
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Software Engineering Curriculum

Kin Long Leung

A Decentralized Public Key Infrastructure
for Trust Management in X-Road

Master’s Thesis (30 ECTS)

Supervisor(s): Mariia Bakhtina, MA

Ahmed Awad, PhD

Raimundas Matulevičius, PhD

Tartu 2023

A Decentralized Public Key Infrastructure for Trust Management in
X-Road

Abstract:
Today, Public Key Infrastructure with X.509 (PKIX) is the building block for estab-

lishing secure connections over the Internet and creating digital signatures. In PKIX,
Certificate Authority (CA) is responsible for the creation of certificates and the resolution
of certificate statuses. Due to the centralized architecture, CA becomes a single-point-of-
failure to any network that relies on it to establish trust. By utilizing distributed ledger
technology (DLT), decentralized identifiers and verifiable credentials can be verified
without intermediates like CAs. They can be used to construct a Decentralized Public
Key Infrastructure (DPKI) which eliminates the shortcomings of PKIX. In this thesis, we
studied X-Road, a centrally managed distributed data exchange system depending on
PKIX, and presented an alternate DPKI architecture that uses DLT-based decentralized
identifiers and verifiable credentials to build up trust between information systems. A
proof-of-concept was implemented and evaluated. The findings demonstrate that the
alternative DPKI architecture enhances the trustworthiness of the data exchange system,
particularly in terms of security and reliability.

Keywords:
Decentralized Public Key Infrastructure, Decentralized Identifier, Verifiable Credentials,
X.509, Distributed Ledger, X-Road

CERCS: T120 Systems engineering, computer technology

2

Detsentraliseeritud avaliku võtme infrastruktuur usalduse haldamiseks
X-Roadis
Lühikokkuvõte:

Tänapäeval on avaliku võtme infrastruktuuri kasutamine X.509 (PKIX) abil inter-
netis turvaliste ühenduste loomise ja digitaalallkirjade loomise ehitusplokk. PKIX-is
vastutavad sertifikaatide loomise ja sertifikaatide olekute lahendamise eest sertifitseerim-
isteenuse osutajad (CA). Keskse arhitektuuri tõttu muutub sertifitseerimisteenuse osutaja
üheks ainsaks rikkepunktiks igas võrgus, mis sellele tugineb usalduse loomiseks. Haju-
tatud pearaamatu tehnoloogiat (DLT) kasutades saab detsentraliseeritud identifikaatorite
ja kontrollitavate volikirjade abil verifitseerida usalduse loomist ilma vahendajatena
toimivate sertifitseerimisteenuse osutajateta. Nende abil saab luua detsentraliseeritud
avaliku võtme taristu (DPKI), mis kõrvaldab PKIX-i nõrkused. Selles artiklis uurisime
X-Road’i, keskjuhitavat hajutatud andmevahetuse süsteemi, mis sõltub PKIX-ist, ning
tegime ettepaneku alternatiivse DPKI arhitektuuri kohta, mis kasutab detsentraliseeri-
tud identifikaatoreid ja kontrollitavaid volikirju, et suurendada usaldust infosüsteemide
vahel. Tõestuse kontseptsioon viidi ellu ja hinnati. Leiud näitavad, et alternatiivne
DPKI arhitektuur parandab andmevahetussüsteemi usaldusväärsust, eriti turvalisuse ja
usaldusväärsuse osas.

Võtmesõnad:
Detsentraliseeritud avaliku võtme infrastruktuur, detsentraliseeritud identifikaator, kon-
trollitavad volikirjade, X.509, hajutatud pearaamat, X-Road

CERCS: T120 Süsteemitehnoloogia, arvutitehnoloogia

3

Contents
1 Introduction 6

2 Background and Related Work 8
2.1 Public Key Infrastructure . 8

2.1.1 Public Key Infrastructure with X.509 8
2.1.2 Decentralized Public Key Infrastructure 9

2.2 Self-Sovereign Identity . 10
2.2.1 Decentralized Identifier . 10
2.2.2 Verifiable Credential . 12
2.2.3 Agent . 12
2.2.4 Hyperledger Indy and Its Ecosystem 13

2.3 X-Road . 14
2.4 Related Work . 16
2.5 Answers to Research Question . 17

3 Design of X-Road with DPKI 18
3.1 Assumptions . 18
3.2 Design Goal . 18
3.3 Use Cases . 19

3.3.1 Use Cases of Central Server 19
3.3.2 Use Cases of Security Server 20

3.4 Functional Requirements . 26
3.5 Answers to Research Questions . 29

4 Implementation of X-Road with DPKI 30
4.1 Design Decisions . 30
4.2 Proof-of-Concept Implementation . 31

4.2.1 Architecture . 32
4.2.2 Network Activities . 39

4.3 Answers to Research Questions . 41

5 Evaluation 43
5.1 Setup . 43
5.2 Evaluation of Functional Requirements 43

5.2.1 Evaluation of Common Functional Requirements of X-Road
Components . 44

5.2.2 Evaluation of Functional Requirements of Central Server 45
5.2.3 Evaluation of Functional Requirements of Security Server . . . 47

5.3 Change in System Quality . 50

4

5.4 Answers to Research Questions . 52

6 Concluding Remarks 54
6.1 Answer To Research Question . 54
6.2 Limitations . 55
6.3 Conclusion . 55
6.4 Future work . 57

References 61
I. Acronyms . 63
II. Licence . 64

5

1 Introduction
“The Internet was built without a way to know who and what you are connecting
to” [1] said Kim Cameron, a former Microsoft’s Chief Architect for Identity. Public key
authentication is a way for two entities to establish a trusted connection over the Internet.
This requires both entities to know the public key of the other party. However, with
the growing number of information systems on the Internet, it is impractical for every
entity to exchange public keys in advance. Public key infrastructure using X.509 (PKIX)
solves such scaling problems by introducing transitive trust, which turns trust between
two parties into trust with a third [2]. In PKIX, a certificate binds a public key to an
identity [3]. By introducing a trusted third party known as Certificate Authority (CA), a
system can authenticate an entity during connection if the entity presents a certificate
signed by a trusted CA. In turn, systems are only required to maintain a list of trusted
CAs and their respective public keys for certificate verification.

While transitive trust is necessary for a trusted network to scale, PKIX has its
limitations. Apart from issuing certificates, CA is responsible for delivering the certificate
revocation status until the certificate expires using Certificate Revocation List (CRL)
and/or Online Certificate Status Protocol (OCSP). Both CRL and OCSP suffer from
scalability issues. While certificate statuses retrieved from a CRL may not always be
up-to-date [4], OCSP is vulnerable to Denial-of-Service attacks and replay attacks [5].
These problems are contributed by the centralized nature of PKIX and can be mitigated
by a decentralized public key infrastructure (DPKI).

Self-Sovereign Identity (SSI), an emerging peer-to-peer identity management model,
brings two new standards that can facilitate a decentralized public key infrastructure [6].
First, decentralized identifier (DID) is designed to allow the identity owner to create
and prove control over it without requiring permission from third-party registries [7].
Second, verifiable credential (VC) contains claims about a subject made by an issuer in a
tamper-evident manner [8]. While there are different implementations of DID and VC, a
decentralized public key infrastructure can be constructed by utilizing distributed ledger
technology (DLT) and using DLT-based DID and DLT-based VC.

In this paper, we study X-Road, a centrally managed distributed data exchange
system, and its potential limitations due to the use of PKIX for authentication and
signature verification. Then, we propose an alternate architecture with DPKI built with
Hyperledger Indy to reduce the shortcomings of CA and OCSP. The main research
question of this paper is [MRQ] How to establish trust between information systems
using a decentralized public key infrastructure? This is broken down into four
research questions:

• [RQ1] What are the applications of decentralized public key infrastructure with
decentralized identifiers and verifiable credentials?

6

• [RQ2] What are the requirements for X-Road with decentralized public key
infrastructure?

• [RQ3] What architectural changes are necessary in X-Road to use a decentralized
public key infrastructure?

• [RQ4] What is the viability of the proposed proof-of-concept implementation for
X-Road with decentralized public key infrastructure?

In order to answer the research questions, this study follows the Design Science
Research Method (DSRM) proposed by Hevner et al [9]. The fundamental principle of
DSRM is that the knowledge and understanding of a design problem and its solution are
acquired in the building and application of an artifact.

The objective of this study is to design an alternate architecture to address the
limitations of PKIX and the associated business problem it brings to X-Road. A proof-
of-concept (PoC) is implemented as a viable artifact.

To design an alternate architecture, we conducted a literature review to identify
related work. Our design process was iterative and allowed us to refine our design
choices and implementation decisions as we gained a deeper understanding of the relevant
technologies and their capabilities. We followed a systematic approach throughout the
study to ensure its rigor. We defined a set of design goals and use cases that require trust
establishment in X-Road. From these, we elicited a list of functional requirements for
the X-Road components. The PoC implementation is then evaluated based on the elicited
requirements. By linking the requirements to the use cases and design goals, we ensured
that all aspects of the design were considered, and the final design was aligned with the
study objectives. Additionally, the changes in system quality that define trustworthiness
were assessed using the assessment model proposed in preliminary work. Finally, we
communicated our findings through this thesis.

Our study contributes to the application of SSI technologies in enterprise-to-enterprise
use cases, particularly in the context of data exchange systems. We demonstrated that
decentralized identifiers and verifiable credentials can be combined to construct a DPKI
and replace X.509 certificates in PKIX. Our research also highlights the benefits and
limitations of using SSI technologies in trust establishment.

The remainder of this paper is organized as follows. Section 2 provides a background
on public key infrastructure, Self-Sovereign Identity and X-Road, as well as a summary
of related work on onboarding and access control using Self-Sovereign Identity and
distributed ledger technology. Section 3 describes the design of X-Road with DPKI and
its functional requirements. In Section 4, we present the proof-of-concept implementation
of X-Road with DPKI. In Section 5, we evaluate the proof-of-concept implementation
against the functional requirements and the assessment model from preliminary work. In
Section 6, we summarize the paper and outline our future work. This thesis was proofread
using AI-based tools including Google Docs and the ChatGPT language model.

7

2 Background and Related Work
This section provides the background knowledge necessary to understand the subsequent
work, including public key infrastructure, Self-Sovereign Identity (SSI), and X-Road.
We then present research related to onboarding and access control using Self-Sovereign
Identity and distributed ledger technology. In this section, we answer the research
question [RQ1] What are the applications of decentralized public key infrastructure
with decentralized identifiers and verifiable credentials?

2.1 Public Key Infrastructure
A Public Key Infrastructure (PKI) is a set of hardware, software, and policies used to
distribute the binding of public keys to respective identities of entities. PKI facilitates
various use cases such as establishing secure connections via SSL/TLS, encrypting docu-
ments, and creating digital signatures. In this section, we give the general background
of the use of Public Key Infrastructure with X.509 (PKIX) in the Internet today and the
recent development on Decentralized Public Key Infrastructure (DPKI).

2.1.1 Public Key Infrastructure with X.509

Public key infrastructure with X.509 is a widely accepted public key infrastructure used
on the Internet nowadays. Since 1995, a set of standards have been developed by the
Public-Key Infrastructure (X.509) Working Group, also known as the PKIX Working
Group, to support X.509 based-Public Key Infrastructure. In the paper, PKIX is used to
refer to X.509 based-Public Key Infrastructure following these standards [4, 5].

In PKIX, certificates are issued by Certificate Authority (CA) and there are two types
of certificates: CA certificates and end-entity certificates. CA certificates are used to
issue certificates to other CAs called intermediate CA or subordinate CA, and create a
hierarchical system of CAs. At the top level there is a self-signed CA certificate, also
known as the root CA certificate. On the other hand, end-entity certificates cannot be
used to issue other certificates. Instead, end-entity certificates are used to identify an
entity, such as a person, organization, or business. The list of certificates, from the
root CA certificate to the end-entity certificates is sometimes known as the certificate
chain. Applications such as operating systems and browsers come with a set of trusted
CA certificates pre-installed. These applications can determine whether an end-entity
certificate should be trusted on behalf of the users by tracing up the certificate chain and
checking if it is issued by a trusted CA. To these applications, CA is known as the trusted
third-party and it represents a single-point-of-failure. When the CA is compromised
by attackers, the CA can issue a fraudulent certificate allowing a Man-in-the-Middle
(MITM) attack which applications cannot detect [10].

8

Once a certificate is issued, it may need to be revoked before its expiration date under
circumstances such as change of entity details, compromised CA, compromised key.
PKIX defines two methods for applications to check the revocation status of a certificate.
The first method is a certificate revocation list (CRL) [4]. A CRL is a time-stamped list
containing revoked certificate serial numbers. A CA periodically issues a CRL to a CRL
repository. Applications validating certificates should obtain a suitably recent CRL from
the CRL repository and check that the certificate is not revoked. A limitation of the use
of CRL is the time granularity of revocation is limited to the CRL issue frequency which
could be hourly, daily, weekly. Revocation that is reported may not be reliably notified to
certificate-using applications until the next CRL is issued. Also, as CRLs grow, they take
up more time and resources for clients to download, process and store.

Unlike CRL, the Online Certificate Status Protocol (OCSP) allows applications to
obtain the real-time revocation state of identified certificates [5]. The protocol allows
a client to send a status request to an OCSP responder, who could be a CA and a CA
assigned entity, and the OCSP responder returns a signed response that includes the
certificate’s current status. Since the response only contains information about a single
certificate instead of a list of certificates, its size is often much smaller than a CRL.
However, this property may lead to privacy issues as the OCSP responder may learn
about the clients with which the certificate subject is interacting. Besides, the OCSP
responder is vulnerable to denial-of-service attacks due to the “request/response” nature.
What makes the problem worse is that the production of a cryptographic signature
significantly increases response generation cycle time. When the OCSP responder
becomes inaccessible, clients can only soft fail by risking to accept a revoked certificate
or hard fail by stopping the operation it is trying to perform with the certificate. While
precomputed responses can reduce the resource for handling queries, they allow replay
attacks in which a captured good response is replayed after the certificate has been
revoked.

In an effort to address the single-point-of-failure issue in PKIX and the scalability
challenges of its revocation mechanisms, a decentralized public key infrastructure (DPKI)
has been proposed.

2.1.2 Decentralized Public Key Infrastructure

At the first Rebooting the Web of Trust (RWOT) design workshop in 2015, an alterna-
tive approach to PKIX was introduced, called Decentralized Public Key Infrastructure
(DPKI) [10]. While this was not the only use of the term DPKI, the goal of the DPKI
proposed in RWOT is to ensure that no single third-party can compromise the integrity
and security of the system as a whole. The way to achieve such a goal is to make use
of distributed ledger technologies like blockchain. In the DPKI, an entity creates and
registers a globally unique identifier, along with associated data such as public keys, in a
blockchain. The entity has full control and ownership of the identifier. The blockchain is

9

secure through third-parties known as validators or miners. Identifiers and public keys
can be obtained and verified from multiple nodes of the blockchain instead of a single
trusted-third-party like the CA. Thus, the DPKI puts less burden on a single server and
eliminates the MITM attack that can happen in PKIX. The concept of a globally unique
identifier in DPKI has since grown into its own specification, named Decentralized
Identifier (DID) [7], and has become one of the building blocks of the emerging online
identity model, Self-Sovereign Identity.

2.2 Self-Sovereign Identity
Self-Sovereign Identity (SSI) is a digital identity model which focuses on user autonomy.
Today, two identity models are popularized and widely used. The first is a centralized
identity model where an organization identifies an user based on a shared secret, in most
cases, a login password that only the organization and the user know. User data is stored
and controlled by the organization. The second identity model is the federated model.
This model introduces a third-party called Identity Provider (IDP) and removes users’
burden of managing several login credentials using Single-Sign On (SSO). However,
it has the same issue in that user data is held in and controlled by the IDP. SSI, as an
emerging identity model, puts control back to users’ hands with two building blocks
which are Decentralized Identifier and Verifiable Credential.

2.2.1 Decentralized Identifier

A Decentralized Identifier (DID) is a globally unique identifier that does not require a
centralized registration authority and is often generated and/or registered cryptograph-
ically [7]. A DID is a type of URI scheme that resolves to a DID document which
contains a set of data describing the DID subject whom the DID is representing. The
data includes mechanisms, such as verification methods (cryptographic public keys), that
the DID subject can use to authenticate itself and prove its association with the DID.

A DID starts with a “did:” prefix, followed by a DID method and a DID method
specific identifier. A DID method is defined by a specification specifying how DIDs and
DID documents are created, resolved, updated, and deactivated, if these operations are
supported by the method. For example, did:sov:builder:VbPQNHsvoLZdaNU7fTBeFx
is a DID that uses the Sovrin DID method [11]. One can resolve the corresponding DID
document as shown in Listing 1 by following the Sovrin DID method specification. A
number of DID methods make use of distributed ledger technology (DLT) in which the
data in a DID document is recorded in cryptographically signed transactions. In this
paper, a DID method that makes use of DLT is referred to as DLT-based DID.

Compared to certificates in PKIX, both end-entity certificates and DID documents
may contain attributes regarding the subject. However, data in DID documents is self-
asserted. In that sense, a DID document is like a self-signed certificate that is not issued

10

{
"@context": [

"https://www.w3.org/ns/did/v1",
"https://w3id.org/security/suites/ed25519-2018/v1",
"https://w3id.org/security/suites/x25519-2019/v1"

],
"id": "did:sov:builder:VbPQNHsvoLZdaNU7fTBeFx",
"verificationMethod": [

{
"type": "Ed25519VerificationKey2018",
"id": "did:sov:builder:VbPQNHsvoLZdaNU7fTBeFx#key-1",
"controller": "did:sov:builder:VbPQNHsvoLZdaNU7fTBeFx",
"publicKeyBase58": "GasrpJqMo3W9KApN4Dh62cGhYG24xhwNnCgqEKEiTKe6"

},
{

"type": "X25519KeyAgreementKey2019",
"id": "did:sov:builder:VbPQNHsvoLZdaNU7fTBeFx#key-agreement-1",
"controller": "did:sov:builder:VbPQNHsvoLZdaNU7fTBeFx",
"publicKeyBase58": "DUmxMDUXFTZLLdxupWFzStfdzh31XgpeoGLFL4ke8AZK"

}
],
"authentication": [

"did:sov:builder:VbPQNHsvoLZdaNU7fTBeFx#key-1"
],
"assertionMethod": [

"did:sov:builder:VbPQNHsvoLZdaNU7fTBeFx#key-1"
],
"keyAgreement": [

"did:sov:builder:VbPQNHsvoLZdaNU7fTBeFx#key-agreement-1"
]

}

Listing 1. Example of a Resolved DID Document

11

by any centralized party. While an end-entity certificate can be revoked by the CA, a DID
cannot be revoked due to its decentralized nature. Instead, some DID methods support
removal and update of verification methods in the DID document. Also, a DID document
does not convey claims about the DID subject asserted by third parties like a certificate
contains claims asserted by the CA. For that, verifiable credentials are used.

2.2.2 Verifiable Credential

A verifiable credential (VC) is a tamper-proof credential encoded in such a way that
authorship of it can be cryptographically verified [8]. It contains specific claims being
asserted by an issuing authority about an subject. A VC can be transmitted to a verifier
as a verifiable presentation (VP). A VP is a tamper-proof data that has authorship that
can be trusted after a process of cryptographic verification. Like there are different
DID methods, there are different VC implementations that support different features
such as selective disclosure, derived predicate and revocation. While not necessary,
some implementations use DIDs for expressing identifiers associated with subjects and
issuers. In this paper, a VC implementation that uses DLT-based DIDs is referred to
as DLT-based VC. AnonCreds is an example of DLT-based VC that supports selective
disclosure, derived predicate and revocation [12].

Compared to certificates in PKIX, both end-entity certificates and verifiable cre-
dentials contain claims regarding a subject. However, verifiable credentials are usually
presented to other parties in a form of verifiable presentation which may support selective
disclosure and zero-knowledge proof. Also, while an end-entity certificate contains the
public key controlled by the subject for verification, a verifiable presentation may not
contain such information. Instead, a verifiable presentation may prove the credential-
holder binding through the use of zero-knowledge proof. In such cases, a verifiable
presentation cannot be used to verify a digital signature unless the verifiable credential
explicitly contains the public key of the subject as a claim.

2.2.3 Agent

In SSI, an agent refers to a software program or process that performs actions on behalf
of an entity, interacting with other agents [13]. A cloud agent runs on a remote server or
a cloud hosting environment, as opposite to an edge agent which runs on a local device
at the edge of the network. In order to perform cryptographic operations on behalf of
their associated entity, an agent must have access to a secure storage, commonly known
as a wallet.

12

2.2.4 Hyperledger Indy and Its Ecosystem

Hyperledger Indy is an open source project purpose-built for Self-Sovereign Identity[14].
It provides tools, libraries, and reusable components for providing digital identities rooted
on distributed ledgers. This section explains some concepts and technologies used in the
Hyperledger Indy ecosystem.

The Hyperledger Indy project includes an implementation of a distributed ledger
known as the Indy ledger. The Indy ledger is a public, permissioned distributed ledger
that uses the Redundant Byzantine Fault Tolerance protocol to establish a consensus
between upfront well-authenticated nodes [15]. It serves as a verifiable data registry
(VDR) that facilitates other SSI technologies. For examples, the Sovrin DID Method [11]
and the Indy DID Method [16] utilize the Indy ledger to manage DID and DID documents.
Identities created on the ledger are assigned with roles and their capabilities are governed
by the permission settings of the ledger. The default settings can be found in [17]. The
Indy ledger is designed such that a transaction can be endorsed [18]. If a transaction
is endorsed, the transaction is signed by the endorser which could be used to evaluate
trust [19].

DID communication (DIDComm) is a concept incubated within the Hyperledger Indy
community [20]. The purpose of DIDcomm is to provide a secure, private communication
methodology built atop the decentralized design of DIDs. When two parties communicate
using DIDcomm, party A starts by looking up party B’s public key by resolving party
B’s DID. Party A then encrypts a plaintext message using party B’s public key, and adds
authentication using its own private key. When party B receives the message, it decrypts
the message and authenticates its origin using party A’s public key. DID communication
(DIDComm) is a concept incubated within the Hyperledger Indy community [20]. The
purpose of DIDcomm is to provide a secure, private communication methodology built
atop the decentralized design of DIDs. When two parties communicate using DIDcomm,
party A starts by looking up party B’s public key by resolving party B’s DID. Party A
then encrypts a plaintext message using party B’s public key, and adds authentication
using its own private key. When party B receives the message, it decrypts the message
and authenticates its origin using party A’s public key.

DIDcomm is designed to be transport-agnostic, meaning it can be used over var-
ious protocols such as HTTP(over TLS), WebSockets, IRC, and more. Additionally,
DIDcomm is designed to be asynchronous and simplex, instead of using the duplex
request-response method commonly used in web servers. Nonetheless, synchronous
request-response interactions can be built on top of DIDcomm by assigning messages
to the same thread. Specific interactions enabled by DIDcomm, such as connecting and
maintaining relationships, issuing credentials and providing proof, are called DIDcomm
protocols, also known as Aries protocols within the Hyperledger Indy community [21].

Hyperledger Aries, a project grew out of the work in Hyperledger Indy, provides
interoperable tools designed for allowing trusted online peer-to-peer interactions based on

13

DIDs and VCs [22]. In addition to Aries protocols, another key component in the Aries
project is the Aries agent. An Aries agent acts as a fiduciary on behalf of an identity owner
and holds cryptographic keys that uniquely embody its delegated authorization. The
agent interacts with other Aries agents using interoperable Aries protocols, facilitating
secure and private communication [23].

Hyperledger AnonCreds, also known as Anonymous Credentials, is the zero-knowledge-
proof-based verifiable credential implementation used in the Hyperledger Indy ecosys-
tem [12]. The use of zero knowledge proofs offers privacy-preserving features to cre-
dential holder during the verifiable presentation process, preventing correlation with
unrevealed identifiers and reducing the sharing of personally identifiable information
with predicate proofs. In addition, AnonCreds provides a revocation scheme without
revealing correlatable revocation identifiers.

Using AnonCreds requires a credential schema to be written in a VDR, which is
typically a Indy ledger. A Credential Definition object, which references the schema
as well as an issuer, must also be written to the VDR for verification. For revocable
credentials, a Revocation Registry Definition containing revocation status lists must be
stored and updated in the VDR.

2.3 X-Road
X-Road is an open source software that uses PKIX to facilitate data exchange between
organizations [24]. An X-Road ecosystem is a community of organizations using the
same instance of the X-Road software to produce and consume services. Examples
of X-Road ecosystems are X-tee in Estonia and the Suomi.fi Data Exchange Layer in
Finland [25].

As the owner of the X-Road ecosystem, the X-Road Operator controls which organi-
zation can join the ecosystem and defines the onboarding process and regulations that
the ecosystem must follow. The X-Road Operator operates the central components of
the X-Road software including the Central Server. X-Road members are organizations
that have joined the ecosystem. Every X-Road member must have access to the technical
component that is required for exchanging messages via X-Road, the Security Server.
Figure 1 shows the overall X-Road Security Architecture.

Central Server (CS) manages and distributes the global configuration of the X-Road
instance that Security Servers use for mediating the messages sent via X-Road. The
global configuration consists of the registry of X-Road members and their Security
Servers, as well as the security policy including a list of trusted certification authorities,
a list of trusted time-stamping authorities, and configuration parameters.

Security Server (SS) handles service calls and responses between information systems
of X-Road members. It encapsulates the security aspects of the infrastructure including
key management, secure message exchanges, non-repudiation message creation, time-
stamping, and logging. A single Security Server can host several organizations. The

14

Figure 1. X-Road Security Architecture Diagram Adapted from [26]

operator of the Security Server is the server owner while the hosted organizations are
the clients. The Security Server manages two types of keys: authentication key for
establishing secure communication channels with other Security Servers, and signing
keys for clients to sign exchanged messages. During the onboarding process, the identity
of each organization and the Security Server are verified by a trusted Certification
Authority and certificates are issued for the keys.

In X-Road, Security Servers use the OCSP protocol offered by the OCSP responder
belonging to a trusted CA to query the certificate validity information. The Security
Server does not use the nonce extension in the OCSP request so that the OCSP responses
can be pre-created and cached to reduce the load in the OCSP service and increase
availability [24]. However, this makes the X-Road ecosystem vulnerable to replay
attacks in which a revoked certificate is accepted for authentication and signing.

A report named “Rebooting trust management in X-Road” was released in 2022 by
NIIS [27]. The report discusses how the shift to the decentralized public key infrastructure
can contribute to the X-Road trust model and member management. In the proposed
design, X-Road members manage their DIDs and VCs in their own SSI-compatible digital
wallets. DLT-based DIDs and DLT-based VCs are used to replace X.509 certificates for
authentication and signing. The use of VC for verification enables privacy preserving
benefits, such as selective disclosure and zero-knowledge proof, which increases the

15

control over the credentials the identity holder has. In our paper, we takes the proposed
design from the report as a starting point and works on a proof-of-concept to demonstrate
the actual use of DIDs and VCs in the X-Road for onboarding and access control.

2.4 Related Work
Soltani et al. first proposed the use of SSI and distributed ledger technology for client
onboarding and Know Your Customer (KYC) [28]. They presented an onboarding
framework called KYC2, which utilizes Hyperledger Indy, a public and permissioned
blockchain, to improve the costly and slow KYC processes. KYC2 introduces an identity
management ecosystem where clients’ identity is verified once and the result is stored
on their mobile devices, enabling reuse for future KYC processes. Although KYC2 has
a decentralized architecture, it depends on trusted sources to perform the initial client
identity proofing. Building on top of KYC2, Schlatt et al. designed a more general-
ized solution that can contribute to a more efficient KYC process [29]. The proposed
SSI-based framework addresses the requirements of different stakeholders, including
end-to-end digital processing of relevant documents, automation of manual processes,
standardized exchange of KYC documents, avoiding central storage of customer data,
preventing lock-in effects, and acceptance of KYC documents attested by other banks.
While these two studies discuss the use of DID and VC in the client onboarding process,
the clients in the discussed context are individuals who hold pairwise DIDs that are only
known to the parties in connection. However, in the case of X-Road, the clients to be
onboarded are public entities, so publicly readable DIDs for clients are necessary for
verification.

Several studies have investigated how SSI can be utilized for access control man-
agement in the context of end-user-to-enterprise use cases. Rafael et al. proposed the
Self-Sovereign Identity Based Access Control (SSIBAC), an attribute-based access con-
trol model based on decentralized identity [30]. SSIBAC maps VCs (presented as VPs)
to access control policies, achieving context-based privilege and ensuring data privacy
and sovereignty. Fotious et al. presented a security solution that combines VC and OAuth
2.0 to enable continuous authorization over HTTP and provide capabilities-based access
control [31]. In the design, a VC verifier is employed as a policy enforcement point,
intercepting HTTP requests towards a protected endpoint, and validating whether a VP
can be used to execute the requested operation over a resource. This approach is more
scalable and flexible than a system relying on Access Control Lists. In addition, using
a DID for proof of procession in VP allows users to proactively rotate the private key
without receiving a new VC, which is a good security practice. Lux et al. implemented
a proof of concept decentralized OpenID Connect Provider that verifies VP and grants
access to users [32]. Moreover, Lux et al. discuss using SSI technology for modify-
ing existing digital identity standards such as X.509 certificates. They proposed two
SSI-based PKIs. In transaction-based PKI, certificate attributes and DIDs are recorded

16

in the same transaction on a distributed ledger. In verifiable-credential-inspired PKI,
certificate attributes are recorded in a verifiable credential held privately in a wallet. Fan
et al. present a decentralized identity and access management, framework for IoT named
DIAM-IoT which supports decentralized and user-centric data authorization [33]. It
allows device owners to define user-specific rules for granting data access requests.

2.5 Answers to Research Question
In this section, we provided background information on public key infrastructure, Self-
Sovereign Identity (SSI), and X-Road. We then conducted a literature review to answer
the research question ”What are the applications of decentralized public key infrastruc-
ture with decentralized identifiers and verifiable credentials?” The results indicated
that DPKI with DIDs and VCs could be used for client onboarding and access control.
Research on SSI is in its early stages and existing work focus on the use of SSI tech-
nology in end-user-to-enterprise use cases as well as IoT use cases. We identified the
lack of discussion about modeling decentralized public key infrastructure with SSI for
entreprise-to-enterprise use cases. Therefore, we are motivated to base our contribution
on the subject and suggest an alternate architecture for X-Road, a data exchange system
that relies on PKIX, to migrate to a DPKI constructed with DIDs and VCs.

17

3 Design of X-Road with DPKI
The section presents the design goals of X-Road with DPKI, as well as the use cases
and elicited requirements. In this section, we answer the research question [RQ2] What
are the requirements for X-Road with decentralized public key infrastructure? It is
broken down into three sub-research questions:

• [RQ2.1] What are the design goals for X-Road with decentralized public key
infrastructure?

• [RQ2.2] What are the use cases for X-Road with decentralized public key infras-
tructure?

• [RQ2.3] What are the functional requirements for X-Road with decentralized
public key infrastructure?

3.1 Assumptions
The design of X-Road with DPKI assumes that enterprises adopt the Self-Sovereign Iden-
tity model, in which they control their own SSI agents in the cloud. Organizations’ SSI
agents have to hold verifiable credential(s) required by the X-Road governing authority
in order to join an X-Road instance. An organization is considered onboarded once its
DID and service endpoint can be publicly accessed and verified. In the design, this is
achieved by recording the organization’s DID and service endpoint on the distributed
ledger, and the transaction is endorsed by the X-Road governing authority.

3.2 Design Goal
The design goals of X-Road with DPKI includes existing design goals of X-Road [24]
with the following new design goals added:

G1: Decentralized In the existing X-Road with PKIX, the data exchange happens
between organizations only after two parties have established a secure connection with
the involvement of CA or OCSP responder. The design in this study aims to support
secure connection establishment without intermediaries.

G2: Granular Access Control In the existing X-Road with PKIX, discretionary
access control is implemented to restrict access to service based on the identity of the
subject (a subsystem or the access rights group to which the subsystem belongs) [34]. A
design goal of this study is to enable a more granular attribute-based access control by
replacing X.509 certificates with verifiable credentials that support selective disclosure
and zero-knowledge proof.

18

G3: Automated Member Onboarding In addition to the existing design goals, the
design also aims to demonstrate how member onboarding processes can be sped up with
automated verification of credential presentations without reliance on any third parties.

3.3 Use Cases
This section describes the use cases of the X-Road Central Server and Security Server,
which have an impact on how trust is established between two parties using VCs. Each
use case is defined to satisfy one or more design goals.

3.3.1 Use Cases of Central Server

Figure 2 depicts the use cases of X-Road Central Server and the actors of the use cases.
Table 1 presents Use Case 1: Configure and Start Central Server, where the Central
Server administrator configures and initiates the Central Server. It is assumed that the
Central Server has been installed by the administrator beforehand. The main success
scenario involves the administrator configuring the SSI agent interfaces, the verifiable
presentation request for data exchange, and the validity time of a verifiable presentation,
followed by starting the Central Server. Upon successful completion of the use case, the
Central Server should be ready to provide onboarding service. The use case aligns with
the design goal G2, which aims to provide granular access control. Table 2 presents Use
Case 2: Automated Member Onboarding, in which the Security Server uses the system
to automatically onboard member, i.e. to get an endorsement for an organization DID
registration transaction.

Figure 2. Use Case Diagram for X-Road Central Server

19

Table 1. Use Case 1: Configure and Start Central Server

ID: UC1
Name: Configure and Start Central Server
Description: CS administrator configures and starts the Central Server.
Goals: G2
System: Central Server
Level: User
Pre-conditions: Central Server has been installed by the administrator.
Post-conditions: Central Server is ready to provide onboarding service.
Triggers: -
Main success scenario:

1. CS administrator configures the SSI agent interfaces, VP request for data
exchange and the time of VP validity.

2. CS administrator starts the Central Server.

3.3.2 Use Cases of Security Server

Figure 3 depicts the use cases of X-Road Security Server and the actors of the use cases.
Use Case 3: Configure and Start Security Server is described in Table 3, which outlines
how the Security Server administrator configures the communication interfaces between
the Security Server and an SSI agent, as well as the verifiable presentation request for
access control and the validity time of a verifiable presentation. Table 4 presents Use Case
4: Send Onboarding Request, where the Security Server administrator uses the Security
Server user interfaces to send an onboarding request. Table 5 and Table 6 describe Use
Case 5: Consume Service and Use Case 6: Provide Service, respectively. In these use
cases, information systems of service consumers and service providers exchange data
through their own Security Servers, which perform access control, message signing, and
verification.

20

Table 2. Use Case 2: Automated Member Onboarding

ID: UC2
Name: Automated Member Onboarding
Description: Central Server automatically verifies and endorses the DID

registration transaction request from Security Server.
Goals: G1, G3
System: Central Server
Level: System
Actor: Security Server
Pre-conditions: Central Server is configured and started.
Post-conditions: -
Triggers: -
Main success scenario:

1. Security Server sends a DID registration transaction endorsement request
to the Central Server.

2. Security Server receives a VP request for onboarding from the Central
Server.

3. Security Server sends a VP to the Central Server.

4. Central Server verifies the received VP from the Security Server.

5. Security Server receives the endorsed DID registration transaction from
the Central Server.

Extensions:

4.a Central Server receives an invalid VP from the Security Server:

1. Central Server refuses to endorse the DID registration transaction.

21

Figure 3. Use Case Diagram for X-Road Security Server

Table 3. Use Case 3: Configure and Start Security Server

ID: UC3
Name: Configure and Start Security Server
Description: SS administrator configures and starts the security server.
Goals: G2
System: Security server
Level: User
Actor: SS administrator - Security server administrator
Pre-conditions: The security server has been installed by the administrator.
Post-conditions: The security server is ready for sending onboarding request.
Triggers: -
Main success scenario:

1. SS administrator configures the SSI agent interfaces, VP request for data
exchange and the time of VP validity.

2. SS administrator starts the security server.

22

Table 4. Use Case 4: Send Onboarding Request

ID: UC4
Name: Send Onboarding Request
Description: Security Server administrator sends an onboarding request.
Goals: G1, G3
System: Security Server
Level: User
Actor: SS administrator - Security Server administrator
Pre-conditions: The organization’s SSI agent contains VC(s) required to create

VP for onboarding.
Post-conditions: The organization’s DID registration transaction is endorsed by

the Central Server and written on the distributed ledger. The
Security Server is ready for exchanging X-Road messages.

Triggers: -
Main success scenario:

1. SS administrator selects to initiate the DID registration of the organization
in the Security Server UI.

2. Security Server creates a DID and a DID registration transaction.

3. Security Server sends the DID registration transaction to the Central
Server for endorsement.

4. Security Server receives a VP request for onboarding from the Central
Server.

5. Security Server creates and sends a VP to the Central Server.

6. Security Server receives the DID registration transaction with the Central
Server’s endorsement.

7. Security Server writes the endorsed DID registration transaction to the
distributed ledger.

8. SS administrator sees a successful message in the Security Server UI.

23

Table 5. Use Case 5: Consume Service

ID: UC5
Name: Consume Service
Description: An X-Road member’s information system consumes service

provided by another X-Road member’s information system.
Goals: G1, G2
System: Security Server
Level: System
Actor: Service client’s IS - Service client’s information system
Pre-conditions: X-Road member is onboarded.
Post-conditions: The messages exchanged are signed and logged.
Triggers: -
Main success scenario:

1. Service client’s IS sends a request message targeted at a service provider
to the Security Server.

2. Security Server exchanges VPs with the service provider’s Security Server.

3. Security Server signs the request message.

4. Security Server transmits the request message to the service provider’s
Security Server.

5. Security Server receives a response message from the service provider’s
Security Server.

6. Security Server verifies the signature on the response message.

7. Security Server forwards the response message to the service client’s IS.

8. Service client’s IS receives the response message from the Security Server.

Extensions:

2.a Service provider’s Security Servers fails to construct a valid VP:

1. Security Server returns an error message back to the information
system.

6.a The signature on the response message is invalid:

1. Security Server returns an error message back to the information
system.

24

Table 6. Use Case 6: Provide Service

ID: UC6
Name: Provide Service
Description: An X-Road member’s information system provides service to

another X-Road member’s information system.
Goals: G1, G2
System: Security Server
Level: System
Actor: Service provider’s IS - Service provider’s information system
Pre-conditions: X-Road member is onboarded.
Post-conditions: The messages exchanged are signed and logged.
Triggers: Service provider’s IS receives request message from Security

Server.
Main success scenario:

1. Service provider’s IS sends a response message to the Security Server.

2. Security Server signs the response message.

3. Security Server transmits the response message to the service client’s
Security Server.

25

3.4 Functional Requirements
Based on the use cases described, the functional requirements of X-Road components
in the design are listed. Corresponding acceptance criteria are described for every
requirement. Each requirement is defined to fulfill one or more use cases. Table 7 lists
the common functional requirements for both Central Server and Security Server. For
example, the first functional requirement (ID: 1) specifies that a component must present
a verifiable credential with a cryptographic proof of possession to create a verifiable
presentation in order to fulfil UC2, UC4, UC5, UC6. The requirement is considered to
be met if a verifiable presentation created by the component can be cryptographically
verified that it is created by the holder of verifiable credential. Table 8 lists the functional
requirements for Central Server, while Table 9 lists the functional requirements for
Security Server.

Table 7. Common Functional Requirements of X-Road Components

ID Use cases Functional Requirement Acceptance Criteria
1 UC2, UC4, UC5, UC6 A component must present

a VC with a cryptographic
proof of possession to create
a VP.

A VP created by a compo-
nent can be cryptographically
verified that it is created by
the holder of VC.

2 UC2, UC4, UC5, UC6 A component must verify the
holder binding of every re-
ceived VP.

A component cryptographi-
cally verifies that every re-
ceived VP is issued to the
prover.

3 UC2, UC4, UC5, UC6 A component must verify the
authenticity of every received
VC without reliance on a sin-
gle trusted-third party.

A component cryptographi-
cally verifies that every re-
ceived VC matches the prop-
erties in the presentation re-
quest using information ob-
tained from the distributed
ledger.

4 UC2, UC4, UC5, UC6 A component must verify
the revocation status of ev-
ery received VC without re-
liance on a single trusted-
third party.

A component cryptographi-
cally verifies the revocation
status of every received VC.
The revocation status can be
obtained from the distributed
ledger.

5 UC2, UC4, UC5, UC6 A component must request
VP using protocol that pre-
vents replay attack.

A component cryptographi-
cally verifies a VP that is
uniquely bound to the presen-
tation request.

26

Table 8. Functional Requirements of Central Server

ID Use cases Functional Requirement Acceptance Criteria
6 UC1 Central Server must allow Central

Server administrators to customize
the attributes in the VP request for
onboarding purposes.

Central Server administrators can
change the attributes in the VP re-
quest for onboarding purposes.

7 UC2 Central Server must onboard quali-
fied organizations by assisting them
to register their DID on the dis-
tributed ledger.

Central Server endorses DID regis-
tration transactions submitted by a
Security Server which has submit-
ted a valid VP. Central Server does
not endorse DID registration transac-
tions submitted by a Security Server
which has not submitted a valid VP.

27

Table 9. Functional Requirements of Security Server

ID Use cases Functional Requirement Acceptance Criteria
9 UC3 Security Server must allow Se-

curity Server administrators to
customize the attributes in the
VP request for access control.

Security server administrators can set the
attributes in the VP request for access
control before starting the server

10 UC4 Security Server must allow its
clients to send requests to the
Central Server to write their
DIDs on the distributed ledger.

Security Server clients can send DID
registration transaction endorsement re-
quests to the Central Server using an API
provided by the Security Server.

11 UC5 Security Server must allow its
clients to send messages to ser-
vice providers in the same X-
Road network.

Security Server clients can send messages
to service providers in the same X-Road
network using an API provided by the
Security Server.

12 UC5, UC6 Security Server must send a VP
request for access control to the
other member’s Security Server
after receiving a message from
its client targeted to another
member if it has no record of
valid VPs sent by the other
member’s Security Server.

Security Server sends a VP request for
access control to the other member’s Se-
curity Server after receiving a message
from its client targeted to another mem-
ber and it has no record of valid VPs sent
by the other member’s Security Server.

13 UC5, UC6 Security Server must transmit
a message from its client to an-
other Security Server only if a
VP submitted by the other Se-
curity Server is valid.

Security Server transmits messages from
its client to another Security Server which
has submitted a valid VP. Security Server
does not transmit messages from its client
to another Security Server which has not
submitted a valid VP.

14 UC5, UC6 Security Server must transmit
a signature computed from the
message sent from its client and
a private key associated with its
client’s DID along with the orig-
inal message to another Secu-
rity Server.

The signature sent along with a message
can be verified that it was computed from
the message and a private key associated
with the sender’s DID.

15 UC5, UC6 Security Server must transmit a
message from another Security
Server to its client only if the
message signature is valid.

Security Server transmits messages from
another Security Server to its client if
the message signature is valid. Security
Server does not transmit messages from
another Security Server to its client if the
message signature is invalid.

28

3.5 Answers to Research Questions
In this section, we discussed the design goal, use cases and the functional requirements
of X-Road with DPKI to answer the research question [RQ2] What are the requirements
for X-Road with decentralized public key infrastructure? It is broken down into three
sub-research questions and we gave answers to each of them.

[RQ2.1] What are the design goals for X-Road with decentralized public key in-
frastructure? The design goals of X-Road with DPKI should align with current
implementation of X-Road with improvement on removing third parties to secure estab-
lished connection, more granular access control and automated onboarding process to
justify the migration.

[RQ2.2] What are the use cases for X-Road with decentralized public key infras-
tructure? To achieve the design goals, six use cases have been identified. Each use
case describes the expected behaviour of the X-Road component in context. They cover
X-Road server configuration for SSI agent integration and verifiable presentation requests,
as well as automated member onboarding and data exchange with DPKI.

[RQ2.3] What are the functional requirements for X-Road with decentralized public
key infrastructure? The functional requirements for both X-Road Central Server and
Security Server are identified to fulfill the use cases. Each requirement has corresponding
acceptance criteria for evaluation.

29

4 Implementation of X-Road with DPKI
In the previous section, we established the requirements for implementing a decentralized
public key infrastructure for X-Road. In this section, we discuss our implementation of
proof-of-concept (PoC) of X-Road using decentralized public key infrastructure. We
introduce the PoC implementation that integrates with Hyperledger Indy ledger and open
source cloud agent framework Hyperledger Aries Cloud Agent Python. We describe
how the X-Road components are replaced by external components and how should their
interfaces be modified. Finally, we discuss how two network activities, namely member
onboarding and data exchange, that require trust establishment are performed in the PoC.

Through the implementation of the PoC, we answer the research question [RQ3]
What architectural changes are necessary in X-Road to use a decentralized public
key infrastructure? This research question is broken down into three guiding questions:

• [RQ3.1] What components are no longer needed in X-Road using decentralized
public key infrastructure?

• [RQ3.2] What components should be changed in X-Road using decentralized
public key infrastructure?

• [RQ3.3] How trusted activities are performed in X-Road using decentralized
public key infrastructure?

4.1 Design Decisions
To utilize a decentralized public key infrastructure with SSI technologies, X-Road has to
select:

• one or more DID method(s)

• one or more implementation(s) of verifiable credential

• one or more SSI agent(s) for integration

These selections should be based on the requirements identified in the previous section.
Specifically, the DID method should store the data to produce DID documents on a
distributed ledger. The implementation of verifiable credential should support revocation
status check using revocation registry published on a distributed ledger. The same
distributed ledger can be used for the DID method and the implementation of verifiable
credential. Lastly, X-Road Central Server and Security Server should support integration
with an SSI agent that supports the selected DID method and verifiable credential
implementation.

30

The integration with the SSI agent can be one of the following two ways depending on
the interfaces of the selected SSI agent. If the SSI agent implements its own connection
protocol that is required for credential presentation, the SSI agent should be placed
between an X-Road server (Central Server or Security Server) and the external network,
as shown in Figure 4. In other words, two X-Road servers should communicate via their
own SSI agents. Alternately, if the SSI agent does not implements its own connection
protocol and is simply a software to store private data such as keys and VCs, an X-
Road server should connect with the external network directly. That way, the SSI agent
becomes an external service that it consumes, as shown in Figure 5, and two X-Road
servers should communicate directly.

Figure 4. SSI Agent Integration Option 1

4.2 Proof-of-Concept Implementation
In the PoC, Sovrin DID method is used [11]. DID data is stored on an instance of
Hyperledger Indy, which is a distributed ledger purpose-built for Self-Sovereign Iden-
tity and verifiable credentials [14]. AnonCreds is chosen to be the implementation of
verifiable credential since AnonCreds supports revocation status check using revocation
registry published on Hyperledger Indy [12]. X-Road components are integrated with
Aries Cloud Agent Python which is an open source SSI agent that supports Sovrin

31

Figure 5. SSI Agent Integration Option 2

DID method and AnonCreds [35]. These open-source technologies are used in produc-
tion by BC Digital Trust from the Government of British Columbia [36]. The source
code of the PoC is available at https://gitlab.cs.ut.ee/ssi-xroad/ssi-xroad
and the source code of the modified Aries Cloud Agent Python is available at https:
//gitlab.cs.ut.ee/ssi-xroad/aries-cloudagent-python.

4.2.1 Architecture

In a world where the Self-Sovereign Identity model is adopted and organizations control
their own SSI agents, a number of components in existing X-Road can be externalized
and delegated to external components such as SSI agents and the distributed ledger. This
subsection discusses the setting of these external components, as well as how X-Road
components could evolve to work with external components to perform its functionalities.
Figure 6 shows the security architecture of the PoC, which can be compared with the
original security architecture shown in Figure 1.

Hyperledger Indy (Distributed Ledger) Hyperledger Indy is distributed ledger
purpose-built to be a verifiable data registry for storing DIDs and DID documents,
credential schema and revocation status [14]. In the PoC, VON Network which is an
open source project maintained by the Government of British Columbia is used to set
up a Hyperledger Indy Node network for development [37]. It comes with development
features that help the demonstration of the PoC including UI for browsing ledger trans-
actions and status of nodes. There are 4 validator nodes running in the VON network.

32

https://gitlab.cs.ut.ee/ssi-xroad/ssi-xroad
https://gitlab.cs.ut.ee/ssi-xroad/aries-cloudagent-python
https://gitlab.cs.ut.ee/ssi-xroad/aries-cloudagent-python

Figure 6. PoC Security Architecture Diagram

33

The authorization rules of the network are kept as default. With the default settings, a
user with role TRUSTEE/STEWARD/ENDORSER can add a new identity owner(user
without role). This rule affects the onboarding process in PoC which is to have an
endorser endorse a DID registration transaction from an organization. The configuration
of the Indy network is out of scope of this PoC. In a production network like the Sovrin
MainNet, DID registration operation should be permissioned. There should be more
validator nodes in the network. The authorization rules should also be carefully reviewed
since it affects the trust model of the network as well as the network consumers. For
example, the rule mentioned above can be set that a trustee or steward can add a new
identity owner but at least 3 endorsers are required to add a new identity owner.

Aries Cloud Agent Python (SSI agent) In the PoC, it is assumed that each organization
controls an Aries Cloud Agent Python (ACA-Py) instance as their SSI agent. The PoC
uses a number of Aries protocols supported by ACA-Py. DID Exchange Protocol is used
for making connections between agents [38]. Issue Credential Protocol 2.0 is used for
issuing credentials [39]. Present Proof Protocol 2.0 is used for presenting proofs [40].

Since one of the design goals of X-Road is to have all messages to be usable as digital
evidence, creating non-repudiable messages (signed message) is one of the features in
X-Road. SSI agent that controls the identity verification key should be responsible for
creating signatures without sharing the private key with other components. However,
ACA-Py does not expose an interface for signing payload. Instead, the signing function
is used internally within protocol implementations. At the time of writing, the only
protocol that supports non-repudiable message exchange is Non-Repudiable Signature
for Cryptographic Envelope but it is in ”Proposed” state and is not supported by ACA-
Py [41]. Therefore, part of the PoC is the implementation of a simple non-repudiable
message exchange protocol that supports the PoC use cases.

In the non-repudiable message exchange protocol, there are two roles, ”Requester”
and ”Responder”, and three message types, ”Request”, ”Response” and ”Denial”. Re-
quester initiates the protocol by making a request to a responder and the responder can
either deny or send a response. The payload within a request or response message is
signed by the sender verification key. In the future this protocol is expected to be replaced
by a well-recognized community-accepted protocol.

In the PoC, ACA-Py replaces the Signer component in the existing X-Road Security
Server which is responsible for managing keys and certificates used for signing messages.
ACA-Py is also responsible for transmitting messages in a secure channel (with DID-
comm) which removes part of the responsibility from the Proxy component in Security
Server.

X-Road Central Server The Central Server in PoC is a Spring Boot Application
developed with Java. It provides automated endorsement service to Security Servers

34

connected with it after requesting and receiving a verifiable presentation. Figure 7 shows
the components and interfaces of the Central Server.

Figure 7. Components and Interfaces of Central Server in PoC

The proof request Central Server sends to Security Servers for onboarding is con-
figurable. In the demonstration, the proof request requests three attributes ”name”,
”registryCode” and ”established” from a credential with schema name ”Business Regis-
tration Certificate”. Listing 2 shows an example of onboarding proof request specified in
JSON format.

X-Road Security Server As some core functionalities of Security Server are delegated
to ACA-Py, a lightweight Security Server is implemented for handling the operational
logic of X-Road in the PoC, including member onboarding, message mediation and
access control. While existing Security Server supports multi-tenancy, the Security
Server in PoC is designed for a single organization. Multi-tenancy can be achieved by
using the multi-tenancy feature of ACA-Py. The Security Server in PoC is a Spring Boot
Application developed with Java. Figure 8 shows the components and interfaces of the
PoC Security Server.

The Security Server Management REST API exposes an endpoint for member on-
boarding. When invoked, the Security Server instructs ACA-Py to connect with that

35

{
"name": "Proof of Business Registration Certificate",
"version": "1.0",
"requested_attributes": {

"0_business_uuid": {
"names": ["name", "registryCode", "established"],
"restrictions": [{

"schema_name": "Business Registration Certificate"
}]

}
},
"requested_predicates": {}

}

Listing 2. Onboarding Proof Request

Central Server’s Aries agent and presents proof of possession for the required credentials
for onboarding. Listing 3 shows an example onboarding request.

POST /management/onboard HTTP/1.1
Host: localhost:8001
Accept: application/json
Content-Type: application/json
Content-Length: 0

Listing 3. Onboarding Request

The Security Server Proxy API is responsible for mediating HTTP messages between
service consumers and service providers. It exposes an endpoint (/x-road/{information
system’s DID}/{path}) for forwarding requests to other X-Road members’ information
systems. The Proxy encodes HTTP requests from service consumers and decodes HTTP
responses from service providers and sends/receives the payload through ACA-Py using
the non-repudiable message exchange protocol. Listing 4 shows a HTTP request sent
to an information system identified by did:sov:2wJPyULfLLnYTEFYzByfUR through a
Security Server.

Before forwarding requests (as a Security Server of the service consumer) and after
receiving requests (as a Security Server of service provider), the Proxy sends a verifiable

36

Figure 8. Components and Interfaces of Security Server in PoC

GET /x-road/2wJPyULfLLnYTEFYzByfUR/books/3 HTTP/1.1
Host: localhost:8001

Listing 4. HTTP Request through Security Server

presentation proof request to the other party. If any party fails to present the requested
proof, the message exchange process aborts and an error message is returned to the
requester. The default proof request is the same as the one for onboarding (see Listing 2)
but it can be configured to be more fine-grained, for example, requesting more than one
credential and include predicates (see Listing 5).

A PoC Security Server UI is developed for member onboarding and viewing message
exchange records. For demonstration purposes, it also provides UI for viewing connection
and credential records in ACA-Py and requesting credentials from Issuer.

37

{
"name":

"Proof of BR And Startup Membership",
"version": "1.0",
"requested_attributes": {

"0_business_uuid": {
"names": ["name", "registryCode", "established"],
"restrictions": [{

"schema_name": "Business Registration Certificate"
}]

},
"0_startup_uuid": {

"names": ["name", "membershipCode"],
"restrictions": [{

"schema_name": "Startup Estonia Membership"
}]

}
},
"requested_predicates": {

"0_startDate_GE_uuid": {
"name": "startDate",
"p_type": ">=",
"p_value": 20200101,
"restrictions": [{

"schema_name": "Startup Estonia Membership"
}]

}
}

}

Listing 5. Custom Proof Request for Access Control

38

4.2.2 Network Activities

This subsection discusses how two core network activities on X-Road is performed in the
PoC. The first activity discussed is member onboarding, in which the X-Road Governing
Authory helps to register the organziation’s DID on the ledger, after requesting and
verifying a verifiable presentation submitted by the organization. The second activity
is message exchange and access control, in which two X-Road members exchange
verifiable presentations to verify each other’s identities and access rights.

Member Onboarding Figure 9 is a sequence diagram that illustrates the success
scenario of member onboarding. In the success scenario, the applicant holds the required
verifiable credentials in its wallet and can present proof for onboarding.

Applicants wishing to join the PoC X-Road instance initiates the onboarding flow
using the Management REST API. Information about the Central Server (endorser) for
X-Road onboarding should be made publicly available on the Indy ledger. In the PoC, the
Central Server’s DID can be found using VON network’s transaction browser. Upon re-
quest, the applicant’s Security Server connects with the Central Server through their own
Aries agents using the DID exchange protocol. Once connected, both Security Servers set
their roles for the connection. Applicant’s Security Server sets its role to be ”Transaction
Author”, whereas the Central Server sets its role to be ”Transaction Endorser”. The Cen-
tral Server then requests proof of possession for the required credentials for onboarding
using Aries Present Proof Protocol 2.0. Once the proof presentation is completed, the
applicant’s Security Server creates a new DID and sends a DID registration transaction
to the Central Server for endorsement. The Central Server verifies that it has received
the required presentation proof from applicant and endorses the transaction (by adding
its signature). Finally, the transaction is sent back to the applicant’s Security Server
who then requests network nodes to write the transaction to the ledger. The onboarding
process completes when the applicant’s DID is registered on the ledger so that it can be
discovered by other X-Road members.

Message Exchange and Access Control Figure 10 is a sequence diagram that illus-
trates the success scenario of a message exchange. In the success scenario, both parties
are able to present requested proofs for access control. Service client initiates a message
exchange flow by sending a request to the proxying endpoint of its Security Server.
Service client’s Security Server connects with service provider’s Security Server. Once
connected, the service consumer’s Security Server sends a presentation proof request
to the service provider’s Security Server for authentication and authorization. After
receiving and verifying the proof, the service consumer’s Security Server encodes the
HTTP request as a JSON payload and sends it through ACA-Py using the non-repudiable
message exchange protocol. Upon request, the service provider’s Security Server sends a
presentation proof request to the service consumer’s Security Server for authentication

39

Figure 9. Member Onboarding in PoC

40

Figure 10. Message Exchange in PoC

and authorization. After receiving and verifying the proof, the service provider’s Security
Server decodes the message payload and forwards the HTTP request to its information
system. The information system returns a HTTP response which is then encoded and
sent back to the service consumer through ACA-Py using the non-repudiable message
exchange protocol. If any party fails to present the requested proof, the message exchange
protocol aborts and an error message is returned to the service consumer.

4.3 Answers to Research Questions
In this section, we presented our implementation of proof-of-concept (PoC) of X-Road
using decentralized public key infrastructure. The research question [RQ3] What architec-
tural changes are necessary in X-Road to use a decentralized public key infrastructure?
is broken down into three sub-research questions and we gave answers to each of them.

41

[RQ3.1] What components are no longer needed in X-Road using decentralized
public key infrastructure? The Signer component in the existing X-Road Security
Server is no longer needed in X-Road using decentralized public key infrastructure. The
Signer component is currently responsible for managing keys and certificates used for
signing messages and it is expected to be replaced by the secure storage implementation
in SSI agent. SSI agent is also responsible for transmitting messages in a secure channel
using DIDcomm which removes part of the responsibility from the Proxy component in
Security Server.

[RQ3.2] What components should be changed in X-Road using decentralized public
key infrastructure? Both Security Server and Central Server need to integrate with an
SSI agent which includes consuming API provided by the SSI agent and listening events
emitted from the SSI agent. The Proxy component in Security Server should transform
HTTP messages into payloads that are accepted by the SSI agent, and vice versa.

[RQ3.3] How trusted activities are performed in X-Road using decentralized public
key infrastructure? Secure connection and credential exchange protocols built atop
DID are required to perform trusted activities in X-Road including member onboarding
and data exchange. For example, Aries protocols can be used through Aries agent to
perform these activities.

42

5 Evaluation
In this section, we evaluate the PoC implementation against the functional requirements
identified in Section 3. To achieve that, we set up an X-Road network instance with
our PoC components together with other auxiliary components for evaluation. We
simulate member onboadring and data exchange under different configurations to study
the behaviour of the PoC components. Finally, we performed a theory-based assessment
of the change in system quality from the existing X-Road implementation to the PoC
implementation. In this section, we answer the research question [RQ4] What is
the viability of the proposed proof-of-concept implementation for X-Road with
decentralized public key infrastructure? It is broken down into two sub-research
questions:

• RQ4.1 Does the proof-of-concept implementation meet the functional require-
ments?

• RQ4.2 How does the X-Road system quality change with DPKI in comparison to
PKIX?

5.1 Setup
An X-Road network instance has been set up with the PoC implementation for evaluating
the functional requirements. To become a member of this instance, organization must
hold a business registration certificate as verifiable credential in its SSI agent. In the
network there should be a single Central Server and two Security Servers. There should
be a separate SSI agent (ACA-Py instance) for every Central Server and Security Server.

Two components have been implemented to assist with the evaluation. The first
component is a web service that has been implemented with Java as the service provider’s
information system. It exposes REST APIs for adding and retrieving book records. The
second component is a web service that automatically issues credentials as requested. It
consists of a controller server implemented with Java and an ACA-Py instance. Two types
of credentials can be requested. The first credential type is named ”Business Registration
Certificate” and will be used for evaluating onboarding-related functional requirements.
It contains three attributes, namely ”name”, ”registryCode”, and ”established”. The
second credential type is named ”Startup Estonia Membership” and will be used for
evaluating access control-related functional requirements. It contains three attributes,
namely ”name”, ”membershipCode”, and ”startDate”.

5.2 Evaluation of Functional Requirements
In this section, we evaluate the PoC implementation of X-Road components against the
functional requirements outlined in Section 3.4. We use the described acceptance criteria

43

to determine if each requirement has been met.

5.2.1 Evaluation of Common Functional Requirements of X-Road Components

Common functional requirements of X-Road components described in Table 7 are related
to the use of VP. In the PoC implementation, X-Road components control ACA-Py
instances to generate, request and verify AnonCreds presentations. Thus these common
functional requirements are accomplished through the use of ACA-Py and AnonCreds.

Functional requirement 1

Acceptance criteria: A VP created by a component can be cryptographically verified that
it is created by the holder of VC.

Evaluation details: AnonCreds presentation contains proof of credential-holder binding
through the use of link secrets. Verifiers that can process AnonCreds presentation can
verify the VP is created by the holder of VC.

Validation result: Pass

Functional requirement 2

Acceptance criteria: A component cryptographically verifies that every received VP is
issued to the prover.

Evaluation details: AnonCreds presentation contains proof of credential-holder binding
through the use of link secrets. ACA-Py verifies the correctness of every proof received.

Validation result: Pass

Functional requirement 3

Acceptance criteria: A component cryptographically verifies that every received VC
matches the properties in the presentation request using information obtained from the
distributed ledger.

Evaluation details: AnonCreds presentation is generated to match the provided presenta-
tion request. ACA-Py verifies the correctness of every proof submitted by the prover by
cross referencing the credential definition it collected from the verifiable data registry in
the distributed ledger.

44

Validation result: Pass

Functional requirement 4

Acceptance criteria: A component cryptographically verifies the revocation status of
every received VC. The revocation status can be obtained from the distributed ledger.

Evaluation details: AnonCreds presentation includes non-revocation proofs when non-
revoked attributes are requested. ACA-Py verifies the correctness of the proof submitted
by the prover by cross referencing the revocation status it collected from the revocation
definition registry in the distributed ledger.

Validation result: Pass

Functional requirement 5

Acceptance criteria: A component can cryptographically verify a VP that is uniquely
bound to the presentation request.

Evaluation details: To prevent replay attacks, each presentation request sent by ACA-Py
includes a unique randomly generated number as nonce. ACA-Py verifies the same nonce
exists in the received presentation.

Validation result: Pass

5.2.2 Evaluation of Functional Requirements of Central Server

In this section, we evaluate the implementation of the Central Server against its functional
requirements.

Functional requirement 6

Acceptance criteria: Central Server administrators can change the attributes in the VP
request for onboarding purposes.

Evaluation details: Central Server administrators can customize the VP request by
setting the environment variable “XROAD PROOF REQUEST” to a valid AnonCreds
presentation request in JSON format when starting the Central Server. Listing 6 shows the
AnonCreds presentation request in JSON format used in the Central Server configuration

45

{
"name": "Proof of Identity",
"version": "1.0",
"requested_attributes": {

"0_business_uuid": {
"names": ["name", "registryCode", "established"],
"restrictions": [{

"schema_name": "Business Registration Certificate"
}]

}
},
"requested_predicates": {}

}

Listing 6. Onboarding Proof Request

for evaluation. It is sent to the Security Server after the Security Server sends a DID
registration transaction endorsement request to the Central Server.
Validation result: Pass

Functional requirement 7

Acceptance criteria: Central Server endorses DID registration transactions submitted by
a Security Server which has submitted a valid VP. Central Server does not endorse DID
registration transactions submitted by a Security Server which has not submitted a valid
VP.

Evaluation details: After receiving a DID registration transaction endorsement request
from a Security Server, Central Server checks if the Security Server has submitted a valid
VP for onboarding. Only if the Security Server has submitted a valid VP for onboarding
Central Server will endorse the DID registration transaction and return it to the Security
Server. Otherwise, Central Server rejects the DID registration transaction endorsement
request.

Two Security Servers have been set up to evaluate the requirement. They are sim-
ulated to be under the control of two distinct organizations interested in joining the
X-Road instance. One of these Security Servers is connected to an ACA-Py instance that
holds the required VC in the test scenario, namely ”Business Registration Certificate”.
The DID registration transaction endorsement request sent by this Security Server is
successfully accepted and processed by the Central Server. The newly registered DID

46

can be verified on the ledger browser. In contrast, the other Security Server which is
connected to an ACA-Py instance without the required credential, has its DID registration
transaction endorsement request rejected by the Central Server.

Validation result: Pass

5.2.3 Evaluation of Functional Requirements of Security Server

In this section, we evaluate the implementation of the Security Server against its func-
tional requirements.

Functional requirement 9

Acceptance criteria: Security server administrators can set the attributes in the VP request
for access control before starting the server.

Evaluation details: Security Server administrators can customize the VP request by
setting the environment variable ”XROAD PROOF REQUEST” to a valid AnonCreds
presentation request in JSON format when starting the Security Server. When the envi-
ronment variable is not set, the Security Server sends the default proof request for access
control, same as listing 6. After the environment variable is set to a modified AnonCreds
presentation request and the Security Server is restarted, the Security Server sends the
updated proof request for access control. Listing 7 shows the modified AnonCreds
presentation request in JSON format.

Validation result: Pass

Functional requirement 10

Acceptance criteria: Security Server clients can send DID registration transaction en-
dorsement requests to the Central Server using an API provided by the Security Server.

Evaluation details: Security Server client can make a HTTP POST request to Security
Server’s endpoint ‘/management/onboard‘ to send DID registration transaction endorse-
ment requests to the Central Server.

Validation result: Pass

47

{
"name": "Proof of Identity and Startup Membership",
"version": "1.0",
"requested_attributes": {

"0_business_uuid": {
"names": ["name", "registryCode", "established"],
"restrictions": [{

"schema_name": "Business Registration Certificate"
}]

},
"0_startup_uuid": {

"names": ["name", "membershipCode"],
"restrictions": [{ "schema_name": "Startup Estonia Membership" }]

}
},
"requested_predicates": {
"0_startDate_GE_uuid": {

"name": "startDate",
"p_type": ">=",
"p_value": 20200101,
"restrictions": [{ "schema_name": "Startup Estonia Membership" }]

}
}

}

Listing 7. Custom Proof Request for Access Control

48

Functional requirement 11

Acceptance criteria: Security Server clients can send messages to service providers in
the same X-Road network using an API provided by the Security Server.

Evaluation details: Security Server client can send HTTP requests to service providers
using its Security Server’s endpoint ”/x-road/{information system’s DID}/*”.

Validation result: Pass

Functional requirement 12

Acceptance criteria: Security Server sends a VP request for access control to the other
member’s Security Server after receiving a message from its client targeted to another
member and it has no record of valid VPs sent by the other member’s Security Server.

Evaluation details: In the implementation, after receiving a message from its client
targeted to another member, Security Server checks if there is a valid VP sent by the
other member’s Security Server. If there is no valid VP found, Security Server sends the
configured AnonCreds presentation request for access control, to the other member’s
Security Server via their respective ACA-Py instances.

To test the requirement, a message was sent to a service consumer’s Security Server
targeted to a service provider for the first time. The service consumer’s Security Server
sent the AnonCreds presentation request for access control to the service provider’s
Security Server.

Validation result: Pass

Functional requirement 13

Acceptance criteria: Security Server transmits messages from its client to another Secu-
rity Server which has submitted a valid VP. Security Server does not transmit messages
from its client to another Security Server which has not submitted a valid VP.

Evaluation details: In the implementation, Security Server only invokes the non-
repudiable message exchange protocol implemented in ACA-Py to transmit messages
from its client to another Security Server if it verifies that a cached valid VP submitted
by the other Security Server is found or a fresh VP is responded from the other Security
Server.

Two tests were performed for the evaluation. First, a message was sent to a service

49

consumer’s Security Server targeted to a service provider whose Security Server could
construct a valid VP that fits the VP request. The message was received by the service
provider’s Security Server. Then, a message was sent to a service consumer’s Security
Server targeted to another service provider whose Security Server could not construct a
valid VP that fits the VP request. The service provider did not receive the message.

Validation result: Pass

Functional requirement 14

Acceptance criteria: The signature sent along with a message can be verified that it was
computed from the message and a private key associated with the sender’s DID.

Evaluation details: Security Server uses the non-repudiable message exchange protocol
implemented in ACA-Py for data exchange. Security Server instructs ACA-Py to sign
the message with a verification key associated with the sender’s public DID registered on
the distributed ledger.

Validation result: Pass

Functional requirement 15

Acceptance criteria: Security Server transmits messages from another Security Server to
its client if the message signature is valid. Security Server does not transmit messages
from another Security Server to its client if the message signature is invalid.

Evaluation details: Security Server uses the non-repudiable message exchange protocol
implemented in ACA-Py for data exchange. ACA-Py verifies the message signature
as part of the protocol implementation. Only if the signature is valid ACA-Py will
forward the message to its controller, in this case the Security Server. Security Server
then transmits the messages to its client.

Validation result: Pass

5.3 Change in System Quality
Using the assessment model proposed by [42], we evaluate the changes in system quality
that define the trustworthiness of the X-Road. The quality properties and measures from
the assessment model are presented in Figure 11. Table 10 shows the overview of the
evaluation results.

50

Figure 11. Identity management system quality assessment model [42]

Table 10. Change in System Quality

Quality Criteria Quality Property Measure Change
Security Proneness to high risk

threats
Level of proneness to
high risk threat

Decrease

Reliability
Dependance on the
external social actors

Number of actors in-
volved in the credentials
issuance/verification

Unchanged

Dependance on exter-
nal system

Number of systems to
be integrated with for is-
suance/verification

Unchanged

Systematic delays Time of credentials is-
suance/verification

Decrease by the time
required for creden-
tial issuance due to
key rotation

Control
Responsibility over
credentials

Level of responsibility
over credentials

Increase

Number of credentials
to be used

Unchanged

Control over privacy Number of entities
to who sensitive data
is revealed during
issuance/verification

Increase

51

First, we assess security based on the proneness to high-risk threats. The PoC
system performs credential revocation checks using a revocation status list distributed
across decentralized nodes of the ledger. This approach reduces the computational
demand on any single machine, making it more difficult for denial-of-service attacks to
occur. Additionally, the system generates fresh non-revocation proof instead of relying
on cached proof, such as the cached OCSP responses used in existing X-Road. This
approach enables the use of mechanisms like nonces to prevent replay attacks. Thus, the
PoC has a higher security level than the existing X-Road.

Second, we evaluate the reliability of the PoC based on the dependence on external
social actors, dependence on external systems, and systematic delay. The reliability of
the system increases as the values of these measures decrease. While existing X-Road
depends on CAs to issue and verify certificates, the PoC depends on credential issuers to
issue and update certificate revocation status. In turn, the dependence on external social
actors remains unchanged. While the PoC introduces a dependency on SSI agents, it
removes the dependency on CAs, and hence, the dependence on external systems remains
unchanged. Finally, the systematic delay in the PoC decreases because members can
self-rotate their signing keys proactively without needing to request a new credential,
reducing the overall time of credentials issuance.

Third, we assess control over the credentials the identity holder has based on the level
of system responsibility over credentials and the level of privacy control the Member has
over its identity. The level of responsibility over credentials in the PoC decreases as the
credentials and key materials are managed by external SSI agents. On the other hand, the
level of privacy control that a member has over its identity increases due to the use of
credential implementation that supports selective disclosure and predicates.

5.4 Answers to Research Questions
In this section, we evaluated the PoC implementation against the function requirements
elicited in Section 3 and assessed the change in system quality from X-Road with PKIX
to X-Road with DPKI to answer the research question [RQ4] What is the viability of
the proposed proof-of-concept implementation for X-Road with decentralized public key
infrastructure? It was broken down into two sub-research questions and we gave answers
to each of them.

[RQ4.1] Does the proof-of-concept implementation meet the functional require-
ments? The PoC implementation satisfies all the acceptance criteria of the functional
requirements described in Section 3. Thus, the PoC implementation meets all the func-
tional requirements.

52

[RQ4.2] How does the X-Road system quality change with DPKI in comparison to
PKIX? The PoC system exhibits enhanced security and reliability compared to the
existing X-Road. Members in the PoC have greater control over their credentials.

53

6 Concluding Remarks
This thesis aims to answer the main research question: [MRQ] How can trust be estab-
lished between information systems using a decentralized public key infrastructure?
By following the Design Science Research Method (DSRM), we first studied traditional
public key infrastructure with X.509 certificates (PKIX) and its limitations, as well
as emerging Self-Sovereign Identity (SSI) technologies like decentralized identifiers
(DIDs) and verifiable credentials (VC). We also examined the usage of PKIX in member
onboarding and access control in the data exchange system X-Road. Subsequently,
we conducted a literature review to explore related work that uses SSI technologies to
facilitate onboarding and access control.

Our findings revealed that existing studies on SSI focus on enterprise-to-end-user use
cases, and there has been limited research on the enterprise-to-enterprise applications of
SSI technologies. To address this gap, we suggested an alternate architecture for X-Road
to migrate to a DPKI constructed with DIDs and VCs to explore potential benefits and
limitations.

To design DPKI with DIDs and VCs for X-Road, we established a set of design goals
and use cases that require trust establishment. We then elicited a list of functional require-
ments for X-Road components. Afterward, we implemented a proof-of-concept (PoC)
using open-source SSI technologies from the Hyperledger Indy ecosystem, including the
Hyperledger Indy ledger, the Hyperledger Aries Agent, the Sorvin DID method, and the
AnonCred verifiable credentials.

We built a simplified X-Road Security Server and a simplified X-Road Central Server
and demonstrated the trust establishment process for member onboarding and access
control using SSI technologies instead of PKIX. The PoC was evaluated based on the
elicited functional requirements. The validation results showed that the PoC fulfilled all
the functional requirements. The changes in system quality that define trustworthiness
were also assessed using the assessment model proposed in preliminary work [42]. The
results showed that the PoC improved security and reliability of the system, and members
of the PoC gained greater control over their credentials.

6.1 Answer To Research Question
The answer to the main research question is that decentralized identifiers and verifiable
credentials can be combined to construct a decentralized public key infrastructure and
replace X.509 certificates in PKIX. Decentralized identifiers can be used to bind an
identifier to public keys while verifiable credentials can be used for asserting information
about the subject of the identifier. The use of DID improves the subject’s control over
its public key as it enables key rotation without intermediaries. The use of VC enables
features like selective disclosure and predicates, which make the trust establishment
process more flexible. However, scalability issues for credential revocation status checks

54

still exist, as they do in PKIX. Using DLT-based VCs helps alleviate those problems by
reducing the load of a single machine.

6.2 Limitations
Our study have some limitations. First, our design may be biased towards the SSI
implementations in the Hyperledger Indy ecosystem. Since SSI is an emerging field,
there are no established architectures for enterprise software to integrate with the SSI
model. While our study and most studies from the literature review use technologies
from the Hyperledger Indy ecosystem as a reference [28, 29, 30, 32], the high-level
standard of decentralized identifiers and verifiable credentials may not enforce features
supported by technologies in the Hyperledger Indy ecosystem. For example, not every
verifiable credential implementation supports revocation and revocation status check
with the ledger like AnonCreds does. Second, our design assumes that every X-Road
member controls their own Hyperledger Aries instance as their SSI agent. In practice,
it can be challenging to have all X-Road members have their own SSI agent that can
communicate with each other.

6.3 Conclusion
Public key infrastructure with X.509 certificates has been the de facto standard for secure
communication over the internet. The widespread adoption and long history of X.509
certificates have led to the development of a mature ecosystem of tools, libraries, and
protocols that support its usage. This has made it a reliable and trusted mechanism
for establishing secure connections between parties. However, PKIX is often accused
of having a centralized trust model. Its validity checking mechanisms, Certificate
Revocation Lists (CRL) and Online Certificate Status Protocol (OCSP), suffer from
scalability issues due to its centralized nature, which leads to potential attacks such as
denial-of-service attacks and replay attacks. These problems give rise to alternative
decentralized public key infrastructures and Decentralized Identifiers (DIDs).

DIDs provide a mechanism for individuals to create and control their own unique
identifiers without intermediaries, which can be used to authenticate themselves across
different applications and systems. By definition, everyone can create a DID and write
arbitrary information to the DID document. This characteristic is beneficial to individual
privacy, as one can create as many identifiers as possible to represent different personas.
However, it makes DIDs unsuitable for asserting information in a trustworthy way. In
other words, a DID alone cannot be bound to a physical identity like a legal entity within
a jurisdiction, such as an X-Road member. To do so, verifiable credentials are needed.

Although DIDs are designed to enable decentralized systems without reliance on
centralized authorities, the use of verifiable credentials reintroduces a degree of central-
ization through the need for trusted issuers of credentials. In fact, verifiable credentials,

55

especially the revocable one, share similarities with certificates. First, credential issuers,
like certificate authorities, are trusted actors in a system. In turn, systems depending of
verifiable credentials and their issuers have the same single-point-of-failure as traditional
PKI does. If a trusted issuer is compromised, the system that depends on it halts. Not only
does the credential issuance process stop, existing revocable credentials can no longer
be used since there is no way to obtain the latest revocation status. Second, issuers of
revocable credentials have to provide credential status checking mechanisms to verifiers.
However, the protocols for the mechanisms are not defined in the verifiable credential
data model [8]. That means a centralized server like an OCSP responder can be deployed,
or a credential revocation list like the a certificate revocation list can be used. These
mechanisms are expected to suffer similar scalability issues CRL or OCSP have. In the
PoC of the study, the credential revocation list is written on a distributed ledger. While it
reduces the load of a single machine, it cannot provide real time revocation status check.
On the other hand, traditional PKI with X.509 can distribute the revocation status using
distributed ledger technology to reduce the load of a single CRL Distribution Point. In
other words, the problem of revocation status checking mechanisms is not specific to
certificates, but is due to the centralized nature of these mechanisms, which also exists in
the use of verifiable credentials.

Despite the similarities, there are lessons to be learned from the development of
DIDs and VCs that could improve traditional PKI. First, DIDs allow their owners to
bind public keys for verification to a unique identifier. Consequently, the owner can
proactively rotate the keys without changing the identifier as a cybersecurity best practice.
If an X.509 certificate binds a physical identity to a DID instead of a public key, the
certificate subject could rotate the public key without interacting with the CA. Second,
verifiable credentials are designed in such a way that they can be presented with or
without the original credential, while the authorship of the data can still be trusted after a
process of cryptographic verification. This is different from the use of X.509 certificates,
which are shared as is with the verifier when presenting. The concept of verifiable
presentation enables features like selective disclosure and predicates, which make the
trust establishment process more flexible. Since X.509 certificate is simply a container
that holds a list of key-value pairs, in theory it can be extended to be presented as a
verifiable presentation of a verifiable credential to improve its flexibility. Third, PKIX
can learn from DLT-based revocation mechanisms like the one in AnonCreds to provide
a scalable and privacy-preserving way for certificate validity checks. When choosing a
DLT, it is important to consider factors such as the number and the decentralization of
validator nodes, consensus mechanisms, time to finality etc. By taking these lessons into
account, traditional PKI can enhance its resiliency and trustworthiness while retaining its
existing benefits.

56

6.4 Future work
Future work could explore the integration of decentralized identifiers (DIDs) into X.509
certificates as additional attributes to replace the subject-public-key binding. This in-
tegration would enable key rotation without requiring new certificates to be issued.
Additionally, it may be beneficial to extend X.509 certificates to enable verifiable pre-
sentation without the original certificate, following the verifiable credential/presentation
pattern. This extension would allow for more flexible use cases, such as sharing specific
attributes of a certificate without revealing the entire certificate. These goals could be
archived be defining new certificate extensions for X.509 certificates that contain DID
information, as well as allowing X.509 certificates to be used as verifiable credentials.

57

References
[1] K. Cameron, “The laws of identity,” Microsoft Corp, vol. 12, pp. 8–11, 2005.

[2] C. Huitema, D. Bachenheimer, D. O’Donnell, D. Reed, J. Bikoundou, J. Fleenor,
K. Young, Kaliya Hand, J. Kneiss, Karl Jordan, L. Bendixsen, P. Subrahmanyam,
S. Mukhopadhyay, S. Perry, V. Syntez, V. Malhotra, and W. Chu, “Introduction to
Trust Over IP. Version 2.0..” https://trustoverip.org/wp-content/uploads/
Introduction-to-ToIP-V2.0-2021-11-17.pdf. Last accessed 10-Apr-2023.

[3] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet x. 509 public key infrastructure
certificate and crl profile,” tech. rep., Internet Engineering Task Force, 1999.

[4] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet x.
509 public key infrastructure certificate and certificate revocation list (crl) profile,”
tech. rep., Internet Engineering Task Force, 2008.

[5] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams,
“X.509 internet public key infrastructure online certificate status protocol - OCSP,”
Request for Comments RFC 6960, Internet Engineering Task Force, 2013. Num
Pages: 41.

[6] A. Preukschat and D. Reed, Self-Sovereign Identity. Manning Publications, 2021.

[7] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, M. Sabadello, and J. Holt,
“Decentralized identifiers (dids) v1.0,” W3C Working Draft, 2020.

[8] Verifiable Credentials Working Group, “Verifiable Credentials Data Model v1.1.”
https://www.w3.org/TR/vc-data-model/. Last accessed 10-Apr-2023.

[9] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information
systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75–105, 2004.

[10] C. Allen, A. Brock, V. Buterin, J. Callas, D. Dorje, C. Lundkvist, P. Kravchenko,
J. Nelson, D. Reed, M. Sabadello, G. Slepak, N. Thorp, and H. T. Wood, “De-
centralized public key infrastructure a white paper from rebooting the web of
trust.”

[11] M. Lodder and D. Hardman, “Sovrin DID Method Specification.” https://
sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.
html. Last accessed 10-Apr-2023.

[12] S. Curran, A. Philipp, H. Yildiz, S. Curren, and V. M. Jurado, “AnonCreds Speci-
fication.” https://hyperledger.github.io/anoncreds-spec/. Last accessed
10-Apr-2023.

58

https://trustoverip.org/wp-content/uploads/Introduction-to-ToIP-V2.0-2021-11-17.pdf
https://trustoverip.org/wp-content/uploads/Introduction-to-ToIP-V2.0-2021-11-17.pdf
https://www.w3.org/TR/vc-data-model/
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://hyperledger.github.io/anoncreds-spec/

[13] The Sovrin Governance Framework Working Group, “Sovrin Glossary V3.”
https://sovrin.org/wp-content/uploads/Sovrin-Glossary-V3.pdf. Last
accessed 10-Apr-2023.

[14] The Hyperledger Foundation, “Hyperledger Indy SDK.” https://github.com/
hyperledger/indy-sdk. Last accessed 10-Apr-2023.

[15] The Hyperledger Foundation, “Hyperledger Indy Plenum.” https://github.com/
hyperledger/indy-plenum. Last accessed 10-Apr-2023.

[16] S. Curran, P. Bastian, D. Hardman, C. Howland, C. Bormann, D. Wörner, D. Bluhm,
and K. D. Hartog, “Indy DID Method.” https://hyperledger.github.io/
indy-did-method. Last accessed 10-Apr-2023.

[17] The Hyperledger Foundation, “Hyperledger indy roles and permissions.”
https://github.com/hyperledger/indy-node/blob/main/indy common/
authorize/auth map.py. Last accessed 10-Apr-2023.

[18] The Hyperledger Foundation, “Hyperledger indy transaction endorser de-
sign.” https://github.com/hyperledger/indy-node/blob/main/design/
transaction endorser.md. Last accessed 10-Apr-2023.

[19] W. Abramson, N. Hickman, and N. Spencer, “Evaluating trust assurance in indy-
based identity networks using public ledger data,” Frontiers in Blockchain, vol. 4,
p. 622090, 2021.

[20] D. Hardman, “Aries RFC 0005: DID Communica-
tion.” https://github.com/hyperledger/aries-rfcs/tree/
070b325ef4a55005d79d03eb629f0399f3a0dfc4/concepts/0005-didcomm/
README.md. Last accessed 10-Apr-2023.

[21] D. Hardman, “Aries RFC 0003: Protocols.” https://github.com/hyperledger/
aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/
concepts/0003-protocols/README.md. Last accessed 10-Apr-2023.

[22] The Hyperledger Foundation, “Hyperledger Aries.” https://github.com/
hyperledger/aries. Last accessed 10-Apr-2023.

[23] D. Hardman, “Aries RFC 0004: Agents.” https://github.com/hyperledger/
aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/
concepts/0004-agents/README.md. Last accessed 10-Apr-2023.

[24] Nordic Institute for Interoperability Solutions (NIIS), “X-Road Architecture.”
https://docs.x-road.global/Architecture/arc-g x-road arhitecture.
html. Last accessed 10-Apr-2023.

59

https://sovrin.org/wp-content/uploads/Sovrin-Glossary-V3.pdf
https://github.com/hyperledger/indy-sdk
https://github.com/hyperledger/indy-sdk
https://github.com/hyperledger/indy-plenum
https://github.com/hyperledger/indy-plenum
https://hyperledger.github.io/indy-did-method
https://hyperledger.github.io/indy-did-method
https://github.com/hyperledger/indy-node/blob/main/indy_common/authorize/auth_map.py
https://github.com/hyperledger/indy-node/blob/main/indy_common/authorize/auth_map.py
https://github.com/hyperledger/indy-node/blob/main/design/transaction_endorser.md
https://github.com/hyperledger/indy-node/blob/main/design/transaction_endorser.md
https://github.com/hyperledger/aries-rfcs/tree/070b325ef4a55005d79d03eb629f0399f3a0dfc4/concepts/0005-didcomm/README.md
https://github.com/hyperledger/aries-rfcs/tree/070b325ef4a55005d79d03eb629f0399f3a0dfc4/concepts/0005-didcomm/README.md
https://github.com/hyperledger/aries-rfcs/tree/070b325ef4a55005d79d03eb629f0399f3a0dfc4/concepts/0005-didcomm/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/concepts/0003-protocols/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/concepts/0003-protocols/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/concepts/0003-protocols/README.md
https://github.com/hyperledger/aries
https://github.com/hyperledger/aries
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/concepts/0004-agents/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/concepts/0004-agents/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/concepts/0004-agents/README.md
https://docs.x-road.global/Architecture/arc-g_x-road_arhitecture.html
https://docs.x-road.global/Architecture/arc-g_x-road_arhitecture.html

[25] Nordic Institute for Interoperability Solutions (NIIS), “X-Road® History — X-
Road® Data Exchange Layer.” https://x-road.global/xroad-history. Last
accessed 10-Apr-2023.

[26] Nordic Institute for Interoperability Solutions (NIIS), “X-Road Security Ar-
chitecture.” https://docs.x-road.global/Architecture/arc-sec x road
security architecture.html. Last accessed 10-Apr-2023.

[27] M. Bakhtina, R. Matulevičius, A. Awad, and P. Kivimäki, Rebooting Trust Manage-
ment in X-Road. Nordic Institute for Interoperability Solutions (NIIS), 2022.

[28] R. Soltani, U. T. Nguyen, and A. An, “Decentralized and privacy-preserving key
management model,” in 2020 International Symposium on Networks, Computers
and Communications (ISNCC), pp. 1–7, IEEE, 2020.

[29] V. Schlatt, J. Sedlmeir, S. Feulner, and N. Urbach, “Designing a framework for
digital kyc processes built on blockchain-based self-sovereign identity,” Information
& Management, vol. 59, no. 7, p. 103553, 2022.

[30] R. Belchior, B. Putz, G. Pernul, M. Correia, A. Vasconcelos, and S. Guerreiro, “Ssi-
bac: self-sovereign identity based access control,” in 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), pp. 1935–1943, IEEE, 2020.

[31] N. Fotiou, E. Faltaka, V. Kalos, A. Kefala, I. Pittaras, V. A. Siris, and G. C. Polyzos,
“Continuous authorization over http using verifiable credentials and oauth 2.0,”
Open Identity Summit 2022, 2022.

[32] Z. András Lux, D. Thatmann, S. Zickau, and F. Beierle, “Distributed-ledger-based
authentication with decentralized identifiers and verifiable credentials,” arXiv e-
prints, pp. arXiv–2006, 2020.

[33] X. Fan, Q. Chai, L. Xu, and D. Guo, “Diam-iot: A decentralized identity and
access management framework for internet of things,” in Proceedings of the 2nd
ACM International Symposium on Blockchain and Secure Critical Infrastructure,
pp. 186–191, 2020.

[34] Nordic Institute for Interoperability Solutions (NIIS), “X-Road Secu-
rity Server User Guide.” https://www.x-tee.ee/docs/live/xroad/
ug-ss x-road 7 security server user guide.html. Last accessed 10-
Apr-2023.

[35] The Hyperledger Foundation, “Hyperledger Aries Cloud Agent Python.” https://
github.com/hyperledger/aries-cloudagent-python. Last accessed 10-Apr-
2023.

60

https://x-road.global/xroad-history
https://docs.x-road.global/Architecture/arc-sec_x_road_security_architecture.html
https://docs.x-road.global/Architecture/arc-sec_x_road_security_architecture.html
https://www.x-tee.ee/docs/live/xroad/ug-ss_x-road_7_security_server_user_guide.html
https://www.x-tee.ee/docs/live/xroad/ug-ss_x-road_7_security_server_user_guide.html
https://github.com/hyperledger/aries-cloudagent-python
https://github.com/hyperledger/aries-cloudagent-python

[36] Province of British Columbia, “BC Digital Trust.” https://digital.gov.bc.ca/
digital-trust/. Last accessed 10-Apr-2023.

[37] Government of British Columbia Canada, “VON Network.” https://github.
com/bcgov/von-network. Last accessed 10-Apr-2023.

[38] R. West, D. Bluhm, M. Hailstone, S. Curran, S. Curren, and G. Aristy, “Aries RFC
0023: DID Exchange Protocol 1.0.” https://github.com/hyperledger/
aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/
features/0023-did-exchange/README.md. Last accessed 10-Apr-2023.

[39] N. Khateev, S. Klump, and S. Curran, “Aries RFC 0453: Issue Cre-
dential Protocol 2.0.” https://github.com/hyperledger/aries-rfcs/
blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/
0453-issue-credential-v2/README.md. Last accessed 10-Apr-2023.

[40] N. Khateev and S. Curran, “Aries RFC 0454: Present Proof
Protocol 2.0.” https://github.com/hyperledger/aries-rfcs/
blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/
0454-present-proof-v2/README.md. Last accessed 10-Apr-2023.

[41] K. D. Hartog, “Aries RFC 0066: Non-Repudiable Signature for Cryp-
tographic Envelope.” https://github.com/hyperledger/aries-rfcs/
blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/
0066-non-repudiable-cryptographic-envelope/README.md. Last accessed
10-Apr-2023.

[42] M. Bakhtina, R. Matulevičius, A. Awad, and P. Kivimäki, “On the shift to decen-
tralised identity management in distributed data exchange systems,” in The 38th
ACM/SIGAPP Symposium on Applied Computing (SAC ’23), March 27-March
31, 2023, Tallinn, Estonia, (New York, NY, USA), Association for Computing
Machinery, 2023.

61

https://digital.gov.bc.ca/digital-trust/
https://digital.gov.bc.ca/digital-trust/
https://github.com/bcgov/von-network
https://github.com/bcgov/von-network
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/0023-did-exchange/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/0023-did-exchange/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/0023-did-exchange/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/0453-issue-credential-v2/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/0453-issue-credential-v2/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/0453-issue-credential-v2/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/0454-present-proof-v2/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/0454-present-proof-v2/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/0454-present-proof-v2/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/0066-non-repudiable-cryptographic-envelope/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/0066-non-repudiable-cryptographic-envelope/README.md
https://github.com/hyperledger/aries-rfcs/blob/070b325ef4a55005d79d03eb629f0399f3a0dfc4/features/0066-non-repudiable-cryptographic-envelope/README.md

Acronyms
ACA-Py Hyperledger Aries Cloud Agent - Python. 34–37, 39, 41, 43–47, 49, 50

CA Certificate Authority. 2, 6, 8–10, 12, 15, 18, 52, 56

CRL Certificate Revocation List. 6, 9, 56

CS X-Road Central Server. 20

DID Decentralized Identifier. 6, 10–19, 21, 23, 27, 28, 30–32, 34, 39, 42, 46, 47, 49, 50,
54–57

DIDcomm Decentralized Identifier Communication. 13, 34, 42

DLT Distributed Ledger Technology. 2, 6, 10, 12, 15, 55, 56

DPKI Decentralized Public Key Infrastructure. 2, 3, 6, 7, 9, 10, 17, 18, 29, 43, 52–54

DSRM Design Science Research Method. 7

HTTP Hypertext Transfer Protocol. 13, 16, 36, 37, 39, 41, 42, 47, 49

IDP Identity Provider. 10

IRC Internet Relay Chat. 13

IS Information System. 24, 25

MITM Man-in-the-middle attack. 10

OCSP Online Certificate Status Protocol. 6, 9, 15, 18, 52, 56

PKI Public Key Infrastructure. 16, 17, 56

PKIX Public Key Infrastructure with X.509. 2, 3, 6–10, 12, 14, 17, 18, 43, 52–56

PoC Proof of concept. 7, 30–35, 37, 39–41, 43, 44, 52–54, 56

SS X-Road Security Server. 22

SSI Self-Sovereign Identity. 7, 10, 12, 13, 15–20, 22, 29–32, 34, 42, 43, 52, 54, 55

SSL Secure Sockets Layer. 8

62

TLS Transport Layer Security. 8, 13

UI User Interface. 23, 32, 37

URI Uniform Resource Identifier. 10

VC Verifiable Credential. 6, 12, 14–17, 19, 26, 31, 44–46, 54–56

VDR Verifiable Data Registry. 14

VP Verifiable Presentation. 12, 16, 21, 23, 24, 26–28, 44–47, 49, 50

63

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Kin Long Leung,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

A Decentralized Public Key infrastructure for Trust Management in X-Road,
(title of thesis)

supervised by Mariia Bakhtina, Ahmed Awad and Raimundas Matulevičius.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Kin Long Leung 09/05/2023

64

	Introduction
	Background and Related Work
	Public Key Infrastructure
	Public Key Infrastructure with X.509
	Decentralized Public Key Infrastructure

	Self-Sovereign Identity
	Decentralized Identifier
	Verifiable Credential
	Agent
	Hyperledger Indy and Its Ecosystem

	X-Road
	Related Work
	Answers to Research Question

	Design of X-Road with DPKI
	Assumptions
	Design Goal
	Use Cases
	Use Cases of Central Server
	Use Cases of Security Server

	Functional Requirements
	Answers to Research Questions

	Implementation of X-Road with DPKI
	Design Decisions
	Proof-of-Concept Implementation
	Architecture
	Network Activities

	Answers to Research Questions

	Evaluation
	Setup
	Evaluation of Functional Requirements
	Evaluation of Common Functional Requirements of X-Road Components
	Evaluation of Functional Requirements of Central Server
	Evaluation of Functional Requirements of Security Server

	Change in System Quality
	Answers to Research Questions

	Concluding Remarks
	Answer To Research Question
	Limitations
	Conclusion
	Future work

	References
	I. Acronyms
	II. Licence

