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Automated Tagging of Datasets to Improve Data Findability on Open

Government Data Portals

Abstract:

Efforts directed towards promoting Open Government Data (OGD) have gained significant

traction across various governmental tiers since the mid-2000s. As more datasets are published

on OGD portals, finding specific data becomes harder, leading to information overload.

Complete and accurate documentation of datasets, including association of proper tags with

datasets is key to improving data findability and accessibility. Analysis conducted on the

Estonian Open Data Portal revealed that out of 1787 datasets published (as of April 23, 2024),

11% of datasets lacked any associated tags, while 26% had only one tag assigned to them, which

underscores challenges in data findability and accessibility within the portal. The main goal of

this thesis is to propose an automated solution to tagging datasets in order to improve data

findability on OGD portals. This thesis presents a prototype application that employs Large

Language Models (LLMs) such as GPT-3.5-turbo and GPT-4 to automate dataset tagging,

providing tags in English and Estonian. The developed solution was evaluated by users and their

feedback was collected to define an agenda for future prototype improvements.

Keywords:

Open Government Data, open data, data findability, automation, tag, large language model,

LLM, GPT

CERCS:

P170 Computer science, numerical analysis, systems, control; P175 Informatics, systems theory;

P176 Artificial intelligence

Andmestike automaatne sildistamine andmete leitavuse parandamiseks

riiklikes avaandmete portaalides

Lühikokkuvõte:

Alates 2000-ndate keskpaigast on erinevad valitsustasandid propageerinud riiklike avaandmete

portaale. Kuna riiklikes avaandmete portaalides avaldatakse üha rohkem andmekogumeid,

muutub konkreetsete andmete leidmine aina raskemaks. Andmekogumite leitavuse tagamise
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võtmeks on nende täielik ja täpne dokumenteerimine, sealhulgas andmestike seostamine

asjakohaste siltidega. Eesti avaandmete teabeväravas on avalikustatud kokku 1787 andmestikku

(23 aprill, 2024 seisuga) ning neid analüüsides selgus, et 11% andmestikest pole seotud ühegi

sildiga. Lisaks selgus, et 26% andmestikest oli seotud ainult ühe sildiga. See viitab sellele, et

Eesti avaandmete teabeväravas esineb probleeme andmekogumite leitavuse ja kättesaadavusega.

Käesoleva töö peamine eesmärk on esitada automatiseeritud lahendus andmekogumite

sildistamiseks, et parandada andmete leitavust riiklikes avaandmete portaalides. Selle töö käigus

loodi rakenduse prototüüp, mis kasutab suuri keelemudeleid nagu GPT-3.5-turbo ja GPT-4

andmekogumite sildistamiseks inglise ja eesti keeles. Loodud prototüüpi hinnati kasutajate poolt

ning nende tagasisidet kasutati rakenduse täiustamise planeerimiseks.

Võtmesõnad:

avalikud andmed, avaandmed, andmete leitavus, automatiseerimine, silt, märksõna, suur

keelemudel

CERCS:

P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteooria); P175

Informaatika, süsteemiteooria; P176 Tehisintellekt
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Introduction

In recent times, governments around the world have developed Open Government Data (OGD)

initiatives, merging the principles of open government and open data [1]. Governments around

the globe publish governmental data on OGD portals that become available for a wide audience

of users. Yet, users face difficulties in finding and discovering datasets related to their goals due

to lack of sufficient descriptive metadata in open data catalogues [2]. As an increasing number of

datasets become accessible, the challenge of information overload arises due to the difficulty in

locating specific information [3]. A recommended approach to enhance the discoverability and

shareability of published datasets involves employing expressive descriptors, such as tags,

effectively [3]. Descriptors constitute a form of metadata, providing details about the content of a

resource to assist in its discovery or comprehension [4]. Incomplete or inaccurate metadata

inhibits consumers from discovering relevant data for their requirements, leading to the necessity

of spending significant time manually searching through portals and the data itself to identify

relevant datasets [3, 5].

Through an analysis of the Estonian Open Data Portal datasets, significant shortcomings were

discovered in data tagging practices. Among the 1787 datasets published as of April 23, 2024, a

trend emerged: 190 datasets (11%) lacked any associated tags, while an additional 457 (26%)

possessed only one tag. These findings underscore challenges in data findability and accessibility

within the portal.

The goal of this thesis is to address the challenges associated with dataset findability and

metadata quality by developing a prototype that automates the tagging process by employing a

Large Language Model (LLM). The development of such a tool holds significant promise for

both data publishers and consumers. Automating the tagging process for data publishers

mitigates the risk of datasets lacking tags, a common occurrence on portals where their inclusion

isn't mandatory. Moreover, this automation minimises the association of datasets with incomplete

or inaccurate tags. Consequently, it enhances the findability and accessibility of datasets,

facilitating streamlined access for users. By streamlining the metadata enrichment process,

publishers can allocate resources more efficiently and accelerate the dissemination of datasets

associated with high-quality tags.
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For the study, a LLM powered prototype application was developed to automate the tagging

process for datasets formatted in CSV, one of the most popular open data formats [6, 7]. The

solution was developed as a web service, designed to optimise interoperability and integration

with different platforms and systems. Additionally, a front-end application was also developed to

test the prototype's efficiency and usability.

To evaluate the prototype, a survey was conducted, which received 22 responses. Participants

were asked to evaluate properties of the application such as relevancy of generated tags,

user-friendliness and usefulness. Feedback from the respondents was used to outline areas of the

prototype for future improvement.

The thesis is organised in the following way: chapter 2 defines the core concepts related to the

study and dives into data findability issues in data portals, as well as in the Estonian Open Data

Portal. Chapter 3 introduces the implementation approach and technological framework of the

prototype developed within this study. Chapter 4 dives into the implementation details of the

developed prototype. Chapter 5 presents the methodology of the prototype evaluation and the

results collected from participants. The paper concludes with chapter 6, which discusses the

feedback received and outlines future improvements of the prototype.

ChatGPT 3.5 was used to enhance the readability and aesthetic appeal of the text in this thesis.

For example, ChatGPT 3.5 was used to improve wording and sentence structure, and to fix

grammar mistakes.
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1. Terms and notions

API - Application Programming Interface

FAIR - Findability, Accessibility, Interoperability, Reusability

GUI - Graphical User Interface

LLM - Large Language Model

OGD - Open Government Data
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2. Background

This chapter defines the core concepts used in the thesis, including open government data and a

brief overview of the FAIR principles with further determination of the problem this thesis

attempts to resolve. In addition, a short overview on the state of the art of Estonian Open Data

Portal is provided and its current search capabilities are explored.

2.1 Open Government Data

Initiatives aimed at fostering Open Government Data (OGD), including the establishment of

OGD portals, have seen widespread adoption since the mid-2000s across governmental levels

[8]. The Organisation for Economic Co-operation and Development (OECD) defines OGD as

both a philosophy and a set of policies aimed at fostering transparency, accountability, and value

generation by making government data accessible to the public [9]. This data must be compliant

with principles set by the Open Data Charter, according to which data to be recognized as OGD

must be: open by default; timely and comprehensive; accessible and usable; comparable and

interoperable; suitable for improved governance and citizen engagement, as well as for inclusive

development and innovation [10]. According to the OECD, public entities generate substantial

amounts of data, and by sharing this data, they enhance transparency and accountability to

citizens [9]. Moreover, the OECD notes that encouraging the use, reuse, and free distribution of

datasets by governments promotes the creation of businesses and innovative, citizen-centric

services [9].

This movement has been joined by the vast majority of countries globally, including Estonia. In

Estonia, Open Government Data is centralised within the Estonian Open Data Portal [11], which

will be briefly examined in chapter 2.4.

2.2 FAIR Principles

Another concept closely related to OGD that aims to maximise the value and usability of data,

albeit within another context, is FAIR. FAIR principles were introduced in 2016 by Wilkinson et

al. [12]. The FAIR principles are guiding principles that enable both machines and humans to
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find, access, interoperate and re-use data and metadata [13, 14]. FAIR stands for Findability,

Accessibility, Interoperability and Reusability, where:

● Findability is the principle according to which both humans and computers should

encounter minimal difficulty in locating metadata and data resources. Machine-readable

metadata plays a crucial role in facilitating automated discovery of datasets and services,

thus constituting a fundamental aspect of the FAIRification process [14];

● Accessibility requires that after locating the desired data, the user must ascertain the

methods for accessing them, which may involve considerations such as authentication

and authorization processes [14];

● Interoperability sets prerequisites for data to be integrated with other datasets, making

them capable of interoperating with various applications or workflows for purposes such

as analysis, storage, and processing [14];

● Reusability, being the primary goal of FAIR, dictates the need to enhance the efficiency

of data reuse. This entails ensuring that metadata and data are well-described so they can

be reused in different settings [14].

As such, OGD initiatives and FAIR principles share common goals of maximising the value and

usability of data by promoting principles of openness, accessibility, interoperability, and

reusability. However, although both are related concepts, they serve slightly different purposes,

where OGD initiatives focus specifically on making government data open and accessible to the

public, while FAIR principles provide a broader framework for ensuring that data, regardless of

its source, is findable, accessible, interoperable and reusable (FAIR). As such, data can be

compliant with the open (government) data principles, but not necessarily compliant with FAIR

principles and vice versa, FAIR data is not necessarily open (government) data

principles-compliant, whereas the greatest result is achieved when both sets of principles are

fulfilled [15].

2.3 Data Findability Issues

Data published on data portals is subject for search through several approaches, which is

typically based on the metadata as indicated by the publisher [2]. Open data portals usually offer

diverse browsing interfaces to aid users in locating relevant datasets, providing facets such as
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publisher, file format, spatial/geographical coverage, time period and other properties, whilst also

keyword and tag based search being prevalent [16]. Tags associated with datasets are usually

defined by data publishers when publishing datasets, where these tags can be thought of as

“expressive descriptors” [3]. These expressive descriptors, or tags, play a crucial role in

facilitating efficient navigation through data portals [2, 3]. By associating datasets with relevant

tags, users can swiftly locate datasets relating to specific topics [2, 3]. Entering tags manually is

slow and prone to human errors, where human entered tags are not always accurate or relevant to

the actual dataset [3, 17]. Additionally, if the portal's design doesn't enforce mandatory tagging,

publishers may overlook tagging entirely due to its time-consuming nature. Inadequate metadata,

including descriptions or tags, renders both manual and automated searches ineffective in

locating the dataset, thus making the dataset unuseful [18].

As advancements in artificial intelligence technologies continue, these advancements can be

harnessed to enhance the findability of data through automated tagging of datasets. Moreover,

automation elements are inherent to the FAIR vision [19].

Infringement of findability is also apparent on the Estonian Open Data Portal regardless of its

general competitiveness on the global scene (as per Open Data Maturity (ODM) report 2023)1,

which will be elaborated in chapter 2.4.3.

2.4 Overview on the Estonian Open Data Portal

The first Estonian open data portal was launched in 2015 [20]. It was built on the Comprehensive

Knowledge Archive Network (CKAN) platform - one of the most widely used open-source data

management systems used by Open Government Data (OGD) portals [20]. As the initial

implementation encountered constraints, with several functionalities of the CKAN platform

remaining unused and a limited number of datasets being published on it over time (which is also

consistent with lower rank of Estonian OGD initiative in ODM reports), in 2021, the Estonian

Ministry of Economics and Communication launched a new national open data portal -

avaandmed.eesti.ee [20], which hosts 1787 datasets as of April 23, 2024.

1 https://data.europa.eu/en/publications/open-data-maturity/2023
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Similar to worldwide practices for OGD portals, Estonian national open data portal provides its

users with several capabilities for dataset search, namely:

1. text search that allows dataset search by their title;

2. faceted search that allows datasets search by facets such as publisher, file format,

keyword a.k.a tag, spatial/geographical coverage, year and category.

While some facets used for dataset search can be automatically retrieved from the data associated

with the publisher or the dataset, e.g., dataset format, some facets, such as spatial coverage and

tags, are expected to be provided by the data publisher. As such, the accuracy and completeness

of tags, which are an integral part of metadata, depend directly on the data provided by

publishers.

2.4.2 Challenges with Tags in Open Government Data Portals

While tags may seem to be a trivial facet, the current practice shows that both their presence and

relevance to the actual dataset tend to be a challenge for OGD portals, including the Estonian

Open Data Portal. As found out in conversation with Estonian Open Data Portal representatives,

tags are manually added to published datasets by their publishers. For example, the dataset

“Clinical trials in the recruitment phase in Estonia”2 has no “cancer” tag, although the dataset

contains multiple clinical trials related to cancer research. To this end, to assess the relevance of

the topic of this thesis, an analysis of datasets available on the Estonian Open Data Portal was

conducted with the aim to examine the relevance of the issue in question, i.e., lack of or

insufficient quality of tags associated with published datasets on Estonian Open Data Portal.

To analyse the number of tags associated with each dataset on the portal as defined by data

publishers, a Python scraping script was developed (see Figure 1), the code of which is available

in Appendix I. The Estonian Open Data Portal API manual [21] was used to define API

endpoints for retrieving metadata, such as dataset tags. The script operates as follows:

● list of all datasets on the portal is retrieved using the get_datasets_list() function, which

iterates over each dataset. get_datasets_list() fetches datasets from the API endpoint

https://avaandmed.eesti.ee/api/datasets;

2 https://avaandmed.eesti.ee/datasets/varbamisfaasis-kliinilised-uuringud-eestis
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● for each dataset, detailed information is retrieved using the get_dataset(uuid) function,

where the parameter uuid is the dataset's unique identifier. get_dataset(uuid) fetches the

detailed information from the API endpoint

https://avaandmed.eesti.ee/api/datasets/{uuid};

● the length of the dataset’s keywords field is determined. The count of tags for each dataset

is then incremented in the counts dictionary;

● once all the retrieved datasets are processed, the dictionary containing counts for each

number of tags is printed out.

Figure 1. Estonian open data portal scraping script.
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The analysis performed in accordance with this procedure confirmed the relevance of the thesis

objective, uncovering significant negative trends in datasets tagging practice. Specifically, out of

the 1787 datasets published (as of April 23, 2024), 190 datasets (11%) lacked any associated

tags, while 457 (26%) had only one tag assigned to them. This infringes the principles of FAIR,

i.e., if a dataset is lacking relevant metadata such as tags, it will be more difficult for interested

parties to find it (infringes findability) and to integrate it with other datasets (infringes

interoperability) [14]. As an end result, lack of keywords/tags will make the dataset less likely to

be reused, which infringes reusability [14]. This indicates potential areas for improvement in

dataset tagging within the portal through augmentation of this process, which is a central

objective of this thesis.
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3. Implementation Framework
This chapter presents the implementation approach and technological framework of the

prototype application developed in regards to the thesis. First, the process of automating dataset

tagging is described. Subsequently, the technological choices made to reach the goal, including

the large language model, web service framework, graphical user interface framework,

translation service and cloud provider for hosting are explained.

3.1 Automation of Dataset Tagging

The objective of the thesis is achieved by automating dataset tagging, which, in turn, is achieved

by employing a Large Language Model (LLM). A large language model is appropriate for this

purpose, as it was found to be useful for predicting tags from partial content of a dataset [22]. As

such, the following steps outline the process of automatically tagging a dataset:

1. the LLM gets a system prompt describing to it which data it will receive, which task it

has to do and how its response should be formatted. A system prompt is a message that

can be used to specify the persona used by the model in its replies [23]. Instructions to the

LLM are provided in English;

2. then, the LLM is provided with the first rows of a dataset, including the dataset’s header

row. The number of rows provided to the LLM is 10. Experimentation has shown that

this number of rows is one of the lowest that still allows the LLM to generate relevant

tags. Moreover, every additional row provided for analysis would increase the

computational resources required, thus making the process more expensive. Furthermore,

this number of rows also fits inside the input token limit of the LLM, which determines

the maximum length of the input string that the LLM can accept;

3. after processing the input, the LLM outputs a list of relevant tags. The tags are in English.

The number of tags to output can be chosen by the user, of which the LLM is informed

through the initial system prompt (step 1);

4. finally, in addition to the English tags generated by the LLM at step 3, translation of the

generated tags in Estonian is also returned to the user. The translations do not originate

from the LLM, instead, the English tags generated by the LLM are translated separately

by using a machine translation service’s API.
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3.2 Interfacing with the LLM

Communication with the LLM is achieved through a RESTful web service, which handles

interfacing with the LLM’s API. A RESTful web service is a web application that adheres to

REST3 standards [24]. Web services enable various organisations or applications from diverse

origins to interact without the necessity of exchanging sensitive data or IT infrastructure [25].

Developing the project as a web service has the benefit of not limiting the project to the Estonian

Open Data Portal or OGD portals in general, thereby making it environment-agnostic, which will

make it convenient to integrate the tagging service with other products.

Additionally, a basic graphical user interface (GUI) is developed to interface with the web

service. This is done to allow for a more streamlined and user-friendly usability testing (covered

in chapter 5). In order to facilitate usability testing over distance, the application should be

deployed to the cloud. By implementing this approach, users will be spared the need to set up the

application locally, thus alleviating the associated inconvenience. Furthermore, it ensures that

sensitive API keys remain protected and do not need to be shared with users during the testing

phase (covered in chapter 4.4).

3.3 Technology Choices

This chapter presents the technological choices made to develop an automated tagging service,

with the reference to both LLM, web service framework, GUI framework, translation service and

cloud provider.

3.3.1 Large Language Model

Since the prototype under development is LLM-powered, the first technological choice

concerned which LLM to use. The factors that determined the choice of LLM were performance,

cost and ease of implementation. Several benchmarks have been developed to evaluate the

performance of a LLM, such as HELM (Holistic Evaluation of Language Models), which is a

research benchmark developed by the Stanford CRFM (Center for Research on Foundation

Models) to assess performance across a variety of prediction and generation scenarios, Open

LLM leaderboard by HuggingFace, which is a leaderboard for open source LLM evaluation

3 https://www.integrate.io/blog/rest-api-standards/
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across 4 benchmarks - MMLU, TruthfulQA, HellaSwag and AI2 reasoning, and Chatbot Arena

by LMSys, which is a benchmark utilising an Elo-derived ranking system, aggregated over

pairwise battles [26].

However, there is no widely used benchmark for evaluating performance of LLMs as data

annotators [26]. For this thesis a technical report by Refuel [26] was used to find a LLM with the

best tradeoff between label quality and cost. The report evaluated the performance of 6 LLMs,

namely Text-davinci-003, GPT-3.5-turbo, GPT-4, Claude-v1, FLAN-T5-XXL, PaLM-2 for

labelling datasets. The report identified that the top 3 LLMs with the best tradeoff between label

quality and cost were FLAN-T5-XXL, PaLM-2 and GPT-3.5-turbo, which were further

considered for the purpose of this study. An additional investigation of the three LLMs revealed

that FLAN-T5-XXL requires self-hosting, which increases the complexity of developing the

solution. PaLM-2 and GPT-3.5-turbo offer a paid API, which is easier to implement than a

self-hosted LLM. As the performance of the 2 models is similar, where GPT-3.5-turbo generates

better quality labels compared to PaLM-2 in 5 out of 10 datasets, while the cost per label of

PaLM-2 is ~70% higher [26], the choice to use GPT-3.5-turbo was made.

In addition, during development, the decision to include GPT-4 as an additional option was

made. This choice was made to better evaluate GPT-3.5-turbo, and, should GPT-4 noticeably

outperform GPT-3.5-turbo in testing, GPT-4 would be kept as a primary selection, regardless of

the fact that it has a higher cost per label.

3.3.2 Web Service

A RESTful web framework was used to develop a HTTP-based API for accessing the web

service. The choice of framework was FastAPI - a “web framework for building APIs with

Python 3.8+ based on standard Python type hints” [27], as according to independent benchmarks

by TechEmpower, FastAPI is considered as one of the fastest Python frameworks available, only

below Starlette and Uvicorn [28]. In addition to being one of the most performant Python

frameworks, the author’s previous experience with it contributed to this decision. FastAPI is

built upon Starlette, which itself is built upon Uvicorn, which explains the differences in

performance as this hierarchical architecture inherently introduces additional layers of

abstraction, resulting in increased overhead [28]. But as an added benefit, FastAPI provides more
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features on top of Starlette, such as data validation and serialisation that are essential to building

APIs [28]. By using a higher-level framework such as FastAPI, development time is saved and

similar performance to a lower-level framework, such as Starlette, can be achieved as features

missing in Starlette would have to be developed manually [28]. In addition, OpenAI (the

company that offers the GPT-3.5-turbo and GPT-4 models) provides official Python bindings for

using their models [29], which makes using a Python-based framework convenient.

3.3.3 Graphical User Interface

When making a decision about a graphical user interface, a choice in favour of one of two

options should be made, namely a desktop application or a web application. A front-end web

application as the graphical user interface was chosen to facilitate a more seamless user-testing

experience. The decision was influenced by several factors. Notably, web applications offer the

advantage of immediate accessibility without the need for installation, ensuring users can swiftly

engage with the application across different devices and operating systems [30]. While it's

acknowledged that web applications rely on an internet connection, which could be perceived as

a limitation [30], usage of the LLM requires an internet connection regardless. Therefore, this

potential drawback becomes irrelevant in the context of this study.

Node.js and React stand as two of the most used front-end web frameworks globally [31].

Node.js is an open-source JavaScript runtime environment that facilitates the development of

servers and web applications [32]. Conversely, React is described as a “library for web and

native user interfaces” [33]. Given that Node.js is predominantly tailored towards API creation,

while React is renowned for its prowess in creating user interfaces [34], the decision to use React

was made due to its better alignment with the project’s requirements. Additionally, the author’s

prior experience with React further bolstered its selection.

3.3.4 Machine Translation Service

For this project, the criteria for choosing a machine translation service was that it must be

accurate and have an accessible API. According to research conducted by Intento [35], DeepL4

emerged as the top-performing neural machine translation service. DeepL offers a free, although

4 https://www.deepl.com/translator
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limited, access plan to access their API. Additionally, the existence of an official Python library

maintained by DeepL5 facilitates its convenient integration into the application. Considering

these factors, the decision to use DeepL as the project’s machine translation service was made.

Although Google Translate was initially considered during the project's early stages, a

comparative analysis revealed that DeepL consistently delivered more accurate translations. This

performance disparity ultimately solidified DeepL as the preferred choice for the project.

3.3.5 Cloud Provider

When selecting a cloud provider, the primary criteria were cost-effectiveness and ease of

application deployment. For this project Vercel was chosen. Vercel is a cloud-based platform

specifically tailored for hosting static sites and serverless functions, offering developers a

streamlined process in developing and launching web projects [36]. Vercel offers the ability to

run back-end code as serverless functions [37]. A serverless function embodies business logic

that operates without retaining data (stateless) and has a temporary lifespan, being created and

then terminated [38]. These functions persist for short durations, mere seconds, and are intended

to be triggered by a specific condition, such as an user making a request. Given that the web

service does not need to retain data and only needs to run upon a request, the utilisation of

serverless functions was deemed aligned with the project. In addition, Vercel offers a free tier

and its straightforward deployment process further solidified its suitability for the project.

5 https://github.com/DeepLcom/deepl-python
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4. Implementation
In this chapter, implementation of the dataset tagger prototype is presented. First, implementation

of the prototype back-end is presented, with subsequent presentation of the front-end. Finally, the

process of hosting the application is presented.

4.1 Back-end

The back-end of the developed prototype consists of 4 main modules: (1) API endpoint, (2)

OpenAI service, (3) translator service and config module (4), each playing its own crucial role:

● API endpoint accepts requests and validates received data from the user. The data

consists of the first 10 rows of a to-be tagged dataset, including its header row;

● OpenAI service handles interfacing with OpenAI API. It creates a system prompt,

appends data received from the API endpoint to an user prompt and sends both messages

to the LLM. It, in turn, receives a response from the LLM with tags (generated by the

LLM in English);

● Translator service handles interfacing with DeepL API. It takes tags received from

OpenAI service and translates them to another language, which within the context of the

thesis is Estonian;

● Config module handles loading environment variables into the application. The

necessary environment variables for the back-end application to function are front-end

url, OpenAI API key and DeepL API key.

In addition, the back-end project contains a requirements file for required Python packages and a

Vercel configuration file for the prototype application deployment purposes. The required Python

packages for the project are  fastapi, pydantic, pydantic-settings, python-multipart, uvicorn,

openai, deepl and all dependencies of the preceding packages. All parts of the developed

prototype are available in a Github repository6 (also in Appendix I).

In subsequent subchapters each module is presented in more detail.

6 https://github.com/kevinkliimask/gpt-tagger
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4.1.1 API Endpoint

The API endpoint accepts data sent via HTTP POST method. Furthermore, the endpoint is

mapped to the “/” route, also known as the root route. As there are no other endpoints in the

application, it is sufficient to accept requests only on the root route.

Received data is validated to prevent unexpected behaviours in the application. The API

endpoint accepts a body consisting of a matrix, where the matrix represents data from a dataset.

In addition, the endpoint accepts count and model as query parameters from the user. These

determine how many tags the LLM should generate and which LLM model should be used,

respectively. The default values for these parameters are 5 tags and gpt-3.5-turbo model,

correspondingly. The validation logic sets the following rules for the received data:

● length of data in the request body, which represents the number of rows of a dataset, must

be a maximum of 10 lines;

● count should be in the range of 3 to 10;

● model should be either gpt-3.5-turbo or gpt-4.

If any of the validations fail, a HTTP exception is returned as a response and is shown to the

user, specifying the nature of the error (see Figure 2).

Figure 2. API endpoint and data validation logic.
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4.1.2 OpenAI Service

The OpenAI service defines a function handle_tagging that uses OpenAI API to generate tags

for a dataset. Communication with OpenAI API is handled by OpenAI Python library. The

function takes a list of records from a dataset, the number of tags to generate, and the model to

use as input parameters, all provided by the user. The function builds messages to send to the

OpenAI API, formats the data into a user message, sends the messages to the API, retrieves the

generated tags, splits them into English tags, and then translates them into Estonian using

translator service (whose operation is described in the next subchapter). Finally, it returns a

dictionary containing both English and Estonian tags (see Figure 3).

Figure 3. OpenAI service logic.

4.1.3 Translator Service

To ensure tags are generated in a language other than English, such as Estonian, as is the case for

this study, translator service is used. The service defines a function translate_text that uses

DeepL API to translate tags originally generated by the LLM. Interfacing with DeepL API is
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handled by the DeepL Python package. The function accepts a list of tags, source language and

destination language as input parameters, which in this case are English and Estonian,

respectively. The function translates every string in the input list and returns the translated strings

as a list (see Figure 4).

Figure 4. Translator service logic.

4.1.4 Config module

The config module defines a Settings class that inherits from BaseSettings provided by Pydantic7

- a library for data validation and settings management. It specifies the environment variables

required for the application, namely frontend_url, chatgpt_api_key, and deepl_auth_key. Then, it

creates an instance of the Settings class to load the values of these environment variables (see

Figure 5). This approach ensures that the application's settings are correctly loaded and validated

from the environment. Additionally, this setup enables anybody to run the application and use

their own environment variables seamlessly.

Figure 5. Config module.

7 https://docs.pydantic.dev/latest/
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4.2 Front-end

The front-end architecture is centred around a single React component named App, functioning

as the primary entry point for the application.

4.2.1 Dependencies

The application's required packages are defined in a package.json file. For a React app to

operate, the main dependencies are react, react-dom and react-scripts. In addition, the developed

React application also makes use of the react-drag-drop-files package to handle file uploads

through drag-and-drop functionality. When starting the app, the environment variable

REACT_APP_BACKEND_URL must be defined to specify the backend server’s URL.

4.2.2 State Management

The useState hook from React is used to manage component state. The App component utilises

the useState hook to manage states of tags, selectedNumberOfTags, selectedModel, error, and

isLoading (see Figure 6). These states are essential for tracking the uploaded file, selected

parameters, error messages, and loading status.

Figure 6. App state variables.

4.2.3 File Upload and Tag Generation

The handleChange function is invoked upon uploading a file. It utilises the readCsv utility

function to extract data from the uploaded file. The readCsv utility function parses the CSV file

uploaded by the user, preparing the data for transmission to the backend. This function accepts a

single parameter file, representing the uploaded CSV file, and returns a Promise resolving to an

array containing the first 10 rows of the parsed CSV file data (see Figure 7). Parsing CSV data in

24



the front-end offers the advantage of bypassing the need to transfer large files to the back-end for

processing. Consequently, this approach eliminates the need for a size limit on file uploads, with

the maximum size being solely dictated by the browser (for instance, in Chrome, the limit is

4GB).

Figure 7. readCsv utility function.

Upon successful CSV file reading, the postFile function sends the parsed data along with

selected parameters (selectedNumberOfTags and selectedModel) to the server for tag generation.

The postFile function handles the transmission of data to the backend server for tag generation. It

accepts the following parameters:

● data, which represents the first 10 rows of the uploaded CSV;

● numberOfTags, which is the number of tags the user has chosen to be generated by the

LLM;

● model, which is the LLM that the user has chosen to be used for tag generation.

The postFile function constructs the backend URL using the provided environment variable

REACT_APP_BACKEND_URL, appending query parameters for count (number of tags) and

model. It then performs a POST request to the constructed URL using the JavaScript fetch API,

which returns a Promise. Finally, the Promise is resolved and generated tags are extracted from
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the JSON response (see Figure 8). The generated tags are then stored in the component state

(tags), and any errors during the process are captured and displayed.

Figure 8. postFile function.

4.2.4 User Interface

The user interface consists of a card layout containing the application title, parameter selection

dropdowns, file uploader, and sections for displaying generated tags, loading status, and error

messages. Dropdown menus are provided for selecting the number of tags and the model to be

used for tag generation. The react-drag-drop-files library provides a FileUploader component

that enables users to upload files, restricting them to only CSV file types (see Figure 9).
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Figure 9. Front-end application interface.

The component dynamically renders elements based on the current state. For example, it displays

generated tags if available, shows loading indicators during file processing, and renders error

messages if any errors occur (see Figure 10 & 11).

Figure 10 & 11. Successful file upload and unsuccessful file upload.

The application's styling is maintained through CSS, with style rules defined in the App.css file.

These styles are designed to offer users a clean and intuitive layout, enhancing the overall

interaction experience.
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4.3 Hosting

Vercel facilitates automatic deployments triggered by changes to the respective front-end or

back-end folders within the main branch of the source code’s repository. Both the front-end and

back-end source code are hosted in a single repository. A repository that contains multiple

projects, such as the back-end and front-end, is called a monorepo [39]. The deployment of the

application on Vercel is separated into 2 different Vercel projects: gpt-tagger and

gpt-tagger-frontend. This is Vercel’s recommended approach to deploying applications that use a

monorepo [40].

In the case of the back-end project (gpt-tagger), a custom vercel.json configuration file is used to

define information for Vercel to set up a Python runtime when deploying. For the front-end

project (gpt-tagger-frontend), no configuration file is needed as Vercel can natively handle the

configuration for a React application.

Vercel allows for the definition of environment variables specific to each project. As such, all

necessary environment variables are defined for both projects inside the Vercel platform. The

link to the hosted application can be found in Appendix II.
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5. Evaluation of the Prototype

This chapter presents the evaluation of the prototype application developed within this study. The

primary objectives of this testing were to assess the application's functionality, relevancy of

generated tags, the quality of translations from English to Estonian, user-friendliness, and gather

general feedback for further improvement of the prototype. In the following subchapters, the

methodology and results of the evaluation are presented.

5.1 Prototype Evaluation Methodology

The evaluation of the prototype application involved conducting usability testing through a

Google Forms survey. The survey was designed with three sections, each aimed at assessing

specific aspects of the prototype, which are described in the further subchapters. Before taking

the survey, participants were introduced with a brief description of the survey purpose (incl., its

objective, brief overview of the process, and the length) and were provided with a link to the

prototype, as well as informed about consent for further use of collected data, specifying that the

first 10 rows of the dataset uploaded are processed according to OpenAI's enterprise privacy8.

See Appendix III for the survey in its complete form.

5.1.1 Section 1: Tagging Accuracy and Parameters Evaluation with Predefined
Sample Dataset
The first part of the survey aimed to evaluate tagging accuracy of the prototype with pre-defined

sample datasets. Participants were provided with instructions on the prototype use and links to

two sample datasets sourced from the Estonian Open Data Portal. Participants were asked to try

out the prototype by following the instructions on its use provided within the survey, by

uploading respective datasets to the prototype. One of these datasets was about ongoing clinical

trials in Estonia9 and the other was about vehicle statuses in Estonia10. In the survey, respondents

were required to answer the same set of questions for each dataset provided.

10 https://avaandmed.eesti.ee/datasets/soidukite-staatused-eestis
9 https://avaandmed.eesti.ee/datasets/kaimasolevad-kliinilised-uuringud-eestis
8 https://openai.com/enterprise-privacy
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The first question was “How relevant are the generated tags to the actual content of the

datasets?”. Participants were asked to assess the relevance of the generated tags to the actual

content, constituting an acceptability task, where answers were defined using 5-point Likert

scale, where 1 point corresponds to “not relevant at all” and 5 to “very relevant”. If a low score

was assigned, the participant was followed up with an additional question asking for a

justification for this score.

Then, participants were asked to evaluate how the parameter “number of keywords” affects the

relevancy of generated tags. The answers were four predefined options, namely “Yes, improves

relevancy significantly”, “Yes, improves relevancy slightly”, “No, does not improve or worsen

relevancy” and “No, rather worsens relevancy”. If a negative answer was given, the respondent

was followed up with the open-ended question “If tags relevancy worsens, how and at which

number of keywords?”. Afterwards, the participants were asked which LLM produced more

relevant tags with options being “GPT-3.5-turbo”, “GPT-4” and “Both had results of similar

relevancy”.

Finally, the respondents were asked to assess the combination of different parameters, with the

question being “Which combination of the options "number of keywords" and "model" seemed to

produce the most relevant results?”. This question was open-ended.

Additionally, Estonian speakers were asked to assess the accuracy of Estonian translations of

tags. As being a native speaker of Estonian was not a mandatory prerequisite for participating in

the survey, this question was optional.

5.1.2 Section 2: Evaluation of Tagging Process with User Dataset

The second section of the survey provided participants with the opportunity to try the prototype

application with their own datasets. While this section was optional, participants were

encouraged to test the application with a dataset of their own choice, while providing links to

Estonian Open Data Portal and European Data Portal, from which open dataset could be selected

by them. After testing their dataset, participants were asked to share any observations or

feedback they have regarding the tagging process. This feedback was collected to map potential

areas of the prototype for improvement.
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5.1.3 Section 3: General Feedback on the Prototype

The third section of the survey focused on gathering general feedback on the prototype

application. Participants were asked to provide feedback on the overall user-friendliness of the

application, whether they would consider using it in their workflow (developing questions

following the Unified Theory of Acceptance and Use of Technology (UTAUT)11 and Technology

Acceptance Model (TAM)12 constructs for evaluating technology adoption), and if they

encountered any prototype operation errors or issues during testing.

In the first question of this section, the participant was asked to rate how user-friendly the

prototype is, representing an acceptability task, with the answers defined using a 5-point Likert

scale, where 1 point corresponds to “Not user friendly” and 5 points corresponds to “Very user

friendly”. If a low score was given, the respondent was followed up with an open-ended question

to specify why they found the prototype to not be user friendly.

Then, the participant was asked to rate the usefulness of the prototype, also constituting an

acceptability task using a 5-point Likert scale, where 1 point corresponds to “Not useful at all”

and 5 points corresponds to “Very useful”. If the respondent found the prototype to be

insufficiently useful, they were followed up with a question asking them to justify their answer to

the previous question.

The participant was then asked if they would use the prototype for the purpose of tagging

datasets and if they ran into any unexpected behaviour or issues when using the prototype, with

both questions being closed-ended with predefined answers “Yes” or “No”. If the respondent did

run into unexpected behaviour or issues, they were followed up with an open-ended question

asking them to describe the issue(s).

Finally, participants were given the opportunity to offer suggestions for improvement or features

they would like to see implemented in future iterations of the application.

12 https://pubsonline.informs.org/doi/10.1287/mnsc.46.2.186.11926
11 https://www.jstor.org/stable/30036540
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5.2 Evaluation Results

The survey was distributed through social media, emailing to Estonian Open Data Portal

representatives and personal channels, gathering in total 22 responses. The survey was targeted at

individuals who actively work or engage with datasets within their professional or personal

domains.

5.2.1 Tagging Accuracy and Parameters Evaluation with Predefined Sample

Datasets

The first mandatory question was “How relevant are the generated tags to the actual content of

the datasets?”. For both datasets, most respondents answered with a value of 4 or 5 (see Figure

12) with the average value being 4.4, i.e. predominantly relevant. There were no answers for the

value 1 or 2. In cases where respondents found tags to be less relevant, they were asked the

optional follow-up question on the reasoning behind low relevance score. Answers to this

question revealed that while most tags were relevant to the dataset, some were overly specific,

failing to encapsulate the broader essence of the datasets.

Figure 12. Ratings for relevancy of generated tags, based on answers from both datasets.

The second mandatory question was “Does changing the "number of keywords" option affect the

relevancy of the generated tags?”. About 74% of respondents reported that changing the number
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of tags to be generated improves relevancy with the largest share reporting that it improves

slightly (see Figure 13). The question was succeeded by an optional question “If tags relevancy

worsens, how and at which number of keywords?”. From the obtained answers, a consensus

emerged that increasing the number of tags generally enhanced accuracy or provided

opportunities to discern more precise tags amid less accurate ones.

Figure 13. Does changing the “number of keywords” option affect relevancy of generated tags,

based on answers from both datasets.

The third required question was “Which model produced better tags?”. The majority of

respondents (65%) highlighted that the best performing model was “GPT-4” (see Figure 14).
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Figure 14. Which model produced better tags, based on answers from both datasets.

The final mandatory question in the first section was “Which combination of the options "number

of keywords" and "model" seemed to produce the most relevant results?”. The prevailing trend

from these responses highlighted that the combination of GPT-4 and utilising five or more

keywords appeared to consistently yield the most relevant outcomes for respondents.

Finally, Estonian speakers were asked to assess the accuracy of the Estonian tag translations.

Most answers accumulated to the values of 4 and 5 (see Figure 15). Nobody answered with the

values of 1 or 2.
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Figure 15. Accuracy of Estonian tag translations, based on answers from both datasets.

5.2.2 Evaluation of Tagging Process with User Dataset

Despite this part of the survey being optional, 12 respondents answered the question of this

section. A variety of different answers were provided by participants, including comments that

would be classified as feedback for further improvement of the prototype. Answers that can be

categorised as feedback will be elaborated in chapter 5.2.3. Otherwise, several participants found

that GPT-4 generally performs better with generating tags, also it was pointed out that in some

rare cases the LLM returns incomprehensible output instead of relevant tags. Furthermore,

several comments were made about the Estonian translations differing when using GPT-3.5-turbo

and GPT-4, although these models were not used for translation, as translation service was used

to translate the English tags to Estonian (refer to chapter 3 and 4). As such, an oversight that can

be derived from this feedback is that users should have been informed that translations are

performed by a separate service.

5.2.3 General Feedback on the Prototype

The first question of this section was “How user-friendly is the prototype?”. 12 (54.5%)

participants gave it a score of 4, whilst only 2 (9%) respondents gave the highest score of 5 (see

Figure 16). For the justification of lower user-friendliness scores, participants pointed out the

following concerns:

● files had to be reuploaded any time the user wanted to change parameters such as

“number of keywords” or “model”;

● prototype was limited to only one file type, namely .csv;

● file size limit was not specified.

Regarding the latter - absence of a specified size limit, the prototype was designed to operate

without imposing an arbitrary file size restriction (refer to chapter 4.2.3), whereas users were not

informed that there is no size limit, which caused this comment.
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Figure 16. User-friendliness of the prototype.

The second question was “How useful is the prototype?”. 12 (54%) respondents rated the

usefulness of the prototype with the score 4, while 6 (27%) participants found it to be very

useful, thus giving it a score of 5 (see Figure 17). Respondents gave the following reasons for

lower usefulness scores:

● the LLM has a hallucination problem, which means it sometimes produces irrelevant

tags;

● it is a standalone tool, it would be more useful if it was integrated into an open data

portal;

● multiple different combinations of “number of keywords” and “model” must be tried in

order to find optimal tags.
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Figure 17. Usefulness of the prototype.

Then, participants were asked if they would use the prototype for the purpose of tagging datasets.

18 (82%) people answered “Yes”, while 4 (18%) answered “No”. The final mandatory question

asked the participants if they encountered any unexpected behaviour or issues in the prototype,

with 19 (86%) answering “No” and 3 (14%) answering “Yes”. The main issue users encountered

was the prototype generating a different number of tags than was actually selected in the

“number of keywords” option. Finally, participants left the following suggestions for further

improvement of the prototype:

● possibility to approve or disprove the tags coming from the model;

● improvement of tagging accuracy;

● option to export results.

All of the points made in the question about rating the user-friendliness of the prototype can be

considered as further improvements of the prototype. They are discussed in the next chapter.
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6. Discussion

This chapter provides an overview of the results of the thesis. The feedback received from users

is discussed and potential future improvements of the developed solution are outlined.

6.1 Feedback

The prototype developed within this thesis garnered positive feedback from participants in

several key areas. Firstly, respondents generally rated the relevance of the generated tags highly,

with an average rating of 4.4 out of 5. This indicates that the prototype effectively captured the

essence of the datasets. Moreover, a significant portion of participants reported that adjusting the

"number of keywords" option improved tag relevancy, suggesting flexibility in fine-tuning the

tagging process. Additionally, the majority of respondents favoured the "GPT-4" model for its

superior performance in tag generation compared to GPT-3.5-turbo that was originally selected

for its superiority over other LLMs (refer to chapter 3.3.1). The combination of "GPT-4" with

five or more keywords emerged as the most effective strategy for producing relevant tags

consistently. Furthermore, Estonian speakers generally expressed satisfaction with the accuracy

of the Estonian tag translations.

Despite the positive reception, user feedback identified areas for improvement in the prototype.

Notably, some participants encountered instances, where the application produced irrelevant tags

or incomprehensible output. In addition, some feedback highlighted that certain tags were overly

specific, failing to encapsulate the broader content adequately. Furthermore, feedback regarding

user interface and functionality emphasised concerns, such as the need to reupload files when

adjusting parameters, limitations in supported file types and the standalone nature of the tool.

6.2 Future Improvements

In order to improve the usefulness of the application, issues with tagging accuracy (although

pointed to by a minority of participants) must be addressed. These issues could be addressed by

refining the initial system prompt provided to the LLM or by supplying more than just the first

10 rows of dataset content for the LLM to analyse. Although experimentation has shown that 10
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rows is one of the lowest thresholds that still allows the LLM to generate relevant tags, where

every additional row provided for analysis would increase the computational resources required,

thus making the process more expensive (refer to chapter 3.1), increasing the amount of data the

LLM processes allows it to make better generalisations based on the dataset.

Furthermore, feedback regarding user interface and functionality emphasised concerns such as

the need to reupload files when adjusting parameters, limitations in supported file types and the

standalone nature of the tool. These recommended improvements to the user interface can be

implemented in the future to enhance user experience, particularly focusing on the interaction

with the file upload logic. This includes expanding the file type support to common formats such

as JSON, HTML, XLS, XLSX, and XML, and ensuring parameter values can be changed

dynamically without the need to re-upload the dataset. The latter, namely, stand-alone nature of

the tool stressed by evaluators, however, is due to the fact that the evaluated artefact is a

prototype, which was made publicly available by hosting it as a stand-alone tool exclusively for

its testing purposes. As such, once it is improved to meet evaluators expectations, it is expected

to be integrated with existing open data portals, thereby broadening accessibility and utility for a

wider audience.

39



Conclusion
This thesis aimed to address the challenge of poor data findability and metadata quality

associated with open datasets. The principles of open government data and FAIR were explored

and general data findability issues were presented, particularly those linked to dataset tags. An

analysis of the Estonian Open Data Portal was conducted, which unearthed prevalent issues with

data findability in the portal.

During the development of the thesis, a prototype application was developed that automates the

tagging process by employing large language models - GPT-3.5-turbo and GPT-4. The

development of such a tool presents significant benefits for both data publishers and consumers.

Automatic tagging can reduce the risk for data publishers of publishing datasets that lack tags,

which is a common issue on portals where tag inclusion is not mandatory, e.g., Estonian OGD

portal, where 11% datasets have no associated tags and 26% datasets have only one tag assigned

to them. Additionally, this automation minimises the association of datasets with incomplete or

inaccurate tags. As a result, it improves the findability and accessibility of datasets, facilitating

easier access for users.

The application was developed as a web service. This approach was chosen to ensure that the

project is not limited to the Estonian Open Data Portal or OGD portals in general, making it

environment-agnostic and interoperable with other products. The web service was implemented

using FastAPI, an efficient framework for building APIs. Additionally, a web-based user

interface was created using React to facilitate usability testing. The prototype was deployed into

Vercel cloud, which spared users from the need to set up the application locally.

In assessing the prototype, a survey was administered, garnering 22 responses. Participants

assessed various aspects of the application through its thorough examination, including the

relevance of generated tags, user-friendliness, and overall usefulness, which were generally

positively assessed by them. The feedback provided by respondents was used to identify areas

for future improvement of the prototype.

The overarching goal of this thesis was realised - automatic tagging demonstrated its potential of

providing relevant tags for datasets, thereby serving as a valuable tool for data publishers. In
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doing so, this thesis contributes to the realm of open data, paving the way for improved data

findability and reusability.
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Appendix

I. Prototype Source Code

The source code of the prototype application can be found on the following link:

https://github.com/kevinkliimask/gpt-tagger

II. Prototype Application

The prototype application can be found on the following link:

https://gpt-tagger-frontend.vercel.app/

III. Survey

Introduction

Automated datasets tagging for an improved dataset findability

Hello!

My name is Kevin Kliimask. I am a 3rd year Computer Science student currently working on my

Bachelor's thesis. The goal of my thesis is to improve data findability on open government data

portals.

I've created a prototype website where you can have a Large Language Model (LLM)

automatically tag your dataset. You can choose how many tags you wish to receive for the

dataset and which model to use for the tagging.

I would like to ask you to evaluate the developed prototype by filling in this survey. The

prototype is available at https://gpt-tagger-frontend.vercel.app/. Filling the survey is expected to

take about 10-15 minutes

NOTE: Datasets uploaded to the website are not stored by the website's author. Only the first 10

rows of the dataset uploaded are processed according to OpenAI's enterprise privacy.

* Indicates required question
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First section (questions repeat twice for each dataset)

Please answer the following questions based on the results retrieved from the website by

using 2 sample datasets.

The first sample dataset can be found and downloaded from here:

https://avaandmed.eesti.ee/datasets/kaimasolevad-kliinilised-uuringud-eestis (scroll down and

click "Download" for the variant with CSV format)

The second sample dataset can be found and downloaded from here:

https://avaandmed.eesti.ee/datasets/soidukite-staatused-eestis (scroll down and click "Download"

for the first variant in the table)

How relevant are the generated tags to the actual content of the datasets? You can compare

them to the title, description and keywords of the dataset.*

5-point Likert scale, where 1 point corresponds to “not relevant at all” and 5 to “very relevant”

If the generated tags were not relevant, why?

Open-ended question

Does changing the "number of keywords" option affect the relevancy of the generated

tags?*

● Yes, improves relevancy significantly

● Yes, improves relevancy slightly

● No, does not improve or worsen relevancy

● No, rather worsens relevancy

If tags relevancy worsens, how and at which number of keywords?

Open-ended question

Which model produced better tags?*

● GPT-3.5-turbo

● GPT-4

● Both had results of similar relevancy
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Which combination of the options "number of keywords" and "model" seemed to produce

the most relevant results?*

Open-ended question

(for Estonians) How accurate were the Estonian tag translations?

5-point Likert scale, where 1 point corresponds to “inaccurate” and 5 to “accurate”

Second section

(Optional) Give feedback on the prototype based on your own selected datasets.

You can use any csv format datasets. For example, you can find datasets to use on the Estonian

open data portal (https://avaandmed.eesti.ee/datasets) or on the European data portal

(https://data.europa.eu/data/datasets).

Did you make any observations based on your experimentation you would like to share

with us?

Open-ended question

Third section

General feedback on the prototype

How user-friendly is the prototype?*

5-point Likert scale, where 1 point corresponds to “not user friendly” and 5 to “very user

friendly”

If you found it to be insufficiently user-friendly, please specify

Open-ended question

How useful is the prototype?*

5-point Likert scale, where 1 point corresponds to “not useful at all” and 5 to “very useful”

If you found it to be insufficiently useful, please specify

Open-ended answer

Would you use the prototype for the purpose of tagging datasets?*
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● Yes

● No

Did you encounter any unexpected behaviour or issues in the prototype?*

● Yes

● No

If you answered yes, what did you run into?

Open-ended question

Do you have any suggestions to improve the prototype?

Open-ended question
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