
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering

Anneli Klamas

Quiz Converter: The tool for creating quizzes in

Coursera and Moodle

Master’s Thesis (30 ECTS)

Supervisor(s): Jaak Vilo, PhD

Tartu 2024

2

Quiz Converter: The tool for creating quizzes in Coursera and Moodle

Abstract:

This thesis describes the development of an application that can convert DOCX file that follows

a specific format into Moodle XML and Coursera DOCX. As few open-source tools can

accomplish this, the application developed throughout this thesis will help teachers minimise

manual work while creating the quiz questions.

The Quiz Converter application was created by two developers where, one focused mainly on

the backend and deployment part of the application and the other one on the frontend.

Keywords:

Java application, document converter, Moodle, Coursera, Java, Spring, Apache POI, Docker,

DOCX, XML

CERCS: P170 Computer science, numerical analysis, systems, control

Quiz Converter: tööriist testide loomiseks Courseras ja Moodle'is

Lühikokkuvõte:

Käesolevas lõputöös kirjeldatakse konkreetset vormingut järgivat DOCX-faili Moodle XML-

iks ja Coursera DOCX-iks teisendava rakenduse arendamist. Kuna selle eesmärgi täitmiseks

on vähe tasuta tööriistu, aitab selle lõputöö käigus arendatud rakendus õppejõududel testide

loomisel käsitsi tööd vähendada.

Rakenduse Quiz Converter lõid kaks arendajat, kellest üks keskendus peamiselt rakenduse

tagasüsteemile ja paigaldamisele ning teine selle eesliidesele.

Võtmesõnad:

Java rakendus, dokumentide teisendaja, Moodle, Coursera, Java, Spring, Apache POI, Docker,

DOCX, XML

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

(automaatjuhtimisteooria)

3

Table of Contents

Introduction .. 6

1. Learning management system.. 8

1.1. Moodle .. 8

1.1.1. Question bank .. 8

1.1.2. Creating quizzes in Moodle ... 8

1.2. Coursera .. 9

1.2.1. Quiz item vs assignment items .. 9

1.2.2. Question bank .. 9

1.3. Supported question types in Moodle and Coursera ... 10

2. Competitor Analysis .. 14

2.1. Scaffold Migration by K16 Solutions ... 17

2.2. GETMARKED .. 17

2.3. Moodle XML converter .. 18

2.4. FastTest Plugin .. 18

2.5. Moodle2word .. 19

2.6. Moodle Test Creator.. 20

2.7. Moodle Cloze and GIFT Code Generator ... 20

2.8. Conclusion ... 20

3. Building Quiz Converter .. 22

3.1. Collecting requirements .. 22

4

3.1.1. Interview insights ... 22

3.1.2. Defining requirements ... 22

3.2. Choosing technologies .. 24

3.2.1. Backend libraries for DOCX ... 24

3.2.2. Apache POI .. 25

3.3. Moodle import files ... 27

3.4. Coursera files... 29

3.5. Development process .. 31

4. Quiz Converter ... 33

4.1. Architecture ... 33

4.2. Quiz Converter MVC implementation .. 34

4.3. How the backend works .. 35

4.4. How frontend works .. 37

4.5. UniTartuCS template... 38

4.6. Implemented features .. 39

4.7. Deployment ... 41

4.7.1. Docker .. 41

4.7.2. Usage in this project... 45

5. Testing.. 49

6. Conclusion ... 50

6.1. Summary ... 50

5

6.2. Future work ... 50

References .. 52

Appendix .. 57

I. Source Code .. 57

II. UniTartuCS Template ... 57

III. UniTartuCS Template Documentation.. 57

IV. Interview Questions... 57

V. License .. 58

6

Introduction

Schools use different platforms to share materials and check students’ progress interactively

through tests. Both TalTech and the University of Tartu use Moodle and Coursera to achieve

this purpose. While both platforms provide a suite of different tools and capabilities, they lack

the possibility for course administrators to work on the same test concurrently. This means that

it is not that easy to spot mistakes and suggest improvements to each other. Therefore, teachers

use Google Drive or Microsoft Cloud for collaboration to create .docx files, which support

comments, working together simultaneously on the same file and history of changes.

Problems also arise when the course administrator decides to switch from one platform to

another. Both previously mentioned services allow for exporting and importing tests, but they

use their own file formats with little overlap. This means that when a platform switch is decided

upon, a large amount of work is required to learn the new platform and recreate all the courses

and tests.

The main problem is understanding how to create an application that would read in the .docx

file with the questions written in a specific format and then output a file that Coursera or

Moodle recognise. From that, the following questions are asked:

 What restrictions are there on Coursera and Moodle?

 How to define and display errors in an uploaded file to the user?

 What similar applications are there?

This thesis aims to build a web application for converting simple collaboratively edited Word

document files from platforms like Google Docs to the file formats that Coursera and Moodle

both accept. To accomplish this task, the author will also research and implement the necessary

technology stack for the backend, including testing and deployment suites required for software

development.

The thesis is divided into seven chapters. The first chapter overviews the Coursera and Moodle

learning management systems. The second chapter introduces other applications that that help

with importing questions to the Moodle. The planning process of the Quiz Converter is

described in the third chapter. The fourth chapter focuses on the what was created during the

7

development process. The fifth chapter describes how the application was tested. The sixth

chapter provides the summary of the done work and introduces the future work.

8

1. Learning management system

This chapter will introduce two LMSs: Moodle and Coursera. A learning management system,

in short, an LMS, is a system that helps teachers keep track of the courses. With LMS, teachers

can share their documents, create quizzes that can be automatically and or manually graded,

keep track of the students’ grades and progress, share feedback, and communicate with

students.

1.1. Moodle

According to the Moodle’s webpage about their history [1] Moodle was created by Martin

Dougiamas. The name came from the acronym of Martin’s Object-Oriented Dynamic Learning

Environment, which was later changed to Modular Object-Oriented Dynamic Learning

Environment. In 2001, Moodle came to live with the first Moodle course, “Constructivism”

which run at Curtin University. Within a few months, Moodle was being used all over the

world. Now, 23 years later, Moodle has over 377,000,000 users, 2.2 billion course enrolments,

45,000,000 courses in 42 languages, and 154,000 Moodle sites [2].

1.1.1. Question bank

Moodle’s official documentation [3] states that question bank allows teachers to store, create,

preview, and edit questions, which can then be used in the quizzes. Questions can be organised

into different categories and subcategories for better management. Questions can be added to

the question bank either by creating new ones through Moodle’s user interface or by importing

them from different file formats (Table 5).

However creating questions in collaboration with somebody is hard, as there is no option to

comment on the questions or see history of changes. Therefore, teacher prepare their questions

in advance using Microsoft Word files and then create each question manually in the question

bank.

1.1.2. Creating quizzes in Moodle

According to the Moodle’s documentation page about quizzes [4] there are three ways to add

questions to the quiz. One way is to create a new question, which will not be added to the

question bank after the creation. The second way is to import question(s) from the question

9

bank. The third option is to add random questions, which means that question tags and the

number of questions to be imported can be specified. So, if students are taking the same quiz,

then they will have different questions on their quiz.

1.2. Coursera

Coursera was founded in 2012 by Daphne Koller and Andrew Ng. It has over 113 million

learners, 7000 campuses, businesses, and governments [5].

1.2.1. Quiz item vs assignment items

Coursera’s official documentation page [6] states that in February of 2023, Coursera launched

assignment items. Assignments items combine features of Coursera quiz items and legacy staff

graded assignments into one. Compared to quiz items new assignment item has same auto-

graded question types as quiz items as well as multiple dropdowns question types. The

manually graded questions and instructions for learners and grades can be added to the

assignments but not to the quiz items. Question banks are not supported by the quiz items and

can only be used with assignments. Other features that are supported by the assignments but

not by quiz items are: choice of latest test score to be counted towards the grade, time limits to

public tests, auto-graded assignments can have submission limit per timed attempts, student’s

grade can be visible or hidden and the submission can be hidden from the learner.

However the Coursera’s article about assignment items [6] states that not all features thatare

supported by quizzes are supported by assignment item. The new assignment items can not

have extra credit questions and assignment items are not included in course assessment

dashboard.

In February 2024, the Coursera support page stated [7] that the creation of new quiz items is

no longer supported and, by the end of 2024, will be fully removed. The assignment items

should be used to create quizzes instead of quiz items.

1.2.2. Question bank

Question banks were launched so that teachers could tag questions based on the difficulty and

objectives and reuse the questions in different assignments [7]. However questions from the

question banks can not be used in the Coursera quiz items as they are only supported by

assignments [8].

10

In Coursera, according to its documentation page [9], there are three ways to create questions

for the question banks. The first option is to import it from a specified file (Table 6). The second

option is to create them through their user interface. The third option, however, is to create a

question with AI (Artificial Intelligence) automatically. Currently this feature is beta release

and is available for all the educators. It uses OpenAI technology to automatically generate

questions based on learning objectives, lesson titles, videos and text material included in the

course modules and lessons.

1.3. Supported question types in Moodle and Coursera

Table 1 shows the comparison of the supported question types in Moodle and Coursera. If the

question type is not supported but the same result can be achieved by using another question

type, then in the table, it is marked as supported. Moodle has more question options than

Coursera. Both have different plugins that can be added to support more question types. The

main difference is that Moodle supports drag-and-drop questions, and Coursera supports more

dropdown question types. Coursera also supports code expression type questions where

students can write code, and it can be automatically evaluated. However, the teacher needs to

write scripts to assess and grade the output of the students' code. Coursera has only auto-graded

question types in its quizzes.

Table 1. Coursera and Moodle question type comparison.

 Meaning Moodle Coursera

Calculated Numbers can be defined as variables and will

be autogenerated with every quiz. The answer

is defined as a formula with variables. Students

still need to provide numerical answers.

Yes No

Calculated multi-

choice

Multi-choice question with autogenerated

variable values and answers are defined as

formulas. Students can choose the correct

numeric answers.

Yes No

11

Calculated

simple

Calculated question with a more

straightforward creation interface.

Yes No

Drag and drop

into the text

Dragging missing words or phrases into text. Yes No

Drag and drop

markers

Drag and drop answer options to the image

without visible drop zones.

Yes No

Drag and drop

onto image

Drag and drop answer options to the image with

visible drop zones.

Yes No

Description It is not actually a question but a text and/or

graphic that can be used to introduce the next

question group.

Yes No

Essay The manually graded question allows students

to write long text answers, such as essays.

Yes Yes

Matching The question consists of two lists that must be

matched against each other. For example,

“Match the author to the book title”.

Yes Yes* only

in Coursera

assignments

Embedded

Answers (Cloze

Test / Gap Fill)

The question which can consist of multiple

different questions with different question

types.

Yes No

Multiple choice Question type where students can choose

answers from the multiple answer options. It

Yes Yes

12

can be either a single correct answer (radio

button) or multiple correct answers (checkbox).

Ordering Displays several items, whether images,

phrases, or images, in a random order. Students

can drag them to put them in the proper order.

Yes No

Short Answer The answer must match a word or a phrase. Yes Yes

Numerical The answer can be a numerical value. The

accepted error can be set.

Yes Yes

Random short-

answer matching

Looks just like a matching question, but the

sub-questions are randomly drawn from the

short answer questions in the current category

[10].

Yes No

Select missing

words

Select the missing word from the dropdown in

a text.

Yes Yes* only

in Coursera

assignments

True/False Two options with a single correct answer Yes Yes

Multiple

dropdowns

categorisation

Question has category columns that can be

filled using dropdowns. For example there can

be two columns: plants and animals.

Dropdowns then have options: mouse, cat,

dandelion and rose. The correct options must be

selected under the correct category.

No Yes* only

in Coursera

assignments

13

Math expression Question that can be answered by entering

mathematical formulas and/or constants.

No Yes

Regular

expression

The question where teacher can define the

answer by using regular expression. Any word

or phrase that will match the regular expression

will be count as correct.

No Yes

Code expressions There is a code editor where students can write

and run the code before submitting it.

No Yes

Reflective

multiple choice

Multiple-choice question where all the answers

are correct.

Yes Yes

Reflective single

choice

Single choice question where all the answers

are correct.

Yes Yes

Reflective text

answer

Essay-type question where all the answers are

automatically graded as correct.

No Yes

14

2. Competitor Analysis

As it is possible to import .docx files directly to Coursera, then it is easy for the teachers to

follow their formatting rules. This cannot be said about Moodle, which does not support

Microsoft Word or Microsoft Excel files. That is why people have come up with different

products that would help them. For these reasons, this chapter will focus only on products that

deal with Moodle import options.

Table 2 shows which products there are that help with importing Moodle files. The first column

of the table shows the name of the product. The second column, “Type”, describes what type

of product it is, whether it is a service, web application, Moodle plugin, or Microsoft Excel

workbook. The table also contains information about the price, as some of the products are not

open source. The “Import file format” and “Export file format” columns show which file

formats the product takes in and which are its output formats that can be imported into Moodle.

There is also a description of the purpose of the products, whether it is to convert text files to

GIFT, migrate the whole course to another learning management system, or some other

purpose.

Table 2. Products for importing Moodle quizzes.

Product Type Price Import file

format or

extension

Export

file format

or

extension

Purpose

Scaffold

Migration

by K16

Solutions

Automated

service

Based on

the price

request

N/A N/A Migrating the whole

course from one LMS

to another

15

GetMarke

d

Web

application

From 29

USD per

year

16 different

file formats,

including

.docx and

.pdf

27

different

platforms,

including

Moodle,

Coursera,

and

Kahoot!

Can upload files with

quizzes, and then it

uploads to the chosen

platform

Moodle

XML

converter

Web

application

Open

source

.txt Moodle

XML

Converts .txt quiz files

to Moodle XML file

FastTest

Plugin

Moodle

plugin

Open

source

.xlsx Moodle

XML

Template based on

Microsoft Excel for

creating Moodle

quizzes

moodle2w

ord

Moodle

plugin

Open

source

.docx .docx Allows import

questions from .docx

file to Moodle

Moodle

test creator

Web

application

Open

source

Text GIFT Converts text to GIFT

to import into Moodle

Moodle

Cloze and

GIFT

Microsoft

Excel

workbook

Open

source

Text GIFT Excel workbook,

which converts its

16

Code

Generator

content to the GIFT

format

Table 3 shows what question types the products that were mentioned in the Table 1 support

and whether they support images. As Scaffold Migration by K16 Solutions claims to be able

to move all the course information with its questions from the question banks, but different

platforms support slightly different question types then, without using the product, it couldn’t

be determined if all the question types are supported and what would happen if the platform A

with question type B would be moved to the platform C which wouldn’t support the question

type B. For that reason, all the question types are marked as N/A.

Table 3. Product comparison by support question type.

 Scaffold

Migratio

n by

K16

Solution

s

GETMA

RKED

Moodle

XML

converter

FastTes

t Plugin

moodle2

word

Moodle

test

creator

Moodle

Cloze

and

GIFT

Code

Generat

or

Images N/A N/A No Yes Yes No No

True-

false

N/A Yes Yes Yes Yes Yes Yes

Multiple

choice

N/A Yes Yes Yes Yes Yes Yes

Multiple

response

N/A Yes Yes*

(doesn’t

allow

having

only one

correct

Yes Yes Yes Yes

17

answer)

Cloze N/A N/A Yes Yes Yes No Yes

Open

ended/es

say

N/A Yes Yes Yes Yes Yes Yes

Matchin

g

N/A Yes Yes Yes Yes Yes Yes

Regular

Expressi

on

N/A No No No Yes No No

Calculat

ed

N/A No No No No No No

Numeric

al

N/A No No No No Yes Yes

2.1. Scaffold Migration by K16 Solutions

Scaffold Migration is according to their official website [11] an automated service provided by

K16 Solutions for migrating from one LMS platform to another. If a teacher is moving from

Moodle to Coursera, then they can send a price inquiry, and then all their quizzes, questions

from the question banks, materials, and course structure will be moved to Coursera without the

need for copy-pasting or manually inserting anything.

2.2. GETMARKED

GETMARKED, according to their website [12], [13] is a web application that lets teachers

upload their quizzes to their website and then export them to one or multiple of 27 supported

platforms. Due to their use of AI to understand the content of the file with the quizzes, there

are no exact rules that need to be matched (Figure 1). GETMARKED supports eight different

types of questions: True-false question, multiple choice question, multiple response question,

cloze question (fill-in-the-blank), cloze question (select dropdown menu), open-ended

18

question, matching question, and Likert question. Alongside 16 different import file formats,

teachers can also import the PDF versions of their tests.

Figure 1. Example of GETMARKED correct answer annotations [12].

2.3. Moodle XML converter

Moodle XML converter, formerly known as VLT tool, is an open-source web application that,

according to their documentation [14], based on the rules of the text file format, converts

quizzes to Moodle XML file, which can be imported into Moodle. It supports eight different

question types: multiple choice, which is converted into radio button type question if there is

only one correct answer and checkbox question if there are multiple correct answers; short

answer; essay; description; cloze, true-false; numerical; matching; and order, which requires

additional Moodle module to be installed. Moodle XML converter does not support images.

Nevertheless, it does give the user warnings and error messages if there have been mistakes in

the provided text file.

2.4. FastTest Plugin

According to the article written by Milagros Huerta and Manuel Alejandro [15] FastTest Plugin

is a Moodle plugin created in January of 2021 by Milagros Huerta from the University of Cádiz

and Manuel Alejandro from the University of Cádiz. The plugin is open source and based on a

Microsoft Excel spreadsheet. It can be used to create questions in graphical UI (Figure 2) and

export them to Moodle. It supports images as well as eight question types: MCQ, True / False,

Matching, Missing Word, Essay, Short Answer, Cloze, and Calculated.

19

Figure 2. FastTest plugin UI [16].

2.5. Moodle2word

Moodle2word is according to Moodle plugins website [17] an open-source Moodle plugin that

helps import Microsoft Word files in .docx format directly to the Moodle course question bank.

It also exports Moodle questions to the .docx format so that they can be easily changed in Word

and then imported again. The Word file should be in the table format (Figure 3). All the main

question types are fully supported except for numerical and calculated question types, which

can be exported but cannot be imported. It is also possible to install a Microsoft Word plugin,

which will create the table templates itself without the need to format and make them manually

[18].

Figure 3. Boolean question example for Moodle2word [18].

20

2.6. Moodle Test Creator

As stated on the Moodle Test Creator website [19], Moodle Test Creator is an open-source web

application created by Manuel Vilas. The purpose of the app is to convert the imported text

into GIFT format, which will be recognised by Moodle. It also gives error messages if the

inserted text is in the wrong format or has other mistakes in it. It supports six different question

types: single answer, multiple answers, short answer, numerical, essay, and true-false

questions. However, it does not support images.

2.7. Moodle Cloze and GIFT Code Generator

Moodle Cloze and GIFT Code Generator based on its website [20] is a Microsoft Excel

workbook created by Jordan Svien. The workbook lets users fill in the cell with the question

details and then copy the GIFT code to import it into the Moodle question bank (Figure 4).

Figure 4. Moodle Cloze and GIFT Code Generator with example question.

2.8. Conclusion

As working on the Moodle quizzes can be challenging, there are many products to ease that

pain. However, the ones that are really easy to use and require no changes to the already made

quizzes, like GETMARKED and Scaffold Migration by K16 Solutions, are not open source,

and you need to have an annual subscription or custom pricing to use them. Open source

products can be divided into three groups: based on Microsoft Excel spreadsheets, which

require users to use their templates, which are not always intuitive and therefore need time to

learn how to use them; text based web applications, which do not support adding images to the

21

questions; and Microsoft Word based Moodle plugins which require users to install their plugin

and follow their Microsoft Word templates. So, there is a need for an application that would

not need to install anything, be open source, and have intuitive templates that would not follow

a strict format.

22

3. Building Quiz Converter

The web application was created in cooperation with the author and Bachelor’s student Tobias

Reiter. The author’s focus was mainly on the backend and deployment process, and the

Bachelor’s student was on the frontend, template, and documentation. The development

followed agile development methodology, which will be described in this chapter.

3.1. Collecting requirements

Interviews were conducted to get a better understanding of how teachers create quizzes. The

author and codeveloper went to the University of Tartu Delta building and asked six teachers

about how they create the quizzes, do they discuss them with other people, how they discuss

them, and what they like or dislike about their approaches.

3.1.1. Interview insights

Based on the interviews, the author and codeveloper got these insights:

● Not all people use Moodle. One teacher uses Coursera because they find its user

interface to be better than Moodle’s. The other one uses Kahoot! for quick and fun

knowledge checks for students. One teacher creates self-assessment quizzes in Courses

as they have all the course content there.

● Usually, teachers use multiple choice and single choice question types.

● All teachers who were interviewed said that they do not change the default settings of

the quizzes in Moodle.

● For some, the pictures are essential, especially when there is no option to format the

text.

● One teacher mentioned that it would be nice if the format of the text would also be

imported into Moodle. For example, if the .docx contains red text in the question

description, then Moodle would also have red text.

3.1.2. Defining requirements

Based on the interview and competitor analysis insights, the author and codeveloper decided

to define requirements for MVP (minimum viable product).

23

● The imported document should be a .docx file, as it is one of the most commonly used

among interviewed teachers.

● Single choice (radio button) and multiple choice (checkbox) questions should be

supported, as they are the most popular question types

● There should be error messages if there are errors in the document formatting so that

teachers can spot their mistakes before trying to import the output document to the

chosen LMS.

● Pictures should be supported in question descriptions and answers, as it could be tricky

to format code in the text document.

● Converting to Moodle and Coursera should be supported, as they are one of the most

popular LMS platforms that the University of Tartu supports.

● The rules for document formatting should be defined and made available for the

teachers to see so that they know how to format their documents.

Based on the defined requirements for the MVP, the initial UI designs were created (Figure 5).

The University of Tartu’s official colour was used as a primary colour. To create the designs,

Figma was used as it has easy to use user interface and it is possible to work together on the

designs at the same time.

Figure 5. The initial design of the landing page with file before uploading and initial design of the feedback of uploaded file.

24

3.2. Choosing technologies

After collecting initial requirements for the MVP, the author and codeveloper started

discussions about the tech stack to use.

For the backend, the Java language was chosen as it is one of the most popular languages used

and it also has multiple libraries for reading in .docx files [21]. In addition, both the author and

codeveloper have previous experience with it. Based on the author's prior experiences, the

Spring framework was chosen for the backend development.

For the frontend Next.js, the React framework for web development was chosen. Next.js is a

framework based on React. It was chosen as it has more functionalities than plain React. Some

of the key features of the Next.js according to the GeeksforGeeks tutorial [22] are:

 server-side rendering,

 static site generation,

 automatic code splitting,

 data fetching,

 routing,

 image optimisation,

 built-in CSS and JavaScript bundling,

 API routes.

These built-in features make code shorter and more manageable, and the web pages load faster.

3.2.1. Backend libraries for DOCX

Java has multiple libraries for parsing .docx files. The main ones are Aspose, Docx4J, and

Apache POI (Table 4).

Table 4. Comparison of different libraries for parsing .docx files.

Library Pricing Documentation First release year Last release

Aspose From 1199$

(one-time

payment)

Yes N/A N/A

25

[23]

Docx4J Open source Yes N/A 25th of April 2024

Apache POI Open source Yes 28th of August

2001

25th of November

2023

As Aspose is not open source, it was not even taken into consideration when choosing the

library. Apache POI was selected as it is maintained, vulnerability issues are being addressed

and fixed, and there is a lot of support from the community, so information and tutorials are

easy to find, and it has documentation. The other option was to use Docx4J as it is especially

designed for .docx processing compared to Apache POI, which primary purpose is working

with Microsoft Excel files. However, Docx4J is not as transparent with their vulnerability

issues and their fixes.

3.2.2. Apache POI

Apache POI is part of the Apache Software Foundation. POI's first release was on the 28th of

August 2001 [24]. Apache POI is used to create, edit, and read Excel, PowerPoint, Word,

Publisher, OLE2 Filesystem, and OLE2 Document Props files in Java [25].

3.2.2.1. Apache POI for Word

Based on Apche POI’s website [26] Apache POI has two versions for processing Word files.

The HWPF is a version for Microsoft Word 97(-2007) file format. For the new Word 2007

.docx format, the XWPF is used. Both HWPF and XWPF have similar features. Apache

describes them as “moderately functional” as the text extraction support is very strong, but the

editing and creation of the Word files may be limited or incomplete.

One of the advantages of Apache POI is that it has its own exeptions if the file is not .docx or

if the file is too long, so that it is not possible to read files that may contain malicious content

or to use too much of the machine’s resources if somebody uploads a file that is big. Another

advantage is that with Apache POI it is easy to get the paragraphs from the .docx file. Figure 6

shows how to get paragraphs from the MultipartFile. Firstly the new XWPFDocument needs

to be created from the file’s input stream of bytes, then getParagraphs() should be called, which

returns list containing XWPFParagraphs.

26

Figure 6. Getting paragraphs from the MultipartFile using Apache POI.

Figure 7 shows that getting images from the paragraphs is not as easy as getting text with

getParagraphText() as there is no method like getParagraphImages(). Images can be retrieved

through the XWPFRun object, which defines a text region with a common set of properties

[27]. Once the XWPFRun is returned, it is possible to use run.getEmbeddedPictures(), which

will give a list of pictures from the paragraph run. With the XWPFPicture object, it is possible

to encode the data of the picture to the base64 to use it in the HTML when creating Moodle

XML or convert it back to the XWPFPicture when creating a new .docx file (Figure 8).

XWPFPicture also contains information about the width and height of the image, so it can be

added to the .xml with the original dimensions.

Figure 7. Getting paragraph images using Apache POI.

27

Figure 8. Creating XWPFPicture and adding it to the paragraph using Apache POI.

With apache POI it is also possible to get the dropdowns and their selected values from .docx

files (Figure 9).

Figure 9. Getting dropdown values from paragraph using Apache POI.

3.3. Moodle import files

Moodle supports multiple import file formats that are introduced in Table 5 [28].

The Moodle XML format was chosen as the output for Moodle as it is very comprehensive and

supports images out of the box without the need to add plugins. In addition, it has excellent

documentation. Moodle XML is the default export type for the questions, so it is possible to

create a question in Moodle and download it as Moodle XML to see how it is defined.

Therefore, it is convenient for development and debugging purposes as developers can compare

their Moodle XML to the one that is generated by Moodle.

28

Table 5. Supported import file types in Moodle.

 Supports

images

Example

AIKEN No .txt file

Figure 10. Example of AIKEN file [29].

Blackboard Yes .dot file

GIFT Yes*

(plugin

needed)

.txt file

Figure 11. GIFT format file content example [30].

Embedded

Answers

(Cloze)

N/A .txt file

Figure 12. Cloze format example [31].

Moodle

XML

Yes .xml file

29

Figure 13. Moodle XML example [32].

Missing

word

No .txt file

Figure 14. Missing word file example [33].

3.4. Coursera files

Coursera has multiple different import file types for importing quiz items [34], [35]. The import

file types with their examples and whether they support images are provided in Table 6. DOCX

was chosen as an import file type as it is Coursera’s recommended file type and it is the only

file format that accepts images. As well as the only format that assignment items accept [36].

Table 6. Supported import file types in Coursera.

 Supports

images

Example

DOCX Yes .docx file

30

Figure 15. Example of DOCX file format [37].

YAML No .yaml file

Figure 16. Example of YAML file [38].

QTI No .txt, rtf, .doc, .docx, .csv, and StudyMate Class format (.zip and .xml)

Figure 17. Example of QTI file format [39].

31

3.5. Development process

The author and co-developer used agile methodology in their development process, as

described in Figure 18.

Figure 18. Development process.

During the development process, the author and co-developer updated the feature list when

they came up with new ideas for improvements. They discussed whether the feature should be

prioritised or not and added according to tasks. Then, when the developer was ready to take on

a new task, they took the one with the top priority, created a new branch, and started working

on it. Then, they implement the task on their feature branch. Once it is implemented and tested,

the merge request is created to merge the feature branch to the main branch. After that, the

other developer is notified. The other developer then takes a look at the changes made and, if

needed, suggests some improvements. When there are no more suggestions from the developer

32

who reviewed the merge request, then the merge request is merged. Then, the main branch is

tested, and if everything works as expected, then the code is deployed to the virtual machine.

33

4. Quiz Converter

This chapter describes the end result of the practical part of this thesis. It gives an overview of

the overall architecture of the Quiz Converter as well as how all the components work in the

backend. It also gives an overview of the flow in the frontend and the list of the implemented

features.

4.1. Architecture

The Quiz Converter’s architecture is based on the MVC (Model-View-Controller) pattern.

MVC pattern has different implementations where in the initial and most common one model

can interact directly with the view (

Figure 19) [40].

Figure 19. A common MVC Implementation [40].

Oracle’s webpage about MVC architecture [40] states that in more recent implementation, the

controller is placed between the model and view so that the communication between the view

and model is always through the controller (Figure 20). One thing in common is that every

implementation divides an application into three main categories: Models, Views, and

Controllers, and each of the categories has its own responsibility.

34

Figure 20. MVC pattern with controller between view and model. [40]

According to the Microsoft’s page [22] The model’s responsibility is to handle all the business

logic, manipulate data, and represent the state of the application. The view’s responsibility is

to present data from the model to the user; therefore, it should not contain any business logic

inside of it. The controller’s purpose is to react to the user’s interactions, which, for example,

can be button clicks in a stand-alone GUI client or HTTP requests in an enterprise web

application [21].

4.2. Quiz Converter MVC implementation

Figure 21 shows the Quiz Converter architecture, which follows the MVC pattern that places

the controller in the middle of the model and view. The application is divided into two parts:

the frontend part and the backend part. The frontend part is the view. The backend part contains

the controller and model.

Figure 21. MVC pattern as applied in Quiz Converter.

User can interact with the view by uploading the .docx file and then clicking on the button to

convert it to the Coursera formatted .docx or to the Moodle XML file. Once the button is

35

clicked, the HTTP POST request with the body that contains a file is sent to the backend, where

the controller recognises it and forwards the file to the model layer. In the model layer, the file

is read as a question object and validated. The details of the file content are added, and the

question object is converted into Moodle XML or Coursera .docx file. After that, the file with

its details is sent back to the controller where the file DTO (data-transfer-object) is created and

sent back to the view as REST ok response with file DTO in the body. The view automatically

downloads it and shows question details in the pop-up modal.

4.3. How the backend works

Frontend sends POST /file/convert/moodleXML or POST /file/convert/courseraDocx request

to the backend, where the controller recognises it, takes out the .docx file from the request

body, and then sends the MultipartFile to the ConverterService. ConverterService has two

methods: convertDocxToMoodle and convertDocxToCoursera, both of which take a file as an

input argument (Figure 22). Depending on which POST request was sent, the controller calls

one of those methods. Then CoverterService calls FileUploadService, which is responsible for

reading the .docx file paragraph by paragraph. Based on how each paragraph starts or which

was the previous paragraph, it is assigned a type: question details, question description, answer

option, answer option feedback, empty text, default feedback, or unknown. Based on the

paragraph type, the paragraph is skipped, QuestionState is updated, and/or the new Question is

created and validated with QuestionValidationHandler. QuestionValidationHandler checks the

question elements and assigns errors and warnings if needed. The errors that can be added are:

 UNKNOWN_QUESTION_TYPE – there is a spelling mistake in the question, or the

question type is not supported;

 NO_ANSWER_OPTIONS_FOUND – the answer options either do follow the rules of

defining answer options or there are no answer options provided;

 NO_CORRECT_ANSWER_FOUND – none of the answer options are marked as a

correct answer;

 INVALID_REGEX – the regex is not recognised as a Java regex pattern.

The added warnings can be:

36

 CHECK_QUESTION_NAME – the question does not contain ‘-’ or ‘–’, so the whole

paragraph is marked as a question name, which is only for Moodle as in Coursera, the

question name must always be the number;

 UNKNOWN_PARAGRAPH_TYPE – the paragraph type doesn’t match any

paragraph rules, so it is skipped;

 ANSWER_OPTIONS_DONT_MATCH_TYPE – the single choice question type has

more than one correct answer marked;

 REGEX_RESTRICTION – Moodle and Coursera have their regex restrictions, so

there could be some errors when importing the file to Moodle or Coursera due to that.

After the .docx file is processed, the FileUploadService returns a list of Question records

containing all the data about the question. The list is filtered, and only the questions without

errors are sent to the MoodleXmlCreatorService, where the Moodle XML file is created, or to

the CourseraDocxCreatorService where the Coursera .docx is created and returned as a byte

array. The unfiltered list is then sent to the QuizDetailsComponent where it is converted into

QuizDetails record. The pair of byte array and QuizDetails record is sent back to the controller

where the byte array is encoded as base 64 string, FileDto is put together and HTTP request

response with FileDto as response body is created (Figure 23).

Figure 22. Backend components' relationships.

37

Figure 23. Example of the request response body.

4.4. How frontend works

On the landing page (Figure 24), there is a drop area where users can click to choose the file to

upload or drag and drop their .docx file. If the added file does not have .docx extension, then it

will not be uploaded, and clicking on Moodle XML or Coursera .docx button will show the

warning that there are no files to be uploaded. Once the .docx file is uploaded and the “Moodle

XML” or “Coursera .docx” button is clicked, the file is sent to the backend via HTTP request.

The frontend will show a small notification that the file is uploading, which means it is waiting

for the HTTP response from the backend. Once the response is received, the file is

automatically downloaded as an XML or .docx file, and the modal with the file details pops up

(Figure 25). The button for opening the modal is shown.

38

Figure 24. Quiz Converter landing page.

Figure 25. Quiz Converter uploaded document details.

The frontend also has the “Documentation” button, which opens the page with links to the

template documentation and the UniTartuCS template (Figure 26).

Figure 26. Quiz Converter documentation page.

4.5. UniTartuCS template

UniTartuCS template (Figure 27) is a .docx template created to make formatting the .docx

easier and to avoid mistakes. It has three dropdowns: question type, shuffle option, and credit

option. The dropdowns have all the options supported by the Quiz Converter, so choosing from

the dropdowns avoids making spelling mistakes or selecting the type that is not supported. The

39

.docx with dropdowns can be uploaded to the Quiz Converter as the backend supports the

dropdowns.

Figure 27. UniTartuCS template single choice question example.

4.6. Implemented features

Table 7 shows implemented features in Quiz Converter. The first column lists the feature, the

second column shows if the feature is supported by Coursera and the third column if it is

supported by Moodle. Table also shows in its fourth column if the feature was a part of the

initial set of requirements or were added during the development phase. The table shows that

regular expression question type is only partially supported by Moodle as Moodle does not

support regular expression question types by default and therefore the plugin must be installed

before using it. The partial credit option is also marked as partially supported by Moodle. That

is because Moodle does not support "no partial credit" option. So while the “partial credit”

option is supported the “no partial credit” option is not fully supported. The “no partial credit”

option is implemented in a way that every incorrect answer automatically gives 0 points to the

question. However, if there are three correct and one incorrect answer then choosing one of the

three correct answers will give 1/3 of a point.

Table 7. Implemented features in Quiz Convertor.

Feature Coursera Moodle Initial

requirement

Allow adding pictures to question description. Yes Yes Yes

40

Allow adding for pictures to answer options. Yes Yes No

Allow adding feedback to the questions. Yes Yes Yes

Allow adding default feedback to the questions. Yes Yes Yes

Allow single choice question type. Yes Yes Yes

Allow multiple choice question type. Yes Yes Yes

Allow short answer question type. Yes Yes No

Allow regular expression question type. Yes Partially* No

Allow multi-paragraph question descriptions. Yes Yes No

Add automatic file download. Yes Yes Yes

Show information about uploaded file’s content. Yes Yes Yes

Allow shuffle/no shuffle questions option. Yes Yes No

Allow partial credit/no partial credit option. Yes Partially* No

Allow getting information from dropdowns from

uploaded .docx file.

Yes Yes No

Template for creating questions. Yes Yes Yes

41

Documentation that describes how to use template

and what features are supported.

Yes Yes Yes

4.7. Deployment

The web application is deployed on an HPC virtual machine with 4 vCPU, 2GB of RAM, and

10 GB disc space. The web application runs in Docker containers: quiz-converter-frontend and

quiz-converter-backend.

4.7.1. Docker

According to Docker documentation [42] Docker is a helpful open platform solution used

mostly to “box up” software, deliver it between machines and run them. This helps separate

the application's dependence on machines and makes it easier to develop and deploy in separate

instances or by different developers. As the applications are put into loosely isolated containers,

it enables multiple instances of containers to run without meditating too much about

applications clashing with each other. Once development is complete, Docker can easily deploy

the applications to the final systems. This chapter will overview Docker and its use in this

thesis.

4.7.1.1. About Docker

Article by InfoWorld [43] states that Docker was founded in 2010 in a startup incubator. The

product was started in France by one of Docker Inc.'s founders, Solomon Hykes. Docker Inc.

launched in 2011, and by 2013, it was featured in the PyCon. In the same year, it was released

as open source.

Article [43] continuous by bringing out that major firms quickly adopted Docker for their

solutions. In 2013, Red Hat adopted Docker for its Red Hat Enterprise Linux, OpenShift and

Fedora. Next year, Docker announced a collaboration with Microsoft, Amazon, Stratoscale and

IBM for various cloud and server infrastructure projects. As years passed, Docker became more

adopted in various systems and infrastructures for everyday users and enterprises. For example,

in 2016, Microsoft announced that Docker could be natively used on Windows 10 and in 2019,

with the release of WSL and WSL 2, Windows Home users could easily take advantage of the

Dockers tools.

42

4.7.1.2. How Docker works

Docker as a solution could be split into three main parts as illustrated in Figure 28. First, the

Docker client, then the host, and finally, the registry. The author will introduce these concepts

in the following subchapters and explain how they are used.

Figure 28. Overview of Docker architecture [42].

4.7.1.3. Docker client

The Docker client according to GeeksforGeeks website [44] is responsible for allowing

communication with the underlying Docker ecosystem. It comes in various forms, such as a

command line tool or a stand-alone graphical interface called Docker Desktop. Both of these

make use of Docker API to communicate with the host, the Docker daemon. The methodology

of Docker API relies on REST API as they are essentially the same.

The Docker client has a few use cases:

 Management

o As Docker mainly uses containers to run different applications in their

environments, the Docker client manages the lifecycle of these containers, from

creation to deletion.

43

o The Docker containers are created using the instructions inside Docker images.

As such, the Docker client can be used to push, pull, build, tag or even inspect

these images.

o Once multiple instances of different applications run as containers, Docker

Swarm tools can be used to better manage them. The Docker client handles the

orchestration of these services and monitors the swarms.

 Monitoring

o As the Docker is not a standalone solution and needs to borrow resources from

its host, monitoring these resources is needed. Docker client keeps watch of

available and needed resources like CPU allocation, memory and network

usage.

 Development and Testing

o As developers work on their applications, they can easily use the Docker client

to create different environments for their applications. This makes predicting

how applications behave in mirrored production environments easier and allows

for better coordination between developers.

These use cases show why the Docker client is a highly usable tool, as it helps monitor, test,

and manage the Docker host and registry components.

4.7.1.4. Docker host

The Docker host based on Codefresh website [45] does the main lifting behind the scenes.

Whilst the Docker client seemed important, it mainly sends REST API requests to the Docker

host to query about the states of containers, networks, and images under the host and instructs

them on what to do with them. The host must do the main work.

GeeksforGeeks website’s article [46] states that a Docker host is essentially a server that runs

some operating system and supports Docker containers. It runs the Docker engine, better

known as Docker daemon, which mainly isolates containers from one another and acts like a

hypervisor, managing and sharing host resources with containers. While this seems to be very

similar to how some virtual machine managers and virtual machines work, it is quite different.

Whilst every virtual machine runs its own operating system with an underlying kernel, the

Docker containers share the Docker host kernel. This means the Docker container includes only

the most necessary, like the built application and environmental instructions, allowing

44

containers to be more compact and easier to manage than the virtual machines themselves. This

is visualised in Figure 29. It also means that the physical hardware does not have to be very

powerful to run multiple instances of containers, and developers could deploy them easily on

their computers.

Figure 29. The difference between an application running in a virtual machine vs a Docker container [45].

4.7.1.5. Docker registry

A Docker registry is very similar to a version control system repository or VCS, but at the same

time, there are some differences. Based on Atlassian’s git tutorial [47] VCS's main purpose is

to keep track of document changes in some catalogue tree. It is mainly used for software

development purposes where developers may change the same files and have two completely

different software source codes simultaneously. This is where VSC helps, allowing users to

branch from the main source, implement their changes, and merge them back to the main

source. If conflicts arise, they can work together to resolve them; ultimately, they still have one

coherent source.

Sysdig’s article [48] claims that Docker registry is similar as it allows developers to push their

containers; of course, instead of source code, there are compiled applications with instructions

45

about how to build the necessary environments for them. There is also a second difference in

that end consumers can rather easily pull these images from the registry and deploy them more

easily than trying to deploy source code from some VCS, assuming that the end user has access

to these images. Docker registries mostly eliminate situations where the application runs on

one developer's machine but not the others.

4.7.2. Usage in this project

This thesis also makes use of the tools that Docker provides. As mentioned, the application in

this thesis consists of two parts: the frontend that serves the user and allows them to upload

their quiz templates to be converted, and the backend that receives the template converts it into

the required quiz and returns it to the end user with some details. Both the frontend and the

backend have a Dockerfile that describes how to build respective applications, what

dependencies they have and what their required environments are. For example, Figure 30 has

an example of how the backend Dockerfile looks like.

Figure 30. Contents of the thesis’s backend Dockerfile.

As seen in Figure 30, the following will be a step-by-step on how Dockerfile instructions will

be used to construct applications' backend.

1. The backend needs Maven and Java 21 to run. It takes the described preimage from

Docker Hub, a Docker registry hosted by Docker that has bundled both Maven version

3.9.3 and Java version 21 by Eclipse deployed on a small-scale Linux distribution

called Alpine.

46

2. Next, Dockerfile instructs to create a directory called “app” in the root directory of the

Linux system. The working directory is moved to the newly created “app” folder.

3. Next, the source code dependencies need to be downloaded. As the backend uses

Maven then, its instructor file, “pom.xml”, is moved to the app directory.

4. Next, all the source files of the backend project are copied over, and Maven is executed

to build the application.

a. As seen, Maven dependencies are retrieved from Maven repositories with the

additional argument “go-offline”. This means that dependencies are cashed,

and if any next Maven commands are run, then they could be run offline, and

connection to the World Wide Web is unnecessary.

5. Next, the container is instructed to expose port 8000 to the Docker host as the

application backend REST API is configured to run on that port.

6. Finally, the Java run command is used on the compiled Java package, and the

application should boot up if no problem arose in the previous steps.

Both the frontend and backend of the application have Dockerfiles with some differences, but

the idea remains the same:

1. Retrieve some preimage with bundled necessary runtimes.

2. Copy over the project files

3. Build the application

4. Set up the necessary environment for the application

5. Run the application

The project also has a docker-compose.yml file. This file describes the end Docker host

configuration. It contains information:

 About various containers

o Where to retrieve or how to build them

o Their environmental attributes set by the host

o In what order to deploy the containers

 About volumes

o What volumes are shared by the containers

o What folder are shared between the host and containers

 About network

47

o What containers are connected by bridge

o What container networks are isolated

The docker-compose.yml file is a good instruction set and a tool as it enables users to deploy

a complex set of containers and their networking configuration in one command. Below, there

is an Figure 31 that describes docker-compose.yml written for this thesis application.

Figure 31. Contents of the thesis docker-compose.yml.

As seen in Image C, the purpose is to set up both the applications frontend and back. There are

few components to it.

1. Firstly the version in the file describes what version of Docker Compose must be used

by the Docker daemon.

2. Next are container descriptions, including frontend and backend.

a. In frontend instructions, it is stated that it depends on the backend container.

This means that Docker Compose will first try to deploy the backend container

before trying to deploy the frontend.

48

b. Both container instructions mention where in the directory the backend and

frontend Dockerfiles are located, as will use Dockerfile instructions to build the

containers.

c. Both containers also have instructions about what ports must be connected

between the Docker daemon and the host machine. This can then be used to

access applications from the wider web.

Finally, the application built in this thesis uses a UT HPC virtual machine to host the

application. The virtual machine runs Ubuntu 22.04 and contains the application source code

and docker-compose.yml to deploy the application. Due to limitations from the virtual machine

provided by the UT HPC, the only open ports to the wider web are 80 and 443, which are

mostly used to describe HTTP and HTTPS connection channels, respectively. If this

application becomes more public, then it would be advised to use proper ports instead. Below

is Figure 32, which briefly describes the overall cloud architecture of the application.

Figure 32. Overview of the applications web architecture.

49

5. Testing

During the development, each feature was tested manually as it was developed. Each time a

new feature related to the quizzes was created, the files with the different versions of related

questions were created (Figure 33), converted into Moodle XML and/or Coursera DOCX and

then uploaded to the corresponding platform. The imported question would be checked through

the LMS view to ensure that it was imported correctly.

Figure 33. Example of testing short answer question type.

Keeping track of the created test .docx files was getting harder as more features came.

Therefore, automated tests were created. In Figure 34 there is an example of a test that tests

FileUploadService. The service is created as a variable and named sut, which is an abbreviation

of the system under test. The main idea of tests is to import the created .docx files with different

question types and see if the FileUploadService gets questions correctly. In the example the

test file contains single choice question with an image in the description. The tests checks for

correct question type, if it contains picture also for any warnings and errors.

Figure 34. Example of the automated test in FileUploadServiceTests file.

50

6. Conclusion

6.1. Summary

During this Master’s thesis, a web application named Quiz Converter was created. The purpose

of the web application is to convert DOCX files to the file formats that Coursera and Moodle

both accept. The application is aimed at teachers who create questions for their quizzes

together. As Moodle and Coursera do not allow commenting on the questions or seeing the

history of changes, teachers prefer using Google Drive or Microsoft Cloud to create and keep

track of questions. The questions are then manually imported into the learning management

system individually. The Quiz Converter automates the last step, minimizing manual work, as

the converted DOCX file can be easily imported to Moodle or Coursera platforms.

Moodle and Coursera were studied to understand how creating the questions and quizzes

works. As well as what question types exist and what they mean. A comprehensive competitor

analysis was carried out to ensure that there are no open-source solutions that already fix the

problem.

The interviews were carried out to get a better idea of how teachers create their quizzes. Based

on them, the initial requirements for the MVP were defined. These base features were analysed,

and the application's UI designs were created. Then, the development technologies that would

fit the application needs were chosen.

In order to ensure that the Quiz Converter works manual test were carried out during and after

feature development. Later when more features were implemented, the automated tests were

added to ensure that new developments would not interfere with already implemented ones.

The application was deployed to the University of Tartu HPC virtual machine on

http://193.40.155.50/ and was available for everybody to use on 3th of May 2024.

6.2. Future work

There are still room for development in both feature and management side. In the future more

question types could be added to be supported by the Quiz Converter. Ideally it would support

all the question types that Moodle and Coursera support (Error! Reference source not

http://193.40.155.50/

51

found.). Also the support for the question categories and Coursera Assignments could be

added. Converting from Moodle XML to the Coursera DOCX and vice versa could be added

as well as converting Moodle XML and Coursera DOCX to the Quiz Converter template.

From the management side the application could have continuous integration pipelines that

would run automatic tests and deploy the new code versions automatically to the virtual

machine. DNS could be introduced to change the application address to quiz-converter.cs.ut,

as currently the only way to access the application is thought an IP-address.

52

References

[1] ‘The Moodle Story - Moodle - Online Education For Everyone’, Moodle. Accessed: May

10, 2024. [Online]. Available: https://moodle.com/about/the-moodle-story/

[2] ‘Online Learning With The World’s Most Popular LMS’, Moodle. Accessed: May 10,

2024. [Online]. Available: https://moodle.com/

[3] ‘Question bank - MoodleDocs’. Accessed: May 11, 2024. [Online]. Available:

https://docs.moodle.org/404/en/Question_bank

[4] ‘Building Quiz - MoodleDocs’. Accessed: May 11, 2024. [Online]. Available:

https://docs.moodle.org/404/en/Building_Quiz

[5] ‘Coursera’s Mission, Vision, and Commitment to Our Community | Coursera’. Accessed:

May 13, 2024. [Online]. Available: https://about.coursera.org/

[6] ‘Introducing the New Assignment Item - February 2023’. Accessed: May 15, 2024.

[Online]. Available: https://www.coursera.support/s/article/educator-000001973-

introducing-the-new-assignment-item

[7] Iris, ‘Introducing New Tools and Features as Demand for Online Learning Grows’,

Coursera Blog. Accessed: May 13, 2024. [Online]. Available:

https://blog.coursera.org/introducing-new-platform-innovations-as-demand-for-online-

learning-grows/

[8] ‘About Question Banks’. Accessed: May 13, 2024. [Online]. Available:

https://www.coursera.support/s/article/360052649072-About-Question-Banks?

[9] ‘Automatically Create Assignment Questions with Assessment Generator’. Accessed: May

13, 2024. [Online]. Available: https://www.coursera.support/s/article/educator-

000002179-automatically-create-assignment-questions-with-assessment-generator

[10] ‘Random Short-Answer Matching question type - MoodleDocs’. Accessed: May 15,

2024. [Online]. Available: https://docs.moodle.org/404/en/Random_Short-

Answer_Matching_question_type

53

[11] ‘LMS Migration - K16 Solutions’. Accessed: May 02, 2024. [Online]. Available:

https://www.k16solutions.com/product/scaffold-migration/

[12] ‘Import any Word quiz into Canvas, Blackboard or Moodle in one-click’. Accessed:

May 02, 2024. [Online]. Available: https://digitaliser.getmarked.ai/

[13] ‘GETMARKED Digitaliser | User Guide’. Accessed: May 02, 2024. [Online].

Available: https://digitaliser.getmarked.ai/guide/

[14] ‘Moodle XML Converter’. Accessed: May 04, 2024. [Online]. Available:

https://moodlexml.fly.dev/info/help

[15] M. Huerta and M. A. Fernandez-Ruiz, ‘FastTest Plugin: a New Plugin to Generate

Moodle Quiz XML Files’. Preprints, Feb. 22, 2022. doi:

10.20944/preprints202202.0282.v1.

[16] ‘Moodle plugins directory: FastTest PlugIn | Moodle.org’. Accessed: May 02, 2024.

[Online]. Available: https://moodle.org/plugins/view.php?id=2831

[17] ‘Moodle plugins directory: Microsoft Word File Import/Export (Question Format)’.

Accessed: May 04, 2024. [Online]. Available:

https://moodle.org/plugins/qformat_wordtable

[18] ‘Moodle2Word’. Accessed: May 02, 2024. [Online]. Available:

http://www.moodle2word.net/

[19] ‘Moodle test creator’. Accessed: May 02, 2024. [Online]. Available:

http://text2gift.atwebpages.com/Text2GiftConverter.html

[20] ‘Excel Moodle Integrations | Jordan Svien Excel Tools’, jordan. Accessed: May 02,

2024. [Online]. Available: https://hbubecc.wixsite.com/jordan

[21] ‘PYPL PopularitY of Programming Language index’. Accessed: May 13, 2024.

[Online]. Available: https://pypl.github.io/PYPL.html

[22] ‘Next.js Tutorial’, GeeksforGeeks. Accessed: May 15, 2024. [Online]. Available:

https://www.geeksforgeeks.org/nextjs/

54

[23] ‘Pricing information | Aspose.Words for Java’. Accessed: May 05, 2024. [Online].

Available: https://purchase.aspose.com/pricing/words/java/

[24] ‘History of Changes’. Accessed: May 15, 2024. [Online]. Available:

https://poi.apache.org/devel/history/changes-pre3x.html

[25] ‘Apache POI - Component Overview’. Accessed: May 15, 2024. [Online]. Available:

https://poi.apache.org/components/index.html

[26] ‘Apache POI - HWPF and XWPF - Java API to Handle Microsoft Word Files’.

Accessed: May 15, 2024. [Online]. Available:

https://poi.apache.org/components/document/index.html

[27] ‘XWPFRun (POI API Documentation)’. Accessed: May 15, 2024. [Online]. Available:

https://poi.apache.org/apidocs/dev/org/apache/poi/xwpf/usermodel/XWPFRun.html

[28] ‘Import questions - MoodleDocs’. Accessed: May 15, 2024. [Online]. Available:

https://docs.moodle.org/404/en/Import_questions

[29] ‘Aiken format - MoodleDocs’. Accessed: May 15, 2024. [Online]. Available:

https://docs.moodle.org/404/en/Aiken_format

[30] ‘GIFT format - MoodleDocs’. Accessed: May 15, 2024. [Online]. Available:

https://docs.moodle.org/404/en/GIFT_format

[31] ‘Embedded Answers (Cloze) question type - MoodleDocs’. Accessed: May 15, 2024.

[Online]. Available:

https://docs.moodle.org/404/en/Embedded_Answers_(Cloze)_question_type

[32] ‘Moodle XML format - MoodleDocs’. Accessed: May 15, 2024. [Online]. Available:

https://docs.moodle.org/404/en/Moodle_XML_format

[33] ‘Missing word question format - MoodleDocs’. Accessed: May 15, 2024. [Online].

Available: https://docs.moodle.org/404/en/Missing_word_question_format

[34] ‘Article Detail’. Accessed: May 15, 2024. [Online]. Available:

https://www.coursera.support/s/article/360002997431-Import-and-Download-Auto-

Graded-Assessment-Questions?

55

[35] ‘Use YAML and QTI to Import Questions to Quizzes and Assignments’. Accessed:

May 15, 2024. [Online]. Available: https://www.coursera.support/s/article/educator-

000001646-use-yaml-and-qti-to-import-questions-to-quizzes-and-staff-graded-

assignments?

[36] ‘Assessments’. Accessed: May 15, 2024. [Online]. Available:

https://www.coursera.support/s/educator-resource-center-assessments

[37] ‘Copy of Example Question Types for Importing on Coursera’, Google Docs.

Accessed: May 15, 2024. [Online]. Available:

https://docs.google.com/document/d/1VWlNEG6TBgLNKHthCoZsynz6J3WIHjFoEyGj

BnnI7Bs/edit?usp=embed_facebook

[38] ‘YAML Tutorial –’. Accessed: May 15, 2024. [Online]. Available:

https://rhnh.net/2011/01/31/yaml-tutorial/

[39] ‘Respondus40UserGuideIMS’. Accessed: May 15, 2024. [Online]. Available:

https://web.respondus.com/wp-content/uploads/2019/08/Respondus40UserGuideIMS.pdf

[40] ‘Java SE Application Design With MVC’. Accessed: May 07, 2024. [Online].

Available: https://www.oracle.com/technical-resources/articles/javase/mvc.html

[41] ardalis, ‘Overview of ASP.NET Core MVC’. Accessed: May 07, 2024. [Online].

Available: https://learn.microsoft.com/en-

us/aspnet/core/mvc/overview?view=aspnetcore-8.0

[42] ‘Docker overview’, Docker Documentation. Accessed: May 09, 2024. [Online].

Available: https://docs.docker.com/get-started/overview/

[43] S. Carey, ‘How Docker broke in half’, InfoWorld. Accessed: May 14, 2024. [Online].

Available: https://www.infoworld.com/article/3632142/how-docker-broke-in-half.html

[44] ‘What Is Docker Client ?’, GeeksforGeeks. Accessed: May 12, 2024. [Online].

Available: https://www.geeksforgeeks.org/what-is-docker-client/

[45] R. Tabib, ‘Docker Machine’, Codefresh. Accessed: May 12, 2024. [Online]. Available:

https://codefresh.io/blog/docker-machine-basics/

56

[46] ‘Docker - Containers & Hosts’, GeeksforGeeks. Accessed: May 12, 2024. [Online].

Available: https://www.geeksforgeeks.org/docker-containers-hosts/

[47] Atlassian, ‘What is version control | Atlassian Git Tutorial’, Atlassian. Accessed: May

12, 2024. [Online]. Available: https://www.atlassian.com/git/tutorials/what-is-version-

control

[48] ‘What is a Docker Registry?’, Sysdig. Accessed: May 12, 2024. [Online]. Available:

https://sysdig.com/learn-cloud-native/container-security/what-is-a-docker-registry/

57

Appendix

I. Source Code

Available on https://gitlab.cs.ut.ee/klamas/test-converter

II. UniTartuCS Template

Available on

https://docs.google.com/document/d/106xTDS6IG7fofL6Ju4JnqntjxLeBfBM_LIyjKtskFb8/e

dit?usp=sharing

III. UniTartuCS Template Documentation

Available on

https://docs.google.com/document/d/1IZWmkxqYYqBAYqW8uumiZ1k94muKS4IjpYQuO

Q8-9WU/edit?usp=sharing

IV. Interview Questions

-Do you use Moodle or Coursera environment to administer the tests?

”Yes” -> How do you manage the tests?

“No” -> For what reason?

-How do you prepare tests?

-Could you describe all the steps from scratch?

-What do you like and dislike?

-Do you cooperate with other lecturers when preparing the tests?

“Yes” -> How do you coordinate cooperation and what tools do you use?

“No” -> Can such a need arise if there are opportunities?

-Do you use a question bank when creating Moodle or Coursera tests?

https://gitlab.cs.ut.ee/klamas/test-converter
https://docs.google.com/document/d/106xTDS6IG7fofL6Ju4JnqntjxLeBfBM_LIyjKtskFb8/edit?usp=sharing
https://docs.google.com/document/d/106xTDS6IG7fofL6Ju4JnqntjxLeBfBM_LIyjKtskFb8/edit?usp=sharing
https://docs.google.com/document/d/1IZWmkxqYYqBAYqW8uumiZ1k94muKS4IjpYQuOQ8-9WU/edit?usp=sharing
https://docs.google.com/document/d/1IZWmkxqYYqBAYqW8uumiZ1k94muKS4IjpYQuOQ8-9WU/edit?usp=sharing

58

-How do you manage and select questions from these banks?

-Do you use new technologies or innovative approaches when creating tests?

-What settings do you use when creating tests? (Shuffle, partial credit)

V. License

Non-exclusive licence to reproduce the thesis and make the thesis public

I, Anneli Klamas,

1. grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital archives

until the expiry of the term of copyright, my thesis

Quiz Converter: The tool for creating quizzes in Coursera and Moodle,

supervised by Jaak Vilo, PhD.

2. I grant the University of Tartu a permit to make the thesis specified in point 1 available to

the public via the web environment of the University of Tartu, including via the DSpace

digital archives, under the Creative Commons licence CC BY NC ND 4.0, which allows,

by giving appropriate credit to the author, to reproduce, distribute the work and

communicate it to the public, and prohibits the creation of derivative works and any

commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in points 1 and 2.

4. I confirm that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection legislation.

Anneli Klamas

15/05/2024

