
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Kustu Künnapas

Orienteering Event Registration Software: From

Prototype To Web Application

Bachelor's Thesis (9 ECTS)

Supervisor: Dietmar Pfahl, PhD      

     



Orienteering Event Registration Software: From Prototype To Web

Application

Abstract:

This Bachelor's thesis aimed to develop a user-friendly web application for managing

orienteering event registration. The application was designed using the hexagonal

architecture, which promotes modularity and adaptability. Java was used for the back-end,

React for the front-end, and PostgreSQL as the database, and the application was developed

in collaboration with the orienteering event organizer Seiklushunt to meet user needs and

provide a reliable system.

The thesis describes the software development process and real-life testing during an

orienteering event. As a result robust and adaptable system suitable for modern orienteering

events was created. The thesis also discusses potential future development.

Keywords: Software development, Java, React, PostgreSQL, Orienteering,

CERCS: P175 Informatics

Orienteerumispäevakute registreerimise tarkvara: prototüübist

veebirakenduseni

Lühikokkuvõte:

Selle bakalaureusetöö eesmärk oli arendada kasutajasõbralik veebirakendus

orienteerumispäevakute registreerimise haldamiseks. Rakenduse loomisel lähtuti

kuusnurksest arhitektuurist, mis toetab modulaarsust ja kohandatavust. Java’t kasutati

tagarakenduse, React’i esirakenduse ja PostgreSQL’i andmebaasina ning rakendust arendati

koostöös orienteerumisürituste korraldaja Seiklushunt'iga, et rahuldada kasutajate vajadusi ja

pakkuda usaldusväärset süsteemi.

Töös käsitletakse tarkvaraarenduse protsessi ning rakenduse testimist orienteerumispäevaku

ajal. Töö tulemusena loodi paindlik süsteem, mis sobib tänapäevastele orienteerumis

-päevakutele. Lisaks arutatakse töös potentsiaalseid edasisi arendusvõimalusi.

Võtmesõnad:Tarkvaraarendus, Java, React, PostgreSQL, Orienteerumine

CERCS: P175 Informaatika

2



1. Introduction 5

2. Background 6

2.1 Background of orienteering 6

2.1.1 Timekeeping 6

2.1.2 Stebby 7

2.2 Challenges during event organizing 8

2.3 Current prototype 8

2.3.1 Features of the prototype 9

2.3.2 Issues 9

2.3.3 Functional limitations 10

2.3.4 Planned improvements 10

3. Methodology 12

3.1 Steps to solution 12

3.2 Writing methodology 13

4. Results 14

4.1 Identifying features for the new application 14

4.1.1 Lifted features 14

4.1.2 Functional requirements 15

4.2 Used technologies 16

4.2.1 Back-end technologies 16

4.2.2 Front-end technologies 17

4.2.3 Database 17

4.3 Web application development 18

4.3.1 Design pattern 18

4.3.2 Database design and relations 19

4.3.3 Programm logic diagram 20

4.3.4 Technical description 20

4.3.5 Unit testing 28

3



4.3.6 Result screenshots 30

4.4 Deploying the web application 31

4.5 Web application testing 32

5. Discussion 34

5.1 Technical challenges 34

5.2 Suggestions for further improvements 34

5.2.1 Planned features 35

5.2.2 Additional features 36

5.2.3Maintain and update the web application 37

6. Conclusion 39

References 40

Appendix 42

I. Source code 42

II. Database design 43

III. createTicket method 44

IV. SIME script 45

V. Start page 46

VI. Registration components 47

VII. Multi-use ticket table 48

VIII. Admin components 49

License 50

4



1. Introduction

Orienteering is a popular outdoor activity that involves navigating through a terrain using a

map and a compass. It is often used for fitness, recreation, and competitive purposes.

Orienteering events attract many participants, ranging from casual walkers to serious athletes.

To manage these events, organizers require a registration system that can handle participant

registration, payment processing or checking, and timekeeping devices management. The

idea came from the author's own problems while organizing orienteering events.

In recent years, there has been a growing trend toward using digital technologies to

streamline the registration process for orienteering events. However, most orienteering clubs

still manage participants using paper and pen. As a result, there is a need for modern and

customizable orienteering event registration software.

This bachelor thesis aims to develop orienteering event registration software that is scalable

and accessible through a web application. The software will be designed to replace an

existing prototype developed for a local orienteering event organizer, Seiklushunt. The new

software will improve upon the prototype by adding new features, enhancing usability, and

ensuring compatibility with modern web browsers.

The work is divided into six chapters. The first chapter is the introduction. The second

introduces the general background of orienteering and the problem by describing the

prototype. The third chapter describes the methods used to solve the problem. The fourth

chapter presents the results, including the technologies used, the final solution, and the

validation process of the completed program, including testing. Chapter five contains the

discussion, including lessons learned and suggestions for further improvements. And sixth

chapter is the conclusion.

5



2. Background

This chapter discusses the background of the problem and examines the existing prototype.

2.1 Background of orienteering
Orienteering is a sport in which the participant, the orienteer, navigates a given route using a

map and compass [1]. Competitions and events can take place in forests or cities, presenting a

unique challenge for the orienteer. Every course and event features different terrains and

checkpoints.

Estonia has two kinds of orienteering events: competitions and evening orienteering events

(EOEs). Competitions, primarily targeting competitive runners, generally take place on

weekends from the end of April until the end of October and can be 1 to 3 days long [2].

EOEs, intended for a broader audience, typically occur weekly on Monday to Thursday, from

April to October, in various locations across Estonia [1,3]. Some clubs hold EOEs all year

round.

The primary distinction between competitions and EOEs lies in the registration process.

Competitions require participants to register in advance, while EOEs allow individuals to

attend the event during the designated start time without prior registration [1].

According to the Estonian orienteering federation's (EOF) 2022 annual report, there were 24

different EOE series with a total of 342 events, more than 6000 unique participants, and a

total of more than 57000 participations [4]. Every orienteer in Estonia has a unique

identification code called the EOF code.

2.1.1 Timekeeping

Each participant has a timekeeping device to record their result, and every checkpoint has a

station that saves time information to the device. There are currently two major timekeeping

systems in the market. The Emit eCard system is used mainly in Scandinavia countries,

Finland, and partly in Denmark, Belgium, and the UK [5]. In contrast, other countries like

Estonia utilize the SPORTident timing system, which relies on a timekeeping device known

as the "SI-Card" [6]. A device called an "SI station" is used to read information from

SI-Cards and transfer it to a computer.

6



A wide variety of event administration and timekeeping software is available1, with most of

them designed for competitions that require additional functionality. Consequently, these

software solutions can be more complex to use and often necessitate the expertise of a

professional timekeeper. In Estonia, RaceManager2 by Tak-Soft is the most popular software

for orienteering competitions, as the developer is Estonian. Tak-Soft also offers SPORTident

Mini Events (SIME)3, the most widely used software for managing small orienteering events

and EOEs, including all the EOEs in Estonia.

SIME streamlines the process of reading out all competitors' information, particularly for

those who have an EOF code or own an SI-Card associated with their EOF code. The

software is designed to efficiently manage competitor data by accepting files containing the

necessary information. This feature allows users to make modifications and establish new

associations between SI-Cards and runners, ultimately simplifying the overall event

management process [7].

2.1.2 Stebby

In Estonia, the government has introduced a tax exception for companies, allowing them to

allocate up to 100 euros per employee per quarter for expenses related to improving

employee health without incurring fringe benefit taxes [8]. To help large companies manage

this benefit, Stebby has stepped in. According to Stebby OÜ (formerly SportID) webpage [9],

this Estonian company, established in 2012, offers an online health and wellness services

platform. The platform provides various services, including online coaching, personalized

nutrition plans, fitness plans, and wellness challenges. Stebby's mission is to make health and

wellness more accessible and affordable for individuals while enabling businesses to support

employee well-being. The company partners with numerous gyms and wellness centers in

Estonia, allowing users to access a wide array of services through the platform. Stebby has

grown in popularity in Estonia and expanded its services to other European countries [9].

Orienteering is a popular activity on the Stebby platform. Around half of the orienteering

series already have their events listed in Stebby, and as more of the participants use that, more

series are expected to be listed there.

3 https://www.tak-soft.com/tooted/sport/sime/index.php
2 https://www.tak-soft.com/tooted/sport/rm/index.php
1 https://orienteering.sport/iof/it/list-of-software-for-orienteering/

7



2.2 Challenges during event organizing

Evening orienteering events are designed to be straightforward, with participants paying for a

map, running the chosen course, and checking out to receive their results. However, several

challenges complicate the organization of these events.

One challenge involves SI-Card ownership. Many orienteers do not have their own SI-Cards,

leading them to rent cards from event organizers. One SI-Card costs around 30 to 70 euros,

depending on the model [10], so organizers should keep track of all rentable cards. Currently,

organizers rely on paper records to monitor who has rented each card and when it was

returned, if at all.

Another challenge comes from the use of multi-use tickets. Many orienteering clubs offer

these tickets to reduce costs for frequent participants and streamline the payment process.

However, tracking these tickets can be difficult, with most clubs resorting to paper records or

trust-based systems.

Additionally, some companies form agreements with EOEs organizers, allowing their

employees to use company benefits to attend events. This partnership creates an added layer

of complexity in managing event participation and attendance.

Lastly, many first-time participants lack an EOF code, which slows down the SI-Card rental

and checkout processes. Organizers must repeatedly collect and record the names of these

participants across multiple systems and paper records, increasing the likelihood of errors.

Moreover, using only a name as an identifier can lead to confusion and duplication, as it may

not be unique.

2.3 Current prototype
The SIE4 software, created by Kustu Künnapas in collaboration with Toomas Roosma, was

developed to tackle the challenges identified in the orienteering event management process.

This project was undertaken during the LTAT.03.003 Object-Oriented Programming5 course

in their first year of studies. The project competed in a Student project contest at the

University of Tartu in 2021 and got first place in First-year Bachelor's category [11].

5 https://ois2.ut.ee/#/courses/LTAT.03.003/details version 20/21 K PÕ LT
4 https://www.kunnapas.com/sie/

8

https://ois2.ut.ee/#/courses/LTAT.03.003/details


The technology stack used for the application includes Java for the back-end, JavaFX for the

front-end, and Google Sheets as the database, with additional text files serving as data

sources.

2.3.1 Features of the prototype

The prototype for the orienteering event management application was created in collaboration

with the non-profit organization Seiklushunt and incorporating domain knowledge, the

prototype's features were tested during Seiklushunt's EOEs. Client expectations for the

project were collected through interviews and text conversations conducted before and during

the development of the prototype.

The main features of this prototype include:

● Communication with the SI station using GecoSI6

● Registration view

○ Prefilling forms based on SI-Card number and available data

○ Name/EOF code changing with data matching and prefilling

○ Displaying ticket options and preselecting. (multi-use tickets, company

agreement)

○ Choosing a number of tickets to use

● Reading/writing data from/to Google Sheets7 and information files

● Preparing a file for SIME with runners' information

The testing process led to numerous changes and improvements in the prototype. However,

some issues could not be resolved due to the technical complexity of testing the program and

the difficulty of obtaining the required physical hardware.

2.3.2 Issues

The existing SIE software prototype faces several issues that prevent it from attaining

complete functionality.

Firstly, the development process was constrained by a limited understanding of programming

concepts, resulting in a codebase that is difficult to read, extend, and maintain. This impacted

the overall efficiency and adaptability of the software, making it challenging to address

evolving requirements and implement necessary improvements.

7 https://www.google.com/sheets/about/
6 https://github.com/sdenier/GecoSI

9



Secondly, the software was designed as a monolithic Java application, which is not optimal

for front-end desktop implementations. This architecture choice led to scalability and

maintainability challenges, as well as hindered the user experience in desktop environments.

Thirdly, the process of updating the software is cumbersome, as it requires clients to obtain a

new version of the application after each update. The delivery of updated executables is

complex and time-consuming for both the developers and the end-users.

Lastly, the program lacks comprehensive automated testing coverage, impeding the addition

of new code and the detection of issues, especially considering the numerous edge cases that

may arise. As a result, the consequences of incorporating new code remain uncertain.

2.3.3 Functional limitations

The SIE software prototype demonstrates limited functionality in several aspects.

Firstly, the configuration of the program's parameters relied on a text file, increasing the

possibility of errors. Similar problems occur with data scattering from Google Sheets, as any

input can be written there, which may lead to errors and inconsistencies.

Secondly, the program offered only two views. The initial view facilitated the selection of a

folder to store the data produced by the software. The subsequent view focused on competitor

registration, in which related files were modified and, if required, data updates were reflected

in Google Sheets.

2.3.4 Planned improvements

Based on the issues with the current SIE software prototype, several changes are necessary to

develop a new version called SOE (Streamline Orienteering Events) to make it modern and

user-friendly.

The initial step involves refactoring, restructuring, or rewriting the code to improve

readability, extensibility, and maintainability. Subsequently, the software architecture should

be modified to integrate a modern front-end web application framework, enhancing the user

interface and experience. Lastly, comprehensive and automated testing coverage must be

added to facilitate early issue detection and expedite bug fixes.

To achieve these modifications, the SOE software should be developed using contemporary

web technologies for the front-end web application framework and an appropriate database

10



management system. JavaScript or TypeScript programming languages could be utilized for

the front-end development, as they are modern and supported by a vast developer community.

To address the technical challenges related to software updates and Java version

compatibility, a modern deployment methodology, such as containerization, should be

adopted using popular tools like Docker or Kubernetes. This approach simplifies software

deployment and reduces complexity, making the SOE more accessible to users.

Automated testing coverage should be implemented to ensure the new SOE software is fully

functional by using modern testing frameworks, which are efficient and provide

comprehensive testing coverage.

In conclusion, the SOE should employ modern web technologies, an up-to-date deployment

methodology, and comprehensive automated testing coverage to overcome the issues

associated with the existing SIE software. These improvements are expected to enhance the

user interface and experience, support software maintainability, and shorten the time required

for bug fixes.

11



3. Methodology

Developing the SOE from prototype to web application involves several steps to achieve the

project's objectives. The following steps can be taken to implement the proposed solution.

3.1 Steps to solution

Step 1 - Identify features for the new application:

The goal of this step is to identify features for the new application using the prototype's

features. This involves understanding the limitations and areas for improvement that need to

be addressed in the new version of the software. This step also includes gathering user

feedback on the prototype and prioritizing features based on their importance and impact.

Step 2 - Choose the technology stack:

The goal of this step is to find the appropriate technology stack for the web application. This

includes selecting the programming language, web server, database management system, and

other technologies required for the application's development.

Step 3 - Develop the web application:

The goal of this step is to develop the web application using the chosen technology stack and

design specifications. This involves coding, testing, and debugging the software components

to ensure they function correctly. Regular progress updates and communication with

stakeholders should be maintained throughout this process.

Step 4 - Deploy the web application:

The goal of this step is to deploy the integrated system to a production environment. This

involves setting up the necessary hardware and software infrastructure, configuring the

system, and making it available to users. Additionally, ensure proper security measures are in

place to protect the system and user data.

12



Step 5 - Validate the web application in a real-life scenario:

The goal of this step is to validate the created application in an EOE. This ensures that the

created application is usable and the client validates the functionality. In addition, all the yet

necessary functionality can be communicated so that when the applications going to be used

in one day, it is fully functional and satisfies the customer. Additionally, problems that

occurred during validating are analyzed.

3.2 Writing methodology

For the purpose of reviewing and enhancing the linguistic quality of this thesis, Grammarly

and ChatGPT by OpenAI are used. These tools helped to ensure that the writing was more

coherent and understandable, ultimately contributing to well-presented and polished work. It

is important to note that all suggestions provided by these tools were critically reviewed.

13



4. Results

The results chapter of this thesis presents the outcomes of each step in the development

process of the new version of the SOE. The chapter is divided into sections corresponding to

the steps outlined in the methodology chapter. Each section highlights the key findings and

improvements identified during the respective step. By presenting these results, this chapter

provides a comprehensive overview of the project's progress and the factors that contributed

to the successful development and implementation of the web application.

4.1 Identifying features for the new application

This section focuses on identifying features for the new SOE application. The evaluation

process involved examining the prototype's features, understanding its limitations, and

identifying areas for improvement that need to be addressed in the new web application. The

knowledge gained from this assessment was essential in determining the functional

requirements and guiding the following stages of the project.

4.1.1 Lifted features

The majority of the functional requirements for the new web application remain consistent

with those of the prototype, especially from the client-side perspective. Some features have

been lifted due to low popularity or time constraints.

First, the ability to use multiple tickets per registration has been removed. Users who wish to

use two or more tickets must now register separately for each ticket. This change was made

due to the low popularity of multiple ticket purchases. An analysis of Seiklushunt's multi-use

ticket usage statistics revealed that only 5 out of 513 instances during the first four EOEs of

spring 2023 involved more than one ticket being used at once. As registering separately for

each ticket does not significantly increase the registration time, this adjustment was deemed

acceptable.

Secondly, the implementation of company contracts functionality has been excluded from the

current version, as this feature has limited appeal with the growing popularity of Stebby.

According to the same dataset mentioned earlier, only three companies have used the

company agreement system, accounting for just 20 instances during the first four weeks.

Since excluding this feature does not create an excessive amount of manual work, it has not

been developed in the current version.

14



Thirdly, multi-use ticket buyers without an EOF code will still need to be counted manually

due to the error-prone nature of the process. This issue is not considered significant, as only a

few individuals fall into this category. The dataset indicated that 22 multi-use tickets were

purchased without an EOF code. As the number of such cases is expected to decrease over

time with the creation of new EOF codes, this functionality is not prioritized in the current

version.

Lastly, integrations with Stebby were initially planned but were removed due to time

constraints. Currently, the Stebby API does not support this specific use case, meaning that

direct communication with Stebby is necessary and might require some development on their

end. This can be time-consuming and would require effort from both parties.

Nevertheless, additional requirements have been identified to address the distinct challenges

of transitioning to a web application.

4.1.2 Functional requirements

The functional requirements outlined in this section will serve as a basis for the development

of the new SOE application, with the goal of providing an efficient and user-friendly platform

for orienteering event management. The following functional requirements have been chosen:

a) Front-end tasks:

● Login view

● Registration view

○ Communication with the SI station

○ Prefilling forms based on SI-Card number and available data

○ Name/EOF code changing with data matching and prefilling

○ Displaying ad preselecting multi-use ticket options

○ Showing ticket usage confirmation

○ Viewing multi-use tickets

● Administration view

○ Adding and viewing new events and event series

○ Adding new multi-use tickets

○ Adding new and viewing rental SI-Cards

○ Checking information about rental SI-Cards, including current use

○ Viewing program usage statistics

15



b) Back-end tasks:

● Providing filtered data exchange between the database and front-end

● Adding new data to the database from the front-end

● Preparing runners file for SIME

● Updating information about used tickets and payments

c) SIME script tasks:

● Fetch initial data from database when starting the script

● Updating the runners file periodically fetching new data on top of the initial file.

4.2 Used technologies

The development of the web application utilized a variety of technologies to enable its

functionality. These technologies were selected based on their ability to support the project

requirements and their compatibility with one another. The following section provides an

overview of the technologies used in the development of the web application, including those

used on the front-end, back-end, and database.

4.2.1 Back-end technologies

The back-end technology stack for the web application consists of Java with Spring Boot and

jOOQ. According to Axon’s article by Mykhailo Spirich [12], Java is a popular and widely

used programming language for developing robust and scalable back-end systems. Its

platform independence and wide library ecosystem make it suitable for building complex web

applications [12].

Spring Boot, a popular Java-based framework, was chosen for its ability to accelerate web

application development by providing a set of preconfigured modules and libraries that allow

developers to create web applications without worrying about the underlying component

configuration [13]. Spring Boot's easy-to-use configuration system simplifies configuring

web applications and allows developers to customize the preconfigured defaults as necessary

[13].

jOOQ [14], a framework that provides an API for accessing SQL databases, was selected for

its ability to generate type-safe queries at compile time, which reduces the risk of runtime

errors and improves code quality and maintainability. jOOQ's API allows developers to write

complex SQL queries in Java code, which is intuitive and easy to read. Additionally, jOOQ is

16



vendor-neutral and supports multiple SQL dialects and database vendors, allowing

developers to use the same API to access different databases and making it easier to switch

between or support multiple databases in the same application [14].

4.2.2 Front-end technologies

React.js8 with Material UI9 was selected as the front-end technology stack for the web

application. React.js is a widely used JavaScript library created by Meta (formerly

Facebook), initially released in 2013, for building user interfaces, recognized for its

efficiency, flexibility, and reusability [15]. Its component-based architecture allows

developers to manage and maintain code for complex user interfaces [15]. React.js was

preferred for its extensive community of developers and resources available for developers to

access, contributing to the development of new libraries, components, and tools that simplify

web application development [16].

Material UI is a popular open-source design framework that offers pre-built components and

styling that can be customized to meet the application's design requirements [17]. Material UI

is known for its high-quality design and meticulous attention to detail, making it a reliable

choice for building user interfaces [17].

The combination of React.js and Material UI offers a powerful and flexible front-end

technology stack, facilitating the development of high-quality, responsive, and intuitive user

interfaces for the web application.

Initially, the npm package sportident-react10 was chosen for communication between the web

application and the SI station, influencing the selection of technology for the project.

However, the package did not function as expected during testing due to a lack of technical

documentation and examples.

4.2.3 Database

PostgreSQL, commonly referred to as Postgres, was chosen as the database management

system for the web application. Postgres [18] is a powerful, open-source, and highly regarded

relational database management system known for its advanced features, scalability,

performance, stability, and security. It supports advanced features such as complex queries,

indexing, and much more, making it flexible for storing and retrieving various types of data.

10 https://www.npmjs.com/package/sportident-react
9 https://mui.com/
8 https://react.dev/

17



Postgres is also highly scalable and can easily handle large datasets, making it a suitable

option for both small-scale and large-scale applications. The selection of Postgres as the

database management system ensures efficient and secure data storage and retrieval for the

web application [18].

4.3 Web application development

This section discusses the web application development process results, following the

methodology outlined in Section 3. The discussion covers architectural decisions, front-end,

back-end, and database designs, as well as code samples and testing strategies employed.

Instructions for accessing the source code are provided in Appendix I.

4.3.1 Design pattern

Initially, the architecture of the SIE software was analyzed. It was quickly determined that the

best course of action would be to rewrite the entire application, as SIE did not use a relational

database, and a significant portion of the business logic was intertwined with the front-end

code. This made the code unmaintainable, and it would have been difficult to identify any

domain logic that could be reused.

An appropriate architecture for the SOE was chosen to build a scalable and maintainable web

application. The hexagonal architecture was selected for the back-end system, as it aligns

with the principles of Clean Architecture, separating concerns and minimizing dependencies,

as described in Tom Hombergs' book, "Get Your Hands Dirty on Clean Architecture" [19].

As outlined in Hombergs' book, the pattern divides the application into three components:

domain, ports, and adapters. The domain component comprises core business logic and

models; the ports component establishes interfaces for communication between layers; and

the adapters component implements these interfaces, connecting the infrastructure layer to the

domain and application layers. The hexagonal design focuses on creating clear boundaries

between components, fostering testability and adaptability [19].

The developed web application complies with the requirements presented in Section 4.2,

centering on meeting user needs and constructing a dependable and efficient system. The

application's architecture encourages modularity and facilitates effortless adaptation to future

enhancements or modifications.

18



4.3.2 Database design and relations

As mentioned earlier, PostgreSQL was chosen as the database engine. The

Entity-Relationship (ER) diagram, which illustrates the relationships among entities in the

database, is provided in Appendix II. As depicted in the diagram, each table includes fields

for "created," "created by," "modified," "modified by," and "version," ensuring audibility and

enabling the tracking of changes.

The database is designed to accommodate multiple clubs using the software simultaneously,

with the "club" entity serving as a central component connecting all other entities. Apart from

login information and user entities, two primary circles of functionality are evident within the

ER diagram.

The first circle centers around the "si_card" entity, where an individual can possess multiple

SI-Cards and rental cards are assigned to a specific club. Based on this information, files can

be packaged and sent to SIME.

The second circle encompasses the logic of event series, events, tickets, and multi-use tickets.

A multi-use ticket contains references to both the "series_id" and "club_id," as different clubs

operate unique multi-use ticket systems. Some clubs issue multi-use tickets for specific event

series with an expiration date, while others allow the use of tickets for all club events,

regardless of the series.

By utilizing a well-designed database schema, the web application effectively supports

multiple clubs' needs and ticketing systems, ensuring smooth operation and flexibility.

19



4.3.3 Programm logic diagram

This section demonstrates how the main logic's user side operates.

Figure 1: Sequence diagram

Fig. 1 illustrates the typical workflow and interactions between various program components.

The process begins with SI-Card input to the SI station, which sends the information to the

front-end application. Next, a request is sent to the back-end, which retrieves the relevant

data from the database. Users can modify the data before sending another request to the

back-end, if needed, following the same procedure. Once the information is verified and

confirmed, it is sent to the back-end for storage. Periodically, the SIME script sends a request

to the back-end to inquire about updates. The back-end then retrieves these updates from the

database and sends them back as a response.

4.3.4 Technical description

The backend application comprises six distinct modules, each responsible for a specific

function:

20



1. Database Module: This module consists of Liquibase11 scripts, enabling programmatic

database creation. This ensures that the database always contains the correct tables

and configurations.

2. Web Adapter Module: the Web Adapter manages incoming traffic via HTTP requests

and returns HTTP responses to the client. As a web application, this is the first point

of entry.

3. Domain Module: this module is called by the Web Adapter and manages all business

logic, use cases, services, and entities. It serves as the core of the application.

4. Jooq Module: located within the adapter package, the Jooq Module is called by the

Domain Module for all database communication.

5. Common Module: this module manages classes used across multiple modules, such as

authentication context, utilities, and exceptions.

6. Config Module: this final module is responsible for running the application and

houses security configurations along with other settings.

A crucial aspect of the hexagonal design is the implementation of adapters through interfaces.

This approach ensures that if a component like jOOQ becomes deprecated, only its

implementation needs to be replaced while the rest of the system continues to function

seamlessly.

Classes

All domain entities are organized within a domain class, as illustrated in Fig. 2, except

authentication as it is also needed by the configuration module.

Figure 2: Entities in domain module

11 https://www.liquibase.org/

21



The domain class also comprises loading and storing ports utilized by services and

implemented in the jOOQ modules through gateways, as shown in Fig. 3.

At the heart of the domain logic are use cases and services. These components follow the

single-responsibility principle and execute specific tasks using ports. This principle ensures

that the classes are easy to test and use. If additional logic is required, new use cases can be

added seamlessly, maintaining the simplicity and clarity of the domain logic. This approach

allows for the incorporation of new functionality on the fly without risking disruption to the

existing system.

Figure 3: Ports and use cases in Domain module

The jOOQ module contains all of the ports implementations via gateways and mappers with

utils that are used to implement communication between the domain and database.

The web adapter plays a crucial role in processing HTTP requests. Data transfer objects

(DTOs) were used to convert web input objects into domain entities and vice versa. This

22



approach ensures efficient communication between the web layer and the domain layer,

streamlining the exchange of information within the application.

Code examples

In the following section, the use case of registering the usage of a multi-use ticket is

analyzed with code snippets.

The createTicket method within a controller class represents the entry point for this use case.

This method is mapped to the “/tickets/multiuse” endpoint, as depicted in Appendix III.

The method accepts a TicketDto object as input from an HTTP request containing PersonId,

MultiuseTicketId, EventId, SeriesId, and ClubId. The method then proceeds to validate the

following:

1. The authenticated user has the appropriate rights to perform the action for the given

club.

2. The referenced Person, MultiuseTicket, and Event objects are present and have the

correct references.

If the validation fails, an error is thrown, and an exception handler returns an appropriate

error code in the HTTP response.

If all validations pass, the method calls the registerMultiuseTicketUseCase with the collected

and validated objects. This use case processes the ticket registration, and upon successful

registration, the method returns an HTTP response with a 200 status code and a "Ticket

created" message.

The createTicket method ensures that only valid tickets are created, maintaining data integrity

and providing a secure way for users to register multi-use ticket usage.

Fig. 4 shows an example where RegisterMultiuseTicketService receives the mentioned objects

as input. The service creates a new Ticket object and associates it with the given

MultiuseTicket and OrienteeringEvent. The purchase time is set to the current time.

If there is only one ticket left in the MultiuseTicket, it is marked as used by setting the isUsed

property to true, and the MultiuseTicket is then stored using the storeMultiuseTicketPort.

Finally, the newly created Ticket object is stored using the storeTicketPort.

23



Figure 4: RegisterMultuseTicketService code example

The StoreTicketGateway class uses the jOOQ library, a popular Java-based database access

framework that simplifies data access and object-relational mapping. As seen in Fig. 5, the

adapter class contains minimal code, primarily focusing on handling the store operation and

mapping between domain entities and jOOQ database entities.

The store method in the StoreTicketGateway class accepts a Ticket domain entity as input.

The method first attempts to load the TicketRecord from the database or create a new one if it

does not exist. The recordFactory.loadOrCreate method handles this operation.

Next, the setRecord utility method maps the properties from the domain Ticket entity to the

jOOQ TicketRecord entity. After the mapping is complete, the r.store method is called to save

the TicketRecord in the database.

Finally, the method updates the Ticket domain entity's id with the value from the TicketRecord

entity and returns the updated Ticket domain entity. This allows the caller to access the

persisted ticket data, which can be useful in some use cases.

24



Figure 5: StoreTicketGateway code example

SIME script

The SIME script, as shown in Appendix IV, plays a critical role in the SOE application,

ensuring backward compatibility with the existing SIME application for checkout. It is

responsible for maintaining and updating the runners' file, which contains essential

information about the participants. Written in Python, the script efficiently fetches the initial

data and subsequently retrieves new data from specified sources at regular intervals. This

continuous updating process ensures that the SIME application always has access to the most

recent and accurate information about the runners, enhancing its efficiency and effectiveness.

The script consists of a main function called main_cycle, which executes the following steps:

1. Download the initial file: The script first downloads an initial file from the given URL

(initial_file_url) and saves it with a specified name (initial_output_filename).

2. Download and append new data: The script enters an infinite loop where it

periodically downloads new data from a specified URL (new_file_url). The loop runs

every 5 minutes, ensuring the data in the output file remains up-to-date.

3. Process and merge the data: When the new data is successfully downloaded, it is

temporarily stored in a buffer. The script then reads the content of the

initial_output_filename and buffer, merging them together before writing the

combined data to the output_filename.

4. Handle exceptions: In case of any errors while downloading the new data, the script

logs an error message and continues the loop, attempting to download the new data

again in the next iteration.

25



The SIME script is designed to ensure that the runners file for the SIME application stays

current by continuously monitoring and updating the data. This automated process guarantees

that the SIME application always has access to the most recent information about the runners,

enabling it to operate efficiently and effectively.

Front-end

The React application is organized into three primary sections: components, pages, and

shared parts. Pages use components to create the desired layouts for each web page, and

components are designed to be reusable, promoting efficient code usage across the

application. React hooks and state management are employed to handle data changes in the

front-end. Material UI streamlines component design, while TypeScript is used to reduce

JavaScript type-related errors. Security measures between front-end and back-end were

implemented using JSON Web Tokens12 (JWTs).

The SessionHistory component serves as an example in Fig. 6. This component accepts a list

of registered people as a prop, named history, and returns a container containing a table. Each

row of the table presents information about a different registration, ensuring a clear and

organized display of user data in the front-end application.

12 https://jwt.io/

26



Figure 6: SessionHistory code example

In the code snippet, the SessionHistory component utilizes Material UI components such as

TableContainer, Table, TableHead, TableBody, TableRow, and TableCell to create a visually

appealing and functional table. The useTranslation hook is employed to access translations,

facilitating internationalization.

Within the TableBody, the component iterates over the history array and creates a TableRow

for each person object. The table cells display the person's SI card number, EOF code, full

name, and the number of tickets left in their multi-use ticket (if applicable).

This example demonstrates how the React and Material UI libraries, along with TypeScript,

can be used to develop a clean, efficient, and visually appealing front-end application that

provides a user-friendly interface for the SOE system.

27



Web Serial API

Web Serial API13 was used to connect the SI station with the web application via the serial

port, enhancing the efficiency of the multi-use ticket-checking process in the SOE

application. This integration is particularly beneficial for frequent multi-use ticket owners

with their own SI-Cards.

When a user inserts their SI-Card into the SI station, the Web Serial API fetches their

information and automatically fills the relevant fields in the web application. The user's

multi-use tickets are also retrieved in the process. Once the event organizer verifies the data,

they simply need to press enter to create a new ticket, allowing the next runner to proceed

with registration.

For runners without a personal SI-Card, a rental SI-Card can be issued using the SI station.

Inserting the rental card into the station retrieves only the SI-Card number, leaving the

remaining fields empty, as rental SI-Cards are not assigned to specific individuals. The event

organizer can then manually enter the person's EOF code or their first and last name into the

corresponding fields. This process enables the SOE application to connect the person with the

rental SI-Card and transfer the data to the SIME application using the previously mentioned

Python script. As a result, the checkout process becomes more streamlined, facilitating a

smooth user experience for both event organizers and participants.

Initially, the sportident-react package was intended for use in communication between the

web application and the SI station, as it implements the Web Serial API and most of the

necessary functionality. However, due to a lack of technical documentation and examples,

some issues arose, making it unfeasible to use the package. As a result, the Web Serial API

was used directly. Fortunately, the examples provided in the references document were

sufficient, and with the knowledge gained from writing the prototype's communication with

the SI station, the implementation was successful.

4.3.5 Unit testing

Unit testing is a crucial aspect of software development, ensuring that each component of the

application works as expected. In this project, unit tests are employed to verify the correct

functioning of all domain classes. Adhering to the single-responsibility principle allows each

domain service class to be tested independently, simplifying the testing process. As new

features are added, this approach usually requires the creation of new tests rather than

13 https://developer.mozilla.org/en-US/docs/Web/API/Web_Serial_API

28



modifications to existing ones. The concise nature of the services results in smaller test cases,

improving readability and making the validation process more manageable. Consequently,

this methodology helps maintain the application's quality and reliability as it evolves.

ChatGPT by OpenAI was utilized to generate some of the unit test templates, which were

then refined and supplemented with more domain logic when needed.

To create effective unit tests, JUnit14 and Mockito15 are employed to mock outbound requests

to the database and other services to create effective unit tests. This ensures that tests remain

lightweight and straightforward.

For instance, consider the RegisterPersonActiveSiCardService class depicted in Fig. 7. By

mocking the dependencies of this class using Mockito, the test cases can focus on validating

the service's logic without worrying about external factors such as database calls or other

service interactions. This approach allows for the efficient and reliable testing of the

application's domain classes and their respective functionalities.

Figure 7: RegisterPersonActiveSiCardService code example

This class takes in three arguments within the request: personId, siCardNumber, and isInitial.

Since isInitial is only used to pass a boolean from the request to the database, it will not be

covered further in this discussion.

15 https://site.mockito.org/
14 https://junit.org/

29



The focus is on handling the SiCard entity and creating new relations with a person if

necessary. If the SiCard entity is already present, it is retrieved from the database. If it is not

present, a new card is created. Next, the class checks whether the current person already has a

relationship with a SiCard. If they do not, a new relationship is created. Otherwise, the flow

is finished.

Four simple tests can be written to cover all the functionality of the

RegisterPersonActiveSiCardService, as illustrated in Fig. 8. These tests aim to validate the

various aspects of the class, ensuring it operates correctly under different scenarios.

Figure 8: RegisterPersonActiveSiCardService unit test code example

Using descriptive names for the tests is crucial, as it simplifies understanding what has failed

if tests stop working in the future. Descriptive test names provide clear insights into the

specific functionality being tested, making it easier to pinpoint issues and fix them promptly.

This practice contributes to a more effective testing strategy and overall better code quality.

4.3.6 Result screenshots

As mentioned in section 4.1.2, three primary pages were created due to functional

requirements: login page, registration page, and administration page. To enhance the user

experience, a start page was also incorporated, as depicted in Appendix V, which is displayed

when a user logs into the application. A landing page preceding the login page is not within

the scope of this application, as communication with clubs and training occurs externally to

the application.

The login page contains only username and password fields, as shown in the Fig. 9. Users for

the application are currently added directly to the database, as there are not too many users,

and clients do not need to or should not create users themselves.

30



Figure 9: Login component

The registration page, as depicted in Appendix VI, functions as the main page for the

application, where users can register all competitors participating in the EOE. Additionally,

users can search for a person's EOF code using their name. Competitors can be registered

with a multi-use ticket if they possess one, or a new ticket can be added if purchased.

Moreover, users can create a new association between a (rental) SI-Card and a person and

review previously registered individuals in case of any issues.

The registration page also features a second tab, shown in Appendix VII, where all relevant

multi-use tickets can be examined in case of any problems or concerns. This functionality is

included here to enable users to swiftly modify and verify information from the table during

the registration process, ensuring a smooth and efficient experience for both event organizers

and competitors.

The administration page, as depicted in Appendix VIII, serves as a platform to view or add

event series, events, and club rental SI-Cards, as well as to facilitate the addition of multi-use

tickets. The events section displays ticket usage statistics for each event, providing valuable

insights. A button is available for updating persons from the EOF database, allowing for a

quick and efficient download of new person data and information from the central database.

This feature ensures that the administration page is a comprehensive and user-friendly hub

for managing all aspects of orienteering event organization.

4.4 Deploying the web application

Following the methodology described in earlier sections, the integrated system was

successfully deployed to a production environment. This process involved setting up the

necessary software infrastructure, configuring the system, and making it accessible to users,

31



while also implementing appropriate security measures to protect both the system and user

data.

For the deployment of the web application, Docker was employed to create containerized

images of the application, ensuring consistent execution and simplified deployment. Docker

Compose16 was used to manage the multi-container Docker application.

Utilizing Docker images and Docker Compose facilitated the deployment process, making

managing the application's lifecycle more straightforward and allowing for seamless updates

and maintenance. As a result, the production environment can be established with just a

single command.

4.5 Web application testing

The web application was tested in a real-life event on April 12, 2023, in collaboration with

Seiklushunt during the Ujula evening orienteering event in Tartu. The testing process

involved several steps, including setting up all related database relations, configuring the

SIME side and client registration computers, and instructing users on navigating the

application.

The real-life testing provided valuable insights into the application's performance under

actual event conditions, allowing for the identification and resolution of potential issues. This

process contributed to the refinement and optimization of the application, ensuring a seamless

and efficient user experience.

During the testing phase, some critical issues were discovered:

1. Connection Security: The application ran locally, and when connected using a local

IP, the connection was not secure (i.e., it did not use HTTPS). This limitation posed a

problem when using two computers simultaneously with SI stations, as only one

could have a localhost connection. While this issue did not prevent the application

from functioning without the SI station communication, it slowed down the

registration process, requiring event organizers to enter all the SI numbers.

2. Front-end Limitations: The front-end limitations for checking first and last names

were too broad, resulting in some empty-named persons being added to the person

16 https://docs.docker.com/compose/

32



table. These empty-named individuals were also transferred to the SIME file and

required manual entry when the person approached the checkout.

Despite these issues, the testing process offered a valuable opportunity to identify areas for

improvement and further optimize the application. The insights gained from this real-life

testing scenario will help enhance the overall user experience and ensure the system is better

prepared for future events.

33



5. Discussion

5.1 Technical challenges
Technical challenges emerged throughout the development of the orienteering event

management application. These challenges needed to be addressed to ensure the application

could function effectively in various real-life scenarios.

The first challenge was to choose correctly which parts of the program should go as back-end

and which should go as front-end as a big part of the data should be ready for display.

However, holding the whole dataset in the cache is not practical. The current design assumes

that the back-end is always accessible, and network issues will not occur. In real-life

scenarios, this may not be the case, and redundancy measures may need to be considered.

The second challenge was modularity. The program needed to be modular enough to facilitate

the quick addition of new features. The hexagonal architecture used in the application's

design greatly contributed to addressing this challenge, as it inherently promotes modularity.

The third challenge is that multiple orienteering clubs must be able to use the new application

simultaneously. This means that problems like security, different user data in one database,

and user authentication are also relevant. Security measures were implemented using JWTs,

and a club-based approach was employed for data management. All requests are protected by

authentication, and user permissions for accessing data are carefully verified.

Ensuring compatibility with the existing SIME system was essential to provide a seamless

experience for event organizers. This compatibility required the automatic updating of

SI-Card numbers and owner information in the SIME system. A SIME script was developed

to ensure that the checkout computer consistently had access to the most recent data.

5.2 Suggestions for further improvements

While the developed application has successfully met its initial objectives and demonstrated

its effectiveness in real-world scenarios, there is always room for improvement and

expansion. This section will explore potential enhancements and new features that could be

introduced to elevate the application's capabilities.

34



5.2.1 Planned features

Several features are planned to be completed before offering the application to potential

clients, but they were not finished in time for the thesis. These features aim to enhance the

functionality and ease of use of the SOE application.

1. Integration with Stebby:

Stebby is a ticket-selling platform, and it is essential to explore potential collaboration

opportunities with the Stebby team. This partnership would ideally involve creating or

using an API interface that would enable seamless communication between the SOE

and Stebby systems. The integration would allow the automatic transfer of

information about newly purchased one-time or multi-use tickets to the SOE

application, eliminating the need for manual updates.

Benefits of integrating with Stebby include:

● Automated ticket data synchronization between Stebby and SOE systems

● Reduced manual workload for event organizers and club administrators

● Improved data accuracy and real-time updates on ticket information

● Enhanced user experience for participants purchasing tickets through Stebby

The integration with Stebby is an essential feature to implement, as it will greatly

simplify the ticket management process and ensure a seamless and efficient

registration experience for both event organizers and participants. It wasn't completed

within the scope of this thesis because integrating with external systems can be

time-consuming and potentially present numerous issues.

2. Moving to the cloud:

As previously mentioned, the application is currently running in a Kubernetes cluster

but has not yet been deployed to the cloud. Deploying the application to the cloud is

essential because it enables even non-tech-savvy users to utilize the application for

their events without needing to run it in a local environment.

There may still be use cases where a local environment is required, such as

deep-forest locations with no internet connection. However, these instances are

relatively rare. By deploying the application to the cloud, it will become more

accessible and user-friendly for a wider range of users, including event organizers and

club administrators who may not possess technical expertise.

35



5.2.2 Additional features

While the application successfully addresses the requirements outlined in the thesis, there are

additional features that could be implemented to further enhance its usability and appeal to

clubs for weekly use.

1. EOF code creation:

Although there are relatively few competitors each week who do not have an EOF

code, simplifying the process of creating new EOF codes would facilitate the

management of larger events. Integrating this feature within the application would

streamline the registration process and improve overall efficiency.

2. Handling competitors without EOF codes using Stebby for multi-use or one-time

tickets:

Some competitors might not have an EOF code or may prefer not to use one but still

want to purchase multi-use or one-time tickets through Stebby. Currently, these

individuals must be managed manually due to challenges with the application's

functionality. To address this, the application could include:

● logic for connecting a person with and without an EOF code, ensuring proper

allocation of tickets to the correct individual,

● a mechanism to transfer multi-use tickets from one person to another when

necessary,

● enhanced security measures, as relying solely on names for ticket usage may

not be secure enough, given that names are not unique identifiers.

3. Landing page for application:

While the number of clubs using SOE as their EOE registration manager may not be

substantial, creating a landing page for the application could provide multiple

benefits. The landing page could serve as a point of reference for users to verify that

the application is working and operational. Moreover, it could function as an

informative space to showcase the application's features, benefits, and potential for

growth.

Having a project overview readily available would also be helpful when seeking to

engage potential collaborators, clients, or employees. Providing a clear, concise, and

36



visually appealing summary of the project on the landing page would generate interest

and facilitate a better understanding of the application's capabilities.

4. Enhanced Reporting and Analytics:

As clubs and event organizers begin to use SOE for their EOE registration

management, it is important to provide them with enhanced reporting and analytics

features. These features would allow users to gain insights into event participation,

competitor performance, and other relevant metrics, helping them make informed

decisions for future events.

5. Company Agreement with Clubs:

Before implementing the company agreement feature in the SOE application, it is

essential to gather feedback from potential clients, including clubs and event

organizers. While Seiklushunt may not find this feature particularly useful, other

clubs may have different needs.

A company agreement feature would enable clubs to arrange payment for their

employees' participation in EOE events through a centralized system. This could

streamline the registration and payment process for both the clubs and the

participants. Features that could be incorporated into a company agreement system

include:

● bulk registration of employees for events,

● centralized invoicing and payment management,

● customizable payment rules and schedules,

● reporting and analytics specific to company-sponsored participants.

By understanding the needs and preferences of potential clients, the SOE application

can incorporate features that cater to a broader range of clubs, ultimately expanding

its user base and increasing its value as an EOE registration management tool.

5.2.3 Maintain and update the web application

After deployment, it is crucial to consistently monitor, maintain, and update the web

application to tackle any bugs or performance issues that may emerge. Updating the

application with new features and improvements based on user feedback and changing needs

will guarantee its long-term success and relevance. Ongoing maintenance and adaptation will

37



enhance the user experience and keep the application in line with advancements in

technology and industry best practices. The web application will continue to serve as an

invaluable tool for efficient event management by staying responsive to the evolving

landscape of orienteering events and user expectations.

38



6. Conclusion

This thesis aimed to develop a modern, efficient, and user-friendly web application for

orienteering event management that streamlines registration and ticketing processes while

ensuring compatibility with existing systems. The project was driven by the difficulties and

limitations encountered by orienteering clubs utilizing the current SIE software, which served

as a foundation for the new application.

Throughout the thesis, various software development approaches were examined to build a

web application based on the initial prototype. The hexagonal architecture was selected due

to its ability to segregate responsibilities and minimize dependencies, fostering modularity

and flexibility. The developed application employed Java for the back-end, React for the

front-end, and Postgres as the database system.

The application's features were designed in close collaboration with the orienteering event

organizer Seiklushunt, prioritizing user requirements and delivering a dependable and

efficient system. The testing phase, carried out during an actual orienteering event, yielded

valuable insights into the application's performance, leading to numerous refinements and

optimizations.

Although several technical challenges were encountered, such as data management,

modularity, multi-club usage, and backward compatibility, the application successfully

addressed these concerns, resulting in a resilient and adaptable system that caters to the needs

of modern orienteering events. The thesis also discusses potential avenues for further

development of the completed software solution, which could eventually be offered as a

service to other orienteering clubs.

39



References

[1] Eesti Orienteerumisliit, Orienteerumise ABC.

[2] Eesti Orienteerumisliit, Kalender. https://orienteerumine.ee/kalender/kuu-kalendervaade/

(accessed April 20, 2023).

[3] RMK Orienteerumispäevakud, Kalender.

https://paevakud.ee/orienteerumispaevakute-kalender/ (accessed April 20, 2023).

[4] Eesti Orienteerumisliit, EOL majandusaruanne 2022, (2023).

[5] EMIT ECard system. https://www.emit-uk.com/emit-ecard-system/ (accessed September

12, 2022).

[6] SPORTident GmbH Germany, About Us. https://www.sportident.com/about-us.html

(accessed September 12, 2022).

[7] T. Klaar, SPORTident Mini Events Manual, (2013).

https://www.tak-soft.com/dokuwiki/doku.php?id=osport:sime (accessed April 20, 2023).

[8] Estonian Tax and Customs Board, Health and Sport Expenses.

https://www.emta.ee/en/business-client/taxes-and-payment/income-and-social-taxes/fring

e-benefits#health-and-sport-exp (accessed April 17, 2023).

[9] Stebby, About Us, (n.d.). https://stebby.eu/about-us/ (accessed April 17, 2023).

[10] Tak-Soft, SI-kaartide hinnad.

https://www.tak-soft.com/sportident/kaart/tellimine/index.php (accessed April 15, 2023).

[11] University of Tartu, Student Project Results: May 2021 winners, (2021).

https://courses.cs.ut.ee/t/student_projects_results/Main/2021-05 (accessed April 28,

2023).

[12] M. Spirich, Is Java still relevant in 2023, (2023).

https://www.axon.dev/blog/is-java-still-relevant-in-2022 (accessed April 17, 2023).

[13] S. Bos, Java Basics: What Is Spring Boot?, (2020).

https://www.jrebel.com/blog/what-is-spring-boot (accessed April 17, 2023).

[14] jOOQ, Home page. https://www.jooq.org/ (accessed April 17, 2023).

[15] HubSpot, What is React.js?, (2022). https://blog.hubspot.com/website/react-js

(accessed April 17, 2023).

[16] Simpli Learn, The Best Guide to Know What Is React, (2023).

https://www.simplilearn.com/tutorials/reactjs-tutorial/what-is-reactjs (accessed April 17,

2023).

[17] Material UI - Overview. https://mui.com/material-ui/getting-started/overview/

40



(accessed April 17, 2023).

[18] About Postgresql. https://www.postgresql.org/about/ (accessed April 17, 2023).

[19] T. Hombergs, Get Your Hands Dirty on Clean Architecture: A Hands-On Guide to

Creating Clean Web Applications with Examples in Java, 1st ed., Packt Publishing Ltd,

2019.

41



Appendix

I. Source code

The source code and associated files for this project can be found in a private repository at

https://github.com/Kustu11/SOE. To gain access to the source code, please contact the author

via email at kynnapas.kustu@gmail.com.

42



II. Database design

43



III. createTicketmethod

44



IV. SIME script

45



V. Start page

46



VI. Registration components

47



VII. Multi-use ticket table

48



VIII. Admin components

49



License

Non-exclusive license to reproduce the thesis and make the thesis public

I, Kustu Künnapas,

1. grant the University of Tartu a free permit (non-exclusive license) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital

archives until the expiry of the term of copyright, my thesis

Orienteering Event Registration Software: From Prototype To Web Application,

supervised by Dietmar Pfahl,

2. I grant the University of Tartu a permit to make the thesis specified in point 1 available to

the public via the web environment of the University of Tartu, including via the DSpace

digital archives, under the Creative Commons license CC BY NC ND 4.0, which allows,

by giving appropriate credit to the author, to reproduce, distribute the work and

communicate it to the public, and prohibits the creation of derivative works and any

commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in points 1 and 2.

4. I confirm that granting the non-exclusive license does not infringe other persons’

intellectual property rights or rights arising from the personal data protection legislation.

Kustu Künnapas

08/05/2023

50


