the Azure blob storage container
it activates the event grid trigger to start the decompression function that is running on
consumption plan. Event grid trigger adds complexity and cost to the pipeline compared
to basic blob storage trigger but is needed to avoid delays with triggering18. According to
Azure documentation, triggering functions running on consumption plan with a basic blob
trigger can take up to 10 min which would not be suitable for real time IoT application.
With premium plan there is no such problem. Decompression function uses Python 3.9
and decompresses .zip file to .mp3 file and forwards it to the next blob container. From
there Aeneas function is triggered with default blob trigger. Aeneas function runs on
premium function plan with custom Linux container. Aeneas module is also based on
Python 3.9. Dependencies are installed with using Dockerfile and pip to ensure the proper
working of the Aeneas module. Forced alignment is performed and the synchronization

14https://learn.microsoft.com/en-us/azure/app-service/resources-kudu
15https://github.com/qub-blesson/DeFog
16https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan?

tabs=portal
17https://azure.microsoft.com/en-us/pricing/details/functions/
18https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-eve

nt-grid-trigger

19

https://learn.microsoft.com/en-us/azure/app-service/resources-kudu
https://github.com/qub-blesson/DeFog
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan?tabs=portal
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan?tabs=portal
https://azure.microsoft.com/en-us/pricing/details/functions/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-event-grid-trigger
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-event-grid-trigger

map is stored in the third final blob container. This concludes a successful pipeline
run. All code and related files of the edge module and serverless functions are stored in
projects Github repository.

20

6 Experimental Design
Experiments were designed to investigate how the proposed pipeline performs when pro-
cessing incoming audio data in a simulated scenario. Experimental design approach was
derived from previous work done by Pogiatzis et al. [30] where AWS based serverless
ETL pipeline was tested. The focus of the thesis lies on measuring performance, reliabil-
ity and consistency of the pipeline. Performance was evaluated by measuring end-to-end
data flow time and total edge function execution time (compression, decompression and
forced alignment) under different loads and event frequencies. Also different premium
function plans were tested for function running Aeneas to investigate how different
amounts of computing resource affects function performance. Reliability was evaluated
based on the amount of successful pipeline runs from a total set. Consistency was viewed
to see if pipeline performance is consistent or not.

Single RPi 4B device was used to simulate edge tier that was connected to private
network with advertised maximum upload speed of 200MB/s using Ethernet cable. Three
different sized sample .mp3 audio files of 500kb, 5MB and 50MB were used to simulate
different amounts of IoT devices generating data for the pipeline. 5 different event
frequencies were used for file uploads in scenarios where sample file was uploaded after
every – 1s, 3s, 10s, 30s and 60s. Each file was uploaded 10 times per file size and event
frequency combination which results in 150 pipeline runs in total. This was repeated
three times, once for each of the three premium function plans: Plan 1 with 1 vCPU core
and 3.5GB memory, Plan 2 with 2 vCPU cores and 7GB memory, Plan 3 with 4 vCPU
cores and 14GB memory. All premium plans were limited to a single instance to avoid
scaling and to have a more accurate representation on how available resources affect the
pipeline performance. Testing all three plans resulted in a total of 450 pipeline runs.

Experiments were manually triggered using device twins for every file, frequency
and premium plan combinations. Device twin is a digital representation of the edge
device in Azure cloud. It’s kept in sync with IoT edge runtime that is running on the
device. Updating module setting in digital twin results these settings being sent to the
edge device while it’s operating. This functionality was used to forward signal to start
the experiment and the settings that should be applied.

Experiment data was collected from edge module logs in plain text format and for
functions using Application Insights from where it was exported as .csv files. To combine
these different log files into a single unified and cleaned .csv file Python 3.9 script was
used. With this script also necessary result data was extracted and using Matplotlib19

library charts were generated to get readable results.

19https://matplotlib.org/stable/index.html

21

https://matplotlib.org/stable/index.html

7 Results and Discussions
The data results of the experiment runs about total function execution and end-to-end
performance can be seen on Figure 4. Total function execution represents overall duration
of three computing tasks in the pipeline (compression, decompression, forced alignment)
during pipeline run, while end-to-end flow time represents the duration from the start
of the pipeline until the results reach the data sink. One box of data on plot covers all
experiment data for the respective file size and premium function plan. So for example
when looking at a plot of total function execution with plan 1 then the box labeled 500KB
represents 50 data points. These come from running the experiment with 5 different event
frequencies 10 times for each. Experiments show that an increase in file size of 10 times
from 500KB to 5MB results in about doubled function execution time and increasing
file size 100 times to 50MB results in about 10 times longer processing time. This holds
true for all 3 function plans. When looking at end to end flow times that in addition to
processing includes upload and other file transfer and triggering delays in pipeline in
general, it is at least double the time of processing or more. These results also have less
consistency than processing times and that is mainly because of the file upload time. As
files uploaded by edge device are quite large, especially with the 50MB file, and internet
connection was not very stable with upload times taking in some cases almost around
100 seconds. Even with smaller files upload time variation was remarkable, like seen
with 500KB files with plan 3.

Figure 5 shows more precisely how different function plans and file sizes affected
the Aeneas function’s performance. However, because of the experiment’s design and
constraints of the upload speed of the edge device all this data is not accurate. Experiment
was set up so that the next upload could not start before the previous one was finished
to avoid clogging uploading with multiple large files. If the upload was not finished
before the next event interval deadline it was skipped and retried at the next one. So in
the most extreme situation when the edge device should have uploaded ten 50MB files
during 10 seconds, in reality it took a few minutes to achieve the goal of 10 uploads,
doing it as quickly as possible at given moment. 500KB files were able to upload with
1 sec when connection was good but with 5MB files it was more realistic to achieve
10 second intervals and with 50MB files 30 sec intervals. This should be considered
when looking at the data. When looking at performance differences on 5 it is visible that
plan 2 performed considerably better than plan 1. This difference is higher with shorter
file upload intervals that generate more strain on the Aeneas function. Between plan 2
and plan 3 there is no noticeable difference in performance. That indicates that current
experiment was not able to put enough pressure on this function to make use of the extra
computing resources provided by plan 3. When considering cost efficiency, it seems that
working loads generated during the experiment were most efficient on plan 1. Plan 2
offered somewhat better performance but costs 2 times more and plan 3 proved to be
an overkill for the current task with even higher costs but no noticeable performance

22

Figure 4. Total function execution and end to end flow times of pipeline over all test runs

improvements.
When looking at consistency of the pipeline’s end-to-end performance and function

runs it is quite inconsistent with considerable variance. End-to-end inconsistency was
mainly caused by variance in upload time. Figure 5 shows that premium function’s
execution time variance was higher with more frequent events. That is somewhat
explained with lower load when idle function receives first events and increasing strain
when more events were arriving. In other cases, there were failures with function runs.
That was the case with both the decompression function running on a function plan and
the Aeneas function on a premium plan. By default, Azure functions have a policy to retry
to run function up to five times on failure. So in cases of failures and retries there was a

23

holdup with failing event and extra computing resources were used. Because the next
pipeline runs could already catch up with the one that was failing, even more computing
resource was needed, resulting in longer execution times and more inconsistent runs.

In terms of reliability, out of 450 pipeline executions there were 2 that failed with
end of life and zipfile related errors. These failures occurred because the decompression
function was not able to decompress .zip file and did not send the audio file forward in
pipeline. There were 24 failed invocations for the decompression function running on
consumption plan and except for two times previously described, the retry policy was
able to overcome failures. There were a few 503 server busy errors but many more were
end of life errors from the Python module. To have a better insight of the underlying
problem better error handling could have been used in the function code. Most of these
failed function invocations took place in a short time period where 50MB files were
uploaded in high event frequencies, so probably errors where related with higher data
load. This did not reoccur when experiment was repeated for other function plans. In
comparison Aeneas function running on premium plan also had 26 failed invocations
but all were resolved with retry policy. There were 3 types of issues. One was that
Aeneas module did not find text fragments from .xhtml file that was used for forced
alignment. This file was held in a separate blob storage container and was loaded by
the Aeneas function. There must have been a problem related to loading it properly in
some instances. Second type of error was related to uploading the synchronization map
to the final storage container. In that case, when synchronization map was created and
saved on local function storage it either was not created properly or just failed to read
for some other reasons. When Python tried to read this file to forward it to the storage
container it resulted in a file not found error. Third type of issue was related to reading
audio file when one of the Aeneas dependencies ffprobe gave error about not supporting
audio file format for unknown reason. Nevertheless, these issues did not result in pipeline
failures and just made the function executions slower because of raised use of computing
resources.

In general pipeline proposed in this work was mostly reliable but if considering use
cases when failures cannot be tolerated at all, there is need to implement extra measures to
increase reliability and avoid failures. Code of functions used in this pipeline could also
be improved to get better insights about errors. This could help with finding solutions to
avoid failed invocations to increase the function’s performance and consistency. Currently
used method of compressing .mp3 files to .zip files made no meaningful difference in
file size but was suitable for simulating data preproccessing. Different pipeline design
options could also be explored to see how they affect overall performance.

In future works, the experiment design could be improved. Currently, there was an
issue that the edge device was not able to upload files with the desired frequency. One
solution could be to perform another set of experiments where events are triggered in
cloud to just measure the performance of the serverless functions while removing the

24

Figure 5. Aeneas function performance with different function plans and file sizes

25

edge device bottleneck. Also more edge devices with good internet connection could be
added to distribute uploading file size and frequency.

A point could be made that uploading 50MB file is not very realistic in terms of
real time IoT data use case. However, this approach was chosen to be able to apply
high processing load to the pipeline and is representing a high number of smaller
files. Experiment results show that, with caveat that desired frequency was actually not
achieved, this still was not enough to show noticeable performance differences between
function plan 2 and 3.

When considering smaller scale IoT applications, Azure has limitations with premium
function plan because of not scaling down to zero instances and starting with rather
powerful plan setting with 1 core and 3.5GB working memory. This means using
premium function will quickly start ramping up costs. AWS lambda seems to offer
better options from a perspective of smaller applications with working memory options
starting from 128MB per function20. Using Azure consumption plan is the better option
for smaller applications but it lacks some functionality that could be needed like using
custom containers. Also if C# is not being used as the programming language for the
functions, some useful functionality is not accessible like running serverless functions
on edge environment.

20https://aws.amazon.com/lambda/pricing/

26

https://aws.amazon.com/lambda/pricing/

8 Conclusion
The contribution of this work is in proposing a simple serverless data pipeline solution
for real time IoT use case. Microsoft Azure cloud computing service was used to im-
plement the proposed approach. Created pipeline was tested for performance, reliability
and consistency with a simulated scenario using RPi 4B device acting as IoT devices.
Different test file sizes, event frequencies and function plans were used during the tests
to find out how these variables affect proposed pipeline’s performance.

Results showed that function plans with more computing resources delivered better
performance but current experiment was not able to generate enough processing load
to see noticeable performance increase using the most resourceful function plan. Using
function with less computing power proved to be more cost efficient. Azure premium
function offers less fine tuning with smaller function memory options compared to
AWS Lambda and is not able to scale to zero. In context of smaller applications the
consumption plan is the only cost efficient option, but has less functionality and might
not be usable in some situations like when deploying custom Docker containers. Also
C# should be used to develop Azure functions to make all features usable.

End-to-end pipeline performance was not very consistent having multiple times
difference in some situations. With the current experiment design the pipeline’s per-
formance was greatly impacted by test file upload times. Other factors like failing
function executions and gradually increasing load during experiment also contributed to
the inconsistency. During experiments there were numerous situations where function
instances failed. In most cases, the retry policy was able to solve this issue and avoid
pipeline failures. There were still a few pipeline failures so in use cases where this would
not be acceptable, extra measures or design changes should be implemented to increase
pipeline’s resilience.

In future work proposed serverless pipeline could be improved with better error
handling to have more accurate understanding of reasons behind errors and executions.
Different pipeline design options could be explored as well to see how it affects perfor-
mance. Experiment could be made more realistic using smaller test file sizes and upload
bottleneck should be avoided to put more processing load on the pipeline in order to get
more meaningful data. One solution could be to test the cloud based part of pipeline
separately.

27

References
[1] Mohamed Abdel-Basset, Gunasekaran Manogaran, and Mai Mohamed. Internet of

things (iot) and its impact on supply chain: A framework for building smart, secure
and efficient systems. Future generation computer systems, 86(9):614–628, 2018.

[2] Abdulelah Almishal and Ahmed E Youssef. Cloud service providers: A comparative
study. International journal of computer applications & information technology,
5(II), 2014.

[3] Mohammad S Aslanpour, Adel N Toosi, Claudio Cicconetti, Bahman Javadi, Pe-
ter Sbarski, Davide Taibi, Marcos Assuncao, Sukhpal Singh Gill, Raj Gaire, and
Schahram Dustdar. Serverless edge computing: vision and challenges. In Proceed-
ings of the 2021 Australasian Computer Science Week Multiconference, pages 1–10,
2021.

[4] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slominski,
et al. Serverless computing: Current trends and open problems. Research advances
in cloud computing, pages 1–20, 2017.

[5] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. In Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, pages 13–16, 2012.

[6] Gilles Callebaut, Guus Leenders, Jarne Van Mulders, Geoffrey Ottoy, Lieven
De Strycker, and Liesbet Van der Perre. The art of designing remote iot de-
vices—technologies and strategies for a long battery life. Sensors, 21(3):913,
2021.

[7] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. Server-
less programming (function as a service). In 2017 IEEE 37th International Con-
ference on Distributed Computing Systems (ICDCS), pages 2658–2659. IEEE,
2017.

[8] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. The
rise of serverless computing. Communications of the ACM, 62(12):44–54, 2019.

[9] Nidhi Chawla. Ai, iot and wearable technology for smart healthcare-a review.
International Journal of Recent Research Aspects, 7(1), 2020.

[10] Michele Compare, Piero Baraldi, and Enrico Zio. Challenges to iot-enabled predic-
tive maintenance for industry 4.0. IEEE Internet of Things Journal, 7(5):4585–4597,
2019.

28

[11] Anirban Das, Shigeru Imai, Stacy Patterson, and Mike P Wittie. Performance
optimization for edge-cloud serverless platforms via dynamic task placement. In
2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), pages 41–50. IEEE, 2020.

[12] Rustem Dautov and Salvatore Distefano. Stream processing on clustered edge
devices. IEEE Transactions on Cloud Computing, 10(2):885–898, 2020.

[13] Chinmaya Dehury, Pelle Jakovits, Satish Narayana Srirama, Vasilis Tountopoulos,
and Giorgos Giotis. Data pipeline architecture for serverless platform. In Soft-
ware Architecture: 14th European Conference, ECSA 2020 Tracks and Workshops,
L’Aquila, Italy, September 14–18, 2020, Proceedings 14, pages 241–246. Springer,
2020.

[14] Beniamino Di Martino, Massimiliano Rak, Massimo Ficco, Antonio Esposito,
Salvatore Augusto Maisto, and Stefania Nacchia. Internet of things reference
architectures, security and interoperability: A survey. Internet of Things, 1:99–112,
2018.

[15] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: issues and
challenges. In 2010 24th IEEE international conference on advanced information
networking and applications, pages 27–33. Ieee, 2010.

[16] Stacy-Ann Elvy. Data privacy and the internet of things, February 2022. https:
//en.unesco.org/inclusivepolicylab/analytics/data-privacy-and-int
ernet-things. Accsessed 10. Aug 2023.

[17] Muhammad Shoaib Farooq, Shamyla Riaz, Adnan Abid, Tariq Umer, and
Yousaf Bin Zikria. Role of iot technology in agriculture: A systematic literature
review. Electronics, 9(2):319, 2020.

[18] Keith D. Foote. A brief history of the internet of things, January 2022. https:
//www.dataversity.net/brief-history-internet-things/. Accsessed 9.
Aug 2023.

[19] Eliza Gomes, Felipe Costa, Carlos De Rolt, Patricia Plentz, and Mario Dantas. A
survey from real-time to near real-time applications in fog computing environments.
In Telecom, volume 2, pages 489–517. MDPI, 2021.

[20] Wan Haslina Hassan et al. Current research on internet of things (iot) security: A
survey. Computer networks, 148:283–294, 2019.

[21] Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke, Aren
Jansen, R Channing Moore, Manoj Plakal, Devin Platt, Rif A Saurous, Bryan

29

https://en.unesco.org/inclusivepolicylab/analytics/data-privacy-and-internet-things
https://en.unesco.org/inclusivepolicylab/analytics/data-privacy-and-internet-things
https://en.unesco.org/inclusivepolicylab/analytics/data-privacy-and-internet-things
https://www.dataversity.net/brief-history-internet-things/
https://www.dataversity.net/brief-history-internet-things/

Seybold, et al. Cnn architectures for large-scale audio classification. In 2017 ieee
international conference on acoustics, speech and signal processing (icassp), pages
131–135. IEEE, 2017.

[22] Linghe Kong, Jinlin Tan, Junqin Huang, Guihai Chen, Shuaitian Wang, Xi Jin,
Peng Zeng, Muhammad Khan, and Sajal K Das. Edge-computing-driven internet
of things: A survey. ACM Computing Surveys, 55(8):1–41, 2022.

[23] Hermann Kopetz and Wilfried Steiner. Real-time communication. In Real-time
systems: Design principles for distributed embedded applications, pages 177–200.
Springer, 2022.

[24] Shi-Wan Lin. The industrial internet reference architecture, February 2022. https:
//www.iiconsortium.org/wp-content/uploads/sites/2/2022/11/IIRA-v1.
10.pdf. Accsessed 10. Aug 2023.

[25] Yuehua Liu, Wenjin Yu, Tharam Dillon, Wenny Rahayu, and Ming Li. Empowering
iot predictive maintenance solutions with ai: A distributed system for manufacturing
plant-wide monitoring. IEEE Transactions on Industrial Informatics, 18(2):1345–
1354, 2021.

[26] Pankaj Mendki. Docker container based analytics at iot edge video analytics usecase.
In 2018 3rd International Conference On Internet of Things: Smart Innovation and
Usages (IoT-SIU), pages 1–4. IEEE, 2018.

[27] IoT Business News. Supply chain day: the ongoing chip shortage and its impact on
the electronics industry, April 2023. https://iotbusinessnews.com/2023/04/
18/88788-supply-chain-day-the-ongoing-chip-shortage-and-its-imp
act-on-the-electronics-industry/. Accsessed 10. Aug 2023.

[28] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li, Dusit
Niyato, Octavia Dobre, and H Vincent Poor. 6g internet of things: A comprehensive
survey. IEEE Internet of Things Journal, 9(1):359–383, 2021.

[29] Robert Pepper and John Garrity. The internet of everything: How the network
unleashes the benefits of big data. Global Information Technology Report 2014,
2014.

[30] Antreas Pogiatzis and Georgios Samakovitis. An event-driven serverless etl pipeline
on aws. Applied Sciences, 11(1):191, 2020.

[31] Shivananda Poojara, Chinmaya Kumar Dehury, Pelle Jakovits, and Satish Narayana
Srirama. Serverless data pipelines for iot data analytics: A cloud vendors perspec-
tive and solutions. In Predictive Analytics in Cloud, Fog, and Edge Computing:

30

https://www.iiconsortium.org/wp-content/uploads/sites/2/2022/11/IIRA-v1.10.pdf
https://www.iiconsortium.org/wp-content/uploads/sites/2/2022/11/IIRA-v1.10.pdf
https://www.iiconsortium.org/wp-content/uploads/sites/2/2022/11/IIRA-v1.10.pdf
https://iotbusinessnews.com/2023/04/18/88788-supply-chain-day-the-ongoing-chip-shortage-and-its-impact-on-the-electronics-industry/
https://iotbusinessnews.com/2023/04/18/88788-supply-chain-day-the-ongoing-chip-shortage-and-its-impact-on-the-electronics-industry/
https://iotbusinessnews.com/2023/04/18/88788-supply-chain-day-the-ongoing-chip-shortage-and-its-impact-on-the-electronics-industry/

Perspectives and Practices of Blockchain, IoT, and 5G, pages 107–132. Springer,
2022.

[32] Shivananda R Poojara, Chinmaya Kumar Dehury, Pelle Jakovits, and
Satish Narayana Srirama. Serverless data pipeline approaches for iot data in
fog and cloud computing. Future Generation Computer Systems, 130:91–105,
2022.

[33] Asmaa H Rabie, Ahmed I Saleh, and Hesham A Ali. Smart electrical grids based
on cloud, iot, and big data technologies: state of the art. Journal of Ambient
Intelligence and Humanized Computing, 12:9449–9480, 2021.

[34] Sayed Khushal Shah, Zeenat Tariq, and Yugyung Lee. Audio iot analytics for home
automation safety. In 2018 IEEE international conference on big data (big data),
pages 5181–5186. IEEE, 2018.

[35] Changyang She, Yifan Duan, Guodong Zhao, Tony QS Quek, Yonghui Li, and
Branka Vucetic. Cross-layer design for mission-critical iot in mobile edge comput-
ing systems. IEEE Internet of Things Journal, 6(6):9360–9374, 2019.

[36] Satyajit Sinha. State of iot 2023: Number of connected iot devices growing to 16.7
billion globally, May 2023. https://iot-analytics.com/number-connected
-iot-devices/. Accsessed 9. Aug 2023.

[37] Aditya Tiwary, Manish Mahato, Abhitesh Chidar, Mayank Kumar Chandrol,
Mayank Shrivastava, and Mohit Tripathi. Internet of things (iot): Research, archi-
tectures and applications. International Journal on Future Revolution in Computer
Science & Communication Engineering, 4(3):23–27, 2018.

[38] Ralf Tönjes, P Barnaghi, M Ali, A Mileo, M Hauswirth, F Ganz, S Ganea, B Kjær-
gaard, D Kuemper, Septimiu Nechifor, et al. Real time iot stream processing and
large-scale data analytics for smart city applications. In poster session, European
Conference on Networks and Communications, page 10. sn, 2014.

[39] Athina Tsanousa, Evangelos Bektsis, Constantine Kyriakopoulos, Ana Gómez
González, Urko Leturiondo, Ilias Gialampoukidis, Anastasios Karakostas, Stefanos
Vrochidis, and Ioannis Kompatsiaris. A review of multisensor data fusion solutions
in smart manufacturing: Systems and trends. Sensors, 22(5):1734, 2022.

[40] Keiichi Yasumoto, Hirozumi Yamaguchi, and Hiroshi Shigeno. Survey of real-time
processing technologies of iot data streams. Journal of Information Processing,
24(2):195–202, 2016.

31

https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/

[41] Junho Yeo, Jong-Ig Lee, and Younghwan Kwon. Humidity-sensing chipless rfid
tag with enhanced sensitivity using an interdigital capacitor structure. Sensors,
21(19):6550, 2021.

[42] Dong Yu and Lin Deng. Automatic speech recognition, volume 1. Springer, 2016.

[43] Jiale Zhang, Bing Chen, Yanchao Zhao, Xiang Cheng, and Feng Hu. Data security
and privacy-preserving in edge computing paradigm: Survey and open issues. IEEE
access, 6:18209–18237, 2018.

32

Appendix

I. Glossary
• 5G/6G - 5th and 6th generation mobile networks

• ARM - Advanced Risc Machine

• AWS - Amazon Web Services

• ETL - Extract Transform Load

• FaaS - Function as a Service

• IoT - Interent of Things

• IPv6 - Internet Protocol Version 6

• M2M - Machine-to-machine

• MQTT - Message Queuing Telemetry Transport

• OS - Operating System

• RFID - Radio Frequency Identification

• RPi 4B - Raspberry Pi 4 Model B

• SF - Serverless Function

• vCPU - Virtual Central Processing Unit

33

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Martin Kisand,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Serverless Data Pipelines for IoT Data in Edge and Cloud Environments using
Microsoft Azure,

(title of thesis)

supervised by Shivananda. R. Poojara.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Martin Kisand
11/08/2023

34

	Introduction
	Background
	Internet of Things
	Use cases and challenges of IoT systems
	IoT Architecture

	Edge computing
	Serverless Data Pipelines for IoT data

	Related Work
	Real Time IoT Use Case
	Proposed Serverless Data Pipeline for IoT Use Case
	Edge tier
	Cloud tier

	Experimental Design
	Results and Discussions
	Conclusion
	References
	Appendix
	I. Glossary
	II. Licence

