
Päevapakkumiste juturobot (pp-bot)

Lunch offers chatbot readme document. This document explains the contents of the files

and how to run the application locally.

Architecture

The source code of the application is in the /src directory.

/src directory

commands.ts - request handlers for incoming requests by Slack slash commands.

constants.ts - holds constants used throughout the application, to make

changing them easy and keep other files cleaner.

controller.ts - request handlers for GET endpoints

db.ts - connects to the db and is responsible for all queries that are made to

the mysql database and for transforming the data to the right type.

functions.ts - helper functions that do not belong elsewhere.

queue.ts - defines the queue and function to initialize it and add the server

routines to the queue(repeatable jobs)

recommender.ts - is responsible for integrating with the pp-classifier

recommender service, that helps classify meals and and make recommendations to

the users.

server.ts - this is the entrypoint of the application, which starts the

server, initializes the queue, defines the routes and attaches listeners. This

is started by executing npm start

service.ts - contains the functions that call the services and save the

results to the database.

types.ts - contains data interfaces

worker.ts - responsible for processing jobs on the queue. This is started as a

separate process from the main server by executing npm run worker .

Job handlers

The /handlers directory contains job handlers. In workers.ts , every job is attached

to a handler with the same name.

Slack

The /slack directory contains files that handle communication with Slack.

suggestionsMessageBuilder.ts - Builds the blocks for Slack message payloads.

requestListener.ts - handles requests that Slack makes to the server when a

user interacts with the messages the app has sent.

service.ts - handles exchanging the temporary authorization grant for a an

authorization token, also has a helper function to extract data from request

Slack makes to the server on slash commands.

bot.ts is uses message builder to build and finally send the various different

messages to a Slack user.

Files outside of /src directory

.env - this file is not in the repository, but is needed to run the

application locally.

.env.example - an example configuration file with all the required variables

left blank.

.eslintrc.js - ESLint linting configuration file. Linting helps keeps the code

quality to specific set of rules.

https://api.slack.com/block-kit/building
https://api.slack.com/interactivity/handling
https://api.slack.com/authentication/oauth-v2
https://api.slack.com/interactivity/slash-commands

.gitignore - contains pathname patterns that need to be excluded from the

repository.

.prettierrc.js - ESLint plugin Prettier configuration file. Prettier helps

keep the code formatted to a specific set of rules.

DOKKU_SCALE - defines the how many processes of each that are defined in

Procfile will be started when deployed to Dokku.

package-lock.json - saves the exact package versions that installed during npm

install . Is used when deploying to install the same exact versions that were

used for development.

package.json - contains the scripts, runtime and development dependency

requirements of this project.

Procfile - specifies the commands that are executed to start the app. Relevant

to Dokku (also handled the same way in Heroku).

tables.sql - contains the sql for setting up the database.

tsconfig.json - TypeScript compiler configuration.

tslint.json - TypeScript linter configuration.

Compiled code will be in the dist directory and dependencies will be downloaded to

node_modules directory by the npm.

.vscode/settings.json contains Visual Studio Code related settings to run formatting

on the code when saving a file.

Development

You need to have a local redis and mysql database.

You need to set config values in .env following the config example file

.env.example .

You can then run the application on your local machine after running npm install by

running these three commands in separate terminals:

1. npm run watch-ts This watches for changes in source files and recompiles when

detected.

2. npm run watch-node This watches for changes in the compiled .js files and

restarts the server when detected.

3. npm run watch-worker This watches for changes in the compiled .js files and

restarts the worker when detected.

Commands or actions from Slack will not make it to your local server, but sending

messages to Slack works. It is possible to set up a secure tunnel to your local app

from the internet using ngrok , but it was not used for development of this

application and is not covered here.

Known bugs

It is possible for the user to add so many favorites, that it will exceed the

Slack message block limit (which is 50).

Even though exponential backoff is used, it is possible that a meal fetch job

fails 3 times in a row. Users with that city selected will not be able to get

suggestions or search results on that day.

Make sure the server time is set to your local time, otherwise suggestions will

be sent at the wrong time.

http://dokku.viewdocs.io/dokku/
http://dokku.viewdocs.io/dokku/
https://devcenter.heroku.com/articles/procfile
https://api.slack.com/tutorials/tunneling-with-ngrok
https://api.slack.com/reference/block-kit/blocks

