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GPU-accelerated Domain Decomposition Methods for Helmholtz
equation

Abstract:
The Helmholtz equation, used in various fields like acoustics, optics, and seismology,

is a partial differential equation that describes how waves propagate in various physical
systems. The Helmholtz matrix arises from the discretization of the Helmholtz problem
when solving the Helmholtz equation numerically using finite difference or finite element
methods. In practice, the numerical solution of the Helmholtz equation can be challenging
due to the size of the discredited problem as well as the spectral properties of the
matrix. The thesis explores iterative methods to solve the Helmholtz equation, speeding
up the computations by using the power of GPUs. A special domain decomposition
preconditioning technique, the Restricted Additive Average Schwarz method, is applied
in a setup that allows using multiple subdomains to solve simultaneously in one go on
a GPU. For this purpose a special implementation of the Conjugate Gradients iterative
solver in PyOpenCL using complex arithmetics was developed, allowing to solve for
multiple right-hand side vectors simultaneously. Performance evaluation for the overall
solution of the discretized Helmholtz equation is performed experimentally to compare
the efficiency of different subdomain solution techniques.
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GPU-kiirendatud alampiirkondadeks jagamise meetodid Helmholtzi
võrrandi jaoks

Lühikokkuvõte:
Helmholtzi võrrand, mida kasutatakse erinevates valdkondades, näiteks akustika,

optika ja seismoloogia, on osatuletistega diferentsiaalvõrrand, mis kirjeldab lainete tekki-
mist erinevates füüsikalistes süsteemides. Helmholtzi maatriks saadakse antud ülesande
diskretiseerimisel numbriliseks lahendamiseks, kasutades lõplike diferentside või lõplike
elementide meetodeid. Praktikas võib Helmholtzi võrrandi numbriline lahendamine olla
keerukas nii probleemi suuruse kui ka maatriksi spektraalsete omaduste tõttu. Käesolev
lõputöö uurib iteratiivseid meetodeid Helmholtzi võrrandi lahendamiseks kiirendades
arvutusi kasutades GPU võimsust. Iteratiivses protsessis rakendatakse eelkonditsioneeri-
jana spetsiaalset alampiirkondadeks jagamise meetodit, Restricted Additive Schwarz’i
meetodit, mis võimaldab GPU-d kasutada samaaegselt mitme alampiirkonna lahen-
dajana. Sel eesmärgil sai realiseeritud spetsiaalne Kaasgradientide kompleksarvuline
blokk-lahendaja PyOpenCL-s mitme samaaegse parempoole vektori jaoks. Sooritatak-
se eksperimente diskretiseeritud Helmholtzi võrrandi lahenduse jõudluse hindamiseks,
võrreldakse erinevate tehnikate tõhusust sõltuvalt alampiirkondade lahendamiseks kasu-
tatavast meetodist.

Võtmesõnad:
GPU-programmeerimine, Kaasgradientide meetod, Iteratiivsed meetodid, Alampiirkon-
dadeks jagamise meetod, OpenCL, PyOpenCL

CERCS:
P130 - Funktsioonid, diferentsiaalvõrrandid, P170 - Arvutiteadus, arvutusmeetodid,
süsteemid, juhtimine (automaatjuhtimisteooria)
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1 Introduction
The solution of partial differential equations (PDEs) plays a fundamental role in numerous
scientific and engineering applications. Helmholtz equations hold particular significance
among the various types of PDEs due to their wide-ranging applicability in fields such as
acoustics, electromagnetics, quantum mechanics, and seismology, which is the scientific
study of earthquakes and elastic waves [JAET23]. However, obtaining accurate and
efficient solutions for these equations can be challenging, especially when dealing with
large-scale problems or complex geometries. Therefore, iterative Krylov subspace
methods [LS13] have emerged as powerful techniques for solving linear systems arising
from discretized PDEs. One of the simplest methods within this class is the Conjugate
Gradient (CG) method [She94], renowned for its robustness and efficiency in the case of
symmetric positive definite matrices. In the case of unsymmetric matrices, one of the
fastest Krylov subspace methods is the GMRES Method (Generalized Minimal Residual
Method) [Saa93], which can also be used in the case of more complex preconditioning
techniques, like the Domain Decomposition Method (DDM), that we will describe later.

The Conjugate Gradient method is an iterative algorithm to solve symmetric positive
definite systems of linear equations. It is beneficial for solving large, sparse systems,
which arise in many scientific and engineering applications. Some properties of the CG
method are given below.

• Efficiency - The Conjugate Gradient method is efficient, and it usually requires
fewer iterations than other iterative methods to achieve a given level of accuracy.

• Symmetry - The Conjugate Gradient method is suitable for solving symmetric
positive definite systems. The symmetric positive definite systems appear in many
scientific and engineering applications. In such cases, the Conjugate Gradient
method is often faster and more accurate compared to other methods not specifically
designed for symmetric systems.

• Parallelizability - The Conjugate Gradient method is easily parallelizable, so it
can leverage modern computer architectures and solve large systems efficiently.
This parallelizability makes it a good candidate for GPGPU use.

• Low memory footprint - The Conjugate Gradient method requires less memory
than other methods. That results in CG being ideal for solving large systems on
computational devices with limited memory capacity that cannot store the whole
system in memory simultaneously.

When discussing iterative methods for solving linear systems of equations, it is critical
to consider using preconditioners. The preconditioners are used in iterative methods for
solving linear systems of equations to improve their convergence properties. They are
generally used when the coefficient matrix is large, sparse, and poorly conditioned. A
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preconditioner is a matrix or an operator that approximates the inverse of the coefficient
matrix and is applied to the system of equations before or during the usage of the iterative
method. The goal of the preconditioner is to transform the system of equations into an
equivalent system that is easier to solve iteratively by obtaining a new matrix with a
lower condition number.

For instance, the Additive Schwarz Method [Dry89] can be a preconditioner for the
Krylov subspace methods like GMRES (Generalized Minimal Residual) to improve their
convergence properties. In this approach, the domain of the problem is divided into a
set of overlapping subdomains. Each subdomain is solved independently with a direct
or an inexact solver like ILU (Incomplete Cholesky Factorisation) or CG. At the same
time, the outer iterative method is the Flexible GMRES (FGMRES) method, allowing the
robust convergence of outer iterations with different preconditions on each iteration, see
[GSV17a]. During the preconditioning step, the solutions obtained from each subdomain
are combined using the Additive Schwarz method, which updates the global solution
by adding up the local (possibly approximate) solutions from each subdomain. The
outer iterative process is repeated until the global solution converges to the desired level
of accuracy. The key advantage of this approach is that the computational cost of the
local preconditioner is significantly reduced compared to solving the entire system using
GMRES with direct subdomain solvers with sparse matrix factorization.

In this thesis, the background section (see Section 2) explores GPU programming and
its benefits for computational tasks. It also provides an overview of Krylov subspace and
domain decomposition methods. The data and methods section (see Section 3) details the
implementation of GPU-accelerated solvers for the Helmholtz equations, while the results
section (see Section 4) analyzes the solver’s performance across various metrics. Finally,
the discussion section (see Section 5) examines the results’ interpretation, discusses the
methods’ limitations, and suggests potential improvements.

While writing this thesis, the author used ChatGPT [Ope23] to get feedback on the
content and correct language errors. The feedback helped improve the text and fix the
mistakes regarding the language.

1.1 Problem
The solution of Helmholtz equations presents numerous challenges, making it a complex
and demanding task. These equations describe the behavior of wave phenomena, such as
acoustic or electromagnetic waves, as they propagate through a medium. Wave propaga-
tion brings unique obstacles originating from diffraction, interference, and resonance.
Accurate wave behavior representation necessitates meticulous treatment of boundary
conditions, computational domain size, and discretization techniques.

The Helmholtz operator can also exhibit severe ill-conditioning, mainly when dealing
with large wave numbers or complex geometries. Ill-conditioning refers to situations
where slight variations in the input or data can lead to significant changes in the solution.
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Furthermore, Helmholtz equations arise in various applications involving large-scale
systems, such as wave propagation in realistic environments or the modeling of complex
structures. Solving such large-scale problems calls for efficient computational tech-
niques capable of managing vast amounts of data and computational operations while
maintaining accuracy and reasonable time complexity.

Addressing these challenges requires developing and utilizing advanced numerical
techniques, including iterative Krylov subspace methods like the Flexible Generalized
Minimal Residual method (FGMRES) and the Conjugate Gradient (CG) method. These
methods aim to overcome the limitations presented by direct solvers by efficiently
approximating the solution through iterative means, making them well-suited for handling
the complexities associated with Helmholtz equations.

1.2 Contribution
In this thesis, we study the solution to Helmholtz’s problem using the FGMRES method
as an outer Krylov subspace method preconditioned with Restricted Averaging Additive
Schwarz (RAAS) to improve the convergence of FGMRES. The Conjugate Gradient
(CG) is used as an inner method for equal-sized submatrices obtained by applying an
RAAS preconditioner to the original domain. This makes it possible to solve for multiple
subdomains on a single GPU simultaneously – using multiple right-hand side vectors
since the matrices are precisely the same on each subdomain. The aim of the thesis is to
shed light on the properties, strengths, and limitations of those methods.

In order to enhance the computational speed of these operations, advanced techniques
are employed, such as utilizing the power of Graphical Processing Units (GPUs) to
accelerate matrix operations using the OpenCL programming framework.

The choice of an appropriate preconditioner can significantly impact the performance
of the CG method when solving Helmholtz equations. Preconditioners aim to transform
the original system into a more well-conditioned form, thereby reducing the number of
iterations required for convergence. By exploring and comparing different precondition-
ing strategies, this thesis aims to identify the most effective and efficient preconditioners
tailored specifically for Helmholtz equations.

Furthermore, numerical experiments will be conducted to evaluate the performance
of different solutions in various scenarios using the resources from UT HPC. This will
involve systematically varying parameters such as the total number of domains, domain
size, and number of inner iterations (and possibly the presence of heterogeneities - as
future work) to assess the preconditioners’ robustness and scalability. Comparisons will
be made based on convergence behavior, computational efficiency, and overall solution
accuracy. The outcomes of this investigation will provide the performance gains achieved
by utilizing the parallel processing capabilities of GPUs and explore the integration of
Domain Decomposition Methods to enhance the solution process’s efficiency further. The

10



objective is to achieve significant speedup and reduce the time-to-solution for large-scale
Helmholtz equation problems.
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2 Background
This section will give an outlook on the application of GPGPU programming using
OpenCL to accelerate the Krylov subspace methods for solving Helmholtz equations and
provide background information about the separate components of the implementation.

2.1 General-purpose computing on graphics processing units (GPGPU)
computations

Recently, the Graphical Processing Unit (GPU) has shown great potential for the future of
computation. Initially designed for fast image rendering in graphical applications, GPUs
are now widely used for non-graphical applications, a field known as GPU computing.
The computational capability of GPUs is evolving into powerful parallel computing
units. Hence, General-purpose computing on graphics processing units (GPGPU) is
a technique that involves utilizing the processing power of graphics processing units
(GPUs) for general-purpose computing tasks that were previously performed by the
central processing unit (CPU).

The architecture of GPUs is designed to handle a large number of computations si-
multaneously. It makes GPUs more powerful than CPUs in certain types of computations.
The main difference between CPU and GPU architecture is the number of cores. A CPU
typically has a few cores optimized for sequential processing, while a GPU has thousands
of smaller cores optimized for parallel processing. This makes GPUs more suitable
for tasks that require big parallelisms, such as image and video processing, scientific
simulations, and machine learning.

Furthermore, GPUs have much faster memory and memory bandwidth than CPUs.
That allows GPUs to move data between the processor and memory quickly. This is
critical for performance in data-intensive applications. Additionally, modern GPUs
are designed to be highly programmable and can be programmed using a variety of
programming languages, including CUDA, OpenCL, and others.

CUDA (Compute Unified Device Architecture) is a parallel computing platform and
programming model created by NVIDIA. It allows developers to use GPUs for general-
purpose computing tasks in addition to their traditional use in graphics processing. The
CUDA is a parallel computing platform developed by NVIDIA and optimized only for
NVIDIA GPUs. However, depending on the underlying hardware, it might bring some
performance overhead and limitations. On the other hand, OpenCL is an open standard
for parallel programming across different hardware architectures, including GPUs, CPUs,
and FPGAs. This means that OpenCL can be used with various hardware vendors. It
makes OpenCL more adaptable and practical compared to CUDA [DWL+12, FVS11].
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Figure 1. OpenCL memory model. LDS is an abbreviation for Local data storage

2.2 Execution of a program in OpenCL
In today’s era of big data and complex computational tasks, the demand for high-
performance computing solutions has never been greater. Traditional approaches to par-
allel computing often face challenges in achieving portability across different hardware
platforms. OpenCL addresses these challenges by providing a standardized framework
for parallel programming that enables developers to write efficient, portable code across a
wide range of devices. It is used in a wide range of applications and use cases, including
scientific simulations, image and video processing, machine learning, and computational
finance. Real-world examples demonstrate the performance benefits and scalability
achieved by using OpenCL in these applications.

OpenCL follows a host-device model, where the host CPU coordinates the execution
of parallel kernels on compute devices such as GPUs and other accelerators. The
architecture of OpenCL consists of compute devices, compute units, work-items, work-
groups, and different memories. The memory hierarchy includes global, local, and
private memory spaces; see Figure 1. This architecture enables fine-grained parallelism
and efficient data movement between the host and compute devices. The programming
model of OpenCL involves writing kernels, which are parallel functions written in the
OpenCL C language. Kernels are executed on compute devices in parallel by a large
number of work-items, with each work-item representing a single execution thread.
Data parallelism is achieved by partitioning the computation across multiple work-
items, while task parallelism is achieved by launching multiple kernels concurrently
[KMSZ15, SGS10].

To start writing an OpenCL program, we must ensure that OpenCL SDK is correctly
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installed for our platform. It includes the necessary libraries, header files, and tools for
writing and building OpenCL programs. The term platform in OpenCL is the hardware
and software environment in which OpenCL runs. There can be multiple platforms on
a single computer. Each platform has its own set of devices. A compute device is the
physical hardware on which OpenCL code runs. Examples of devices include CPUs,
GPUs, and FPGAs. GPUs consist of a large number of compute units (CUs), and each
CU has a set of cores that can execute instructions in parallel. These cores are also
called processing elements. In addition to the processing cores, GPU architecture has
several memory types, including global memory, shared memory, and registers. Global
memory is accessible to all cores and is used to store data that needs to be accessed by
all threads in a program. Shared memory is a fast, low-latency memory shared between
threads within a thread block. Registers are fast, on-chip memory that stores data and
intermediate values during computations. Additionally, each processing element has its
own private memory, accessible only by one work item or thread [KSA+10].

In OpenCL programs, the host device communicates with the compute device by
sending commands through a command queue. These commands can be for kernel
execution or data transfers. Each command is executed in the same order as in the queue
and asynchronously, meaning the host can add commands to the queue while the device
executes previous commands. The compute device receives the command from the
command queue to execute the kernel on a workgroup. A workgroup is a group of work
items that execute, communicate, and synchronize using shared memory and barrier
synchronization on the same compute unit. A workgroup is defined by its size, specified
by the developer when the OpenCL kernel is launched. On the other hand, a wavefront is
a group of work items that execute the same instruction in a lock-step fashion, and its
size depends on the hardware architecture of the GPU, which is usually 32 or 64. Once
all the workgroups have been executed, the compute device sends the results back to the
host device [TS12].

There are several ways to develop OpenCL programs. The most renowned is C
language-based development. While C provides a robust API for writing efficient parallel
code across different computing devices, its complexity can cause some challenges.
Hence, alternative options are explored and discussed in the following section.

2.3 GPU programming with PyOpenCL
Nowadays, we are witnessing the different complex algorithms that solve real-life
applications. Therefore, an increase in the time complexity of algorithms has led to a
need to accelerate them using GPUs. PyOpenCL is a Python library used to program
heterogeneous systems with OpenCL. It provides a way for Python programmers to
harness the power of OpenCL from within their Python scripts, allowing them to write
high-performance code that runs on various hardware architectures. It also allows the use
of multiple GPUs for a single Python program. There are many advantages to using the
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PyOpenCL Python library over the C programming language. I will list some of them
below:

• Simplicity - Python is a high-level programming language with a simpler syntax
than C, which is also easy to debug. This can make development faster and more
efficient.

• Easy-to-use API - PyOpenCL provides a simpler and more intuitive API than the
low-level C API, making it easier to write and understand code.

• Easy integration with different libraries - PyOpenCL integrates well with the
Python ecosystem, which includes libraries like NumPy, SciPy, and Matplotlib.
This makes it a popular choice for scientific computing applications.

• Cross-platform support - PyOpenCL is designed to work on various operating
systems and hardware platforms, including Windows, macOS, Linux, and others.

The PyOpenCL platform has different sections for both host code and device code.
The host code encompasses typical Python operations like variable definition and regular
code execution. In contrast, the device code is responsible for actual implementa-
tion. This device code operates within kernels. PyOpenCL views GPUs and accel-
erators as assemblies of multiple compute devices, each subdivided into units con-
taining numerous processing elements. This organizational structure facilitates the
execution of functions. Development in PyOpencCl starts with defining the context
that binds all the objects inside the code. It can be created by providing the list of
devices as cl.Context(devices=[devices]). The context contains all the information
about devices, kernels, memory, and variables in the created context. The command
queue defines the order in which the commands are executed. Queue is defined as
cl.CommandQueue(ctx), and used to enqueue commands for execution on a specific
device associated with the context. We can pass data to kernels by buffers. It is de-
fined as cl.Buffer(ctx, mf.READ_WRITE, size=256, hostbuf=a_values). In the
mentioned command, we define the read-write permission of the buffer and its size.
Moreover, we pass the value a_values that is a numpy array. The most important part
of PyOpenCL is defining the kernels. The kernel code is written as a string inside
cl.Program(ctx, kernel) [PyO].
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program = c l . Program ( c tx , " " "
_ _ k e r n e l v o i d m u l t _ m a t r i c e s ( c o n s t u n s i g n e d i n t s i z e , _ _ g l o b a l f l o a t *

f i r s t , _ _ g l o b a l f l o a t * second , _ _ g l o b a l f l o a t * r e s u l t ) {
i n t i = g e t _ g l o b a l _ i d ( 1 ) ;
i n t j = g e t _ g l o b a l _ i d ( 0 ) ;
r e s u l t [ i + s i z e * j ] = 0;
f o r ( i n t k = 0; k < s i z e ; k++) {

r e s u l t [ j + s i z e * i ] += f i r s t [ k + s i z e * i ] * second [ j + s i z e
* k ] ;

}
} " " " ) . b u i l d ( )

program . m u l t m a t r i c e s ( queue , f i r s t . shape , None , np . i n t 3 2 ( l e n ( f i r s t ) ) ,
f i r s t _ b u f , second_buf , r e s u l t _ b u f )

c l . enqueue_copy ( queue , r e s u l t , r e s u l t _ b u f )

Listing 1. PyOpenCL code for matrix multiplication

The provided implementation [1] demonstrates a Matrix Multiplication program utiliz-
ing PyOpenCL. It initializes two random matrices using NumPy arrays, passed to the
kernel via buffers. The resulting matrix is stored in a destination matrix labeled ’result’.
PyOpenCL uses the ‘enqueue_copy‘ function to copy data between different memory
objects. Specifically, it copies data from one buffer to another. This function allows
you to efficiently transfer data between different memory regions, such as between the
host and device memory or between different regions of device memory. In our code,
cl.enqueue_copy(queue, result, result_buf) line copies the data from buffer ‘re-
sult_buf‘ to the NumPy array.

f o r i i n r a n g e ( f i r s t [ 0 ] . s i z e ) :
f o r j i n r a n g e ( second [ 0 ] . s i z e ) :

f o r k i n r a n g e ( second [ 0 ] . s i z e ) :
r e s u l t [ i ] [ j ] += f i r s t [ i ] [ k ] * second [ k ] [ j ]

Listing 2. Python code for matrix multiplication

The data presented in Table 1 shows that the PyOpenCL implementation considerably
outperforms the regular Python implementation [2]. For instance, while the PyOpenCL
implementation executes the multiplication in merely 0.183 seconds for a matrix size of
1024, the regular Python code requires a significantly longer time of 1379 seconds to ac-
complish the same task. Observations indicate that PyOpenCL demonstrates performance
that increases exponentially as the size of the matrices increases. This phenomenon arises
from the efficient method of passing an entire vector from the matrix as a single work
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item to the kernel. It indicates that using PyOpenCL for matrix multiplication offers
considerable performance improvements over regular Python code.

Table 1. Execution Time Comparison: PyOpenCL vs. Python for Matrix Multiplication

Size of Matrix PyOpenCL (sec) Normal Python (sec)

128 0.146 2.613
256 0.148 20.627
512 0.151 170.378
1024 0.183 1378.951

2.4 Krylov subspace methods
Solving large linear systems is a fundamental task in scientific computing, engineering,
and other fields. Direct methods, while accurate, face scalability challenges for large-
scale problems due to their computational complexity and memory requirements. Iterative
solvers, particularly Krylov subspace methods, offer a promising alternative for efficiently
solving large sparse linear systems. Krylov subspace methods are a family of iterative
solvers used to solve large, sparse linear systems of equations. These methods are
particularly effective when direct methods, such as LU decomposition or Cholesky
factorization, become computationally unusable due to the size and sparsity of the
coefficient matrix.

The fundamental idea behind Krylov subspace methods is to iteratively construct a
sequence of approximations to the solution vector by generating a sequence of subspaces
known as Krylov subspaces. These subspaces are formed by repeatedly applying the
coefficient matrix of the linear system to an initial vector, see [Saa03].

Given a matrix A and a starting vector r0, the Krylov subspace of dimension n,
denoted as Kn(A, r0), is the linear span of the vectors formed by repeatedly applying the
matrix A to r0 up to n times. Mathematically, it is defined as:

Kn(A, r0) = span{r0, Ar0, A2r0, . . . , A
n−1r0}. (1)

Krylov subspaces have several key properties:

• Dimension: The dimension of the Krylov subspace is at most n, where n is the
number of iterations or the desired dimension of approximation.

• Basis: The vectors forming the basis of the Krylov subspace are obtained by
repeatedly applying the matrix A to the initial vector r0.
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• Approximation Space: Krylov subspaces provide a way to approximate the action
of A on any vector. By using a low-dimensional Krylov subspace, we can obtain
an approximation to the action of A that can be computationally more efficient
than directly computing A times a vector.

• Convergence: Iterative methods like the Conjugate Gradient method utilize Krylov
subspaces to iteratively approximate the solution of linear systems. The conver-
gence properties of these methods are related to the properties of the Krylov
subspaces, such as their dimension and the properties of the matrix A.

Let’s delve into a bit more detail on how the Krylov subspace is utilized in the Conju-
gate Gradient method. The vectors generated within the Krylov subspace, Kn(A, r0), are
not only linear combinations of powers of the initial residual r0 but also inherently or-
thogonal to each other concerning the matrix A. This orthogonality property is leveraged
in the Conjugate Gradient method to ensure that the search directions at each iteration are
conjugate to each other. In the context of the Conjugate Gradient method, when we say
that vectors are conjugate to each other, we mean that they are orthogonal with respect to
the matrix A being used in the linear system. Mathematically, two vectors u and v are
considered conjugate with respect to a symmetric positive definite matrix A if their inner
product (also known as the dot product) satisfies the following condition:

uTAv = 0. (2)

This condition indicates that the vectors u and v are perpendicular to each other in
the space defined by the matrix A. In other words, they are orthogonal with respect to
the inner product induced by A.

Therefore, if pk and pk+1 are two consecutive search directions in the CG algorithm,
then pTkApk+1 = 0. Conjugacy ensures that the CG method moves efficiently through
the search space, avoiding redundant directions and converging to the solution in fewer
iterations.

The vectors generated in the Krylov subspace form a basis for constructing approx-
imate solutions to the linear system. Krylov subspace methods iteratively refine these
approximate solutions to converge towards the true solution. The iterative refinement
process involves updating the current approximation to the solution based on the residual
error of the linear system. The solution gradually converges towards the true solution by
improving the approximation using information from the Krylov subspace.

The choice of initial vector and the size of the Krylov subspace can influence the
convergence and efficiency of Krylov subspace methods. Additionally, the selection of the
orthogonalization method and other algorithmic parameters can impact the performance
and robustness of these iterative solvers.
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Figure 2. The graph of quadratic form f(x). The solution of the Ax = b gives the
minimum point to the surface

2.4.1 The Conjugate Gradient method

Iterative methods play a crucial role in efficiently solving large systems of linear equations.
One such iterative method is the Conjugate Gradient (CG) algorithm, which is widely
used due to its desirable convergence properties and low memory requirements. It
was first introduced by Hestenes and Stiefel in 1952. It has since become a widely
used method in numerical linear algebra due to its efficiency and effectiveness on large
and sparse matrices. The Conjugate Gradient method iteratively finds the solution by
minimizing the residual error through a sequence of conjugate directions. However,
solving large-scale systems using Conjugate Gradient can be computationally demanding
and time-consuming.

The method works by minimizing a quadratic form (Figure 2) defined by the linear
equation system. Instead of explicitly forming and manipulating the matrix A, the CG
method operates within the Krylov subspace to iteratively refine the solution. It starts
with an initial guess x0 and iteratively updates the solution x by moving in the conjugate
direction p within the Krylov subspace. At each iteration, the process computes a search
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direction conjugate to the previous search direction and uses this direction to update
the solution. The method converges in at most n steps, where n is the dimension of the
matrix if no rounding errors occur.

The convex optimization problem in quadratic form can be written as:

f(x) = 1/2xTAx− bTx+ c. (3)

Here A is matrix x, and b are vectors, and c is scalar. If we consider that A is
symmetric and positive, define f(x) can be minimized by the solution (Figure 2):

Ax = b. (4)

In the algorithm 1, A is the coefficient matrix, b is the right-hand side vector, x is the
n-th approximate solution, r is the n-th residual, d is the n-th search direction considering
we have iteration n, and alpha and beta are scalar coefficients. The algorithm iteratively
updates the approximate solution x by finding the optimal search direction d and the
optimal step size α and then uses them to compute the new approximation x. This
process continues until the residual r becomes sufficiently small, indicating that a good
approximation has been found.[FR64, Lan52].

Algorithm 1 Conjugate Gradient algorithm
Ensure: A is a symmetric positive-define matrix

r ← b− Ax
d← r
δ ← rT r
while not converged do

q ← Ad

α← δ

dT q
x← x+ αd
r ← r − αq
δold ← δ
δ ← rT r

β ← δ

δold
d← r + βd

end while
return x

The Conjugate Gradient (CG) method theoretically converges to the exact solution
of the linear system in at most n iterations for symmetric positive definite matrices.
However, in practice, the number of iterations can be influenced by several factors:
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• Numerical Errors: In real-world computations, numerical errors can accumulate
during the iterative process, leading to deviations from the theoretical behav-
ior. These errors can arise from finite precision arithmetic, round-off errors, and
truncation errors, among others.

• Ill-Conditioned Matrices: Despite being designed for symmetric positive definite
matrices, ill-conditioned matrices can pose challenges to convergence. In such
cases, the number of iterations required for convergence may increase, and the
convergence may not be as quick as for well-conditioned matrices.

• Preconditioning Quality: The effectiveness of preconditioning significantly af-
fects the convergence behavior of iterative solvers like CG. If the preconditioner
is not sufficiently effective in reducing the condition number of the matrix, the
number of iterations needed for convergence may increase.

• Convergence Criteria: The choice of convergence criteria also impacts the number
of iterations. If the convergence tolerance is set too tight, the iterative solver may
require more iterations to meet the criteria, especially if the solution is close to the
convergence threshold.

• Matrix Structure and Eigenvalue Distribution: The distribution of eigenvalues
of the matrix A can influence the convergence behavior of the CG method. Clus-
tering of eigenvalues near zero can lead to slow convergence, while widely spread
eigenvalues can accelerate convergence.

Preconditioners can be applied to accelerate the algorithm’s convergence, transform-
ing the original matrix into a new matrix with a lower condition number. The condition
number of a matrix measures how sensitive its solution is to perturbations in its coeffi-
cients or right-hand side. A matrix with a high condition number is more sensitive to
perturbations, and thus, it is more difficult to solve accurately.

The Conjugate Gradient method is efficient in solving large and sparse systems of
equations as it only needs the matrix-vector product and can be computed in parallel using
OpenCL. This makes the method suitable for scientific and engineering applications such
as finite element analysis, image processing, and machine learning.

The Conjugate Gradient has been extensively studied and optimized over the years,
and many variations and improvements have been proposed. These include precondi-
tioned Conjugate Gradient methods, which use a preconditioner to improve the conver-
gence rate of the algorithm, and restarted Conjugate Gradient methods, which periodi-
cally restart the algorithm with a new initial guess to enhance convergence of difficult
problems.
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2.4.2 Generalized Minimal Residual Method

One of the successful Krylov methods designed to solve large nonsymmetric sparse
linear systems of equations of the form Ax = b is Generalized Minimal Residual Method
(GMRES) method [WZ94]. GMRES iteratively constructs an orthogonal basis for the
Krylov subspace generated by the matrix A and the initial residual vector r0 = b− Ax0,
where x0 is the initial guess. GMRES iteratively improves the approximation to the
solution by minimizing the residual error in this subspace. The number of iterations
required for convergence depends on factors such as the condition number of the matrix
A, the choice of preconditioner, and the convergence criterion.

Orthogonalization is a key aspect of GMRES. It ensures that search directions are
linearly independent. GMRES makes new search directions orthogonal to old ones.
It does this during the iterative process to keep orthogonality and numerical stability.
GMRES commonly uses Gram-Schmidt orthogonalization. It is used to make the basis
vectors of the Krylov subspace orthogonal. However, this process can lead to loss of
orthogonality. This is especially true for ill-conditioned matrices. In Gram-Schmidt
orthogonalization [BG22], the method stores the residual vector at each iteration. This
allows for cheaper re-initialization after each cycle of the restarted method GMRES(m).
This is especially helpful for the restarted method GMRES(m). In this method, the
process iterates. It is periodically restarted with a new guess. We need to re-initialize
because we lose orthogonality. This loss can happen over long iterations. To fix the loss
of orthogonality and save memory, GMRES often uses restarting. The iterative process
is periodically restarted with a new initial guess.

One of the disadvantages of the GMRES method is that it might not perform well
when applied to linear systems of ill-posed problems. Ill-posed problems contain error-
contaminated data in the right-hand side vector [MRH14]. The problem is called an
ill-posed problem if one of the following criteria is not met: the existence of the solution,
the uniqueness of the solution, or the stability of the solution. Flexible GMRES performs
better in such problems by allowing dynamic preconditioning. Another disadvantage of
the GMRES method is memory usage. As all the previous residual vectors are stored
to maintain the orthogonalization, it might be impractical for large systems. Despite
some weaknesses in the GMRES method, it is still very well-suited and robust for
non-symmetric matrices and for systems where the direct solvers are not effective.

2.4.3 Flexible Generalized Minimal Residual Method

Flexible GMRES (FGMRES), also introduced by Yousef Saad in 1993, is an extension
of the GMRES (Generalized Minimal Residual) method. It is designed to handle the
cases where the preconditioner may vary during the iterations. This characteristic of the
FGMRES method makes it suitable for problems where a fixed preconditioner cannot be
easily maintained. The algorithm follows the same processes as GMRES. The difference
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is that, like GMRES, FGMRES builds a Krylov subspace incrementally but requires
additional storage for the changing intermediate-step residuals. FGMRES stores each
new search vector and the vector resulting from applying a preconditioner. This allows
the solution to be restored to the original unpreconditioned system at the end of the
algorithm. Because of high memory requirements, restarting the algorithm might be
required for large-scale problems.

2.5 Domain Decomposition Methods (DDM)
Choosing between a direct solver or an iterative solver for large problems is not trivial.
Iterative solvers are regarded as highly memory efficient, especially for large-scale
problems; however, it is observed that the choice of an iterative solver is highly specific
to the problem. Iterative solvers do not work very well for problems with highly ill-
conditioned matrices. On the other hand, direct solvers are considered very robust and
independent of the problem; however, they are seriously limited due to the large memory
requirement [RK09]. In such cases, domain decomposition methods come into play to
improve the following properties:

• Parallel Computation: Domain decomposition methods divide a large computa-
tional domain into smaller subdomains. This allows different processors to handle
separate subdomains concurrently, reducing computation time significantly.

• Memory Management: Large problems typically require substantial memory,
which might exceed the capacity of a single processor or node. By dividing the
domain, each processor handles a smaller part, making the memory requirements
more manageable.

• Scalability: These methods enhance the scalability of algorithms to large systems,
allowing them to efficiently utilize the increasing number of processors in modern
computing environments.

• Convergence Rate Improvement: In iterative methods, domain decomposition
can be used as a preconditioner to improve the convergence rates of iterative
solvers.

Domain Decomposition Methods are a class of numerical techniques used to solve
PDEs on large and complex computational domains. The idea behind these methods
is to divide the computational domain into smaller regions called subdomains. Each
subdomain is then solved separately, and the solutions from each subdomain are combined
to obtain the solution for the entire domain. Doing this would enable the preconditioner to
improve the properties of the matrix system globally, in particular, eigenvalue distribution,
and hence contribute toward speeding up the convergence of the global iterative method.
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The most common types of domain decomposition methods are the Schwarz method, the
substructuring method, and the mortar method.

In the context of Krylov subspace methods, domain decomposition methods can be
used to improve the efficiency of the solver for large linear systems arising from PDEs.
The GMRES, FGMRES, and CG mentioned above are iterative methods that require
the solution of a linear system at each iteration. Domain decomposition methods can be
used to parallelize the solution of the linear system, thereby reducing the time required
to solve the problem.

There are two main types of Domain Decomposition methods: overlapping and
non-overlapping [TW04]. The non-overlapping domain decomposition sees a large com-
putational domain divided into a number of subdomains. All the same, the subdivisions
share the boundaries but don’t overlap. Interactions between the subdomains are so
important that the interfaces require special treatment to ensure continuity and transfer
of information in the right manner. It gives us high efficiency in parallel computation
as subdomains can be solved independently. Also reduces complexity per subdomain,
making it manageable to use direct solvers for each. Non-overlapping domain decompo-
sition methods demonstrate slower convergence than overlapping domain decomposition
methods.

Figure 3. Overlapping domains

On the other hand, overlapping methods, also known as Schwarz methods, involve
subdomains overlapping by some margin[Cai03]. The overlap region provides a better
correction of errors and a smoother transfer of information for the boundaries of each
subdomain. Every subdomain has part of its neighboring subdomains. In particular, the
width of the overlap significantly impacts the convergence and stability of the method.
In non-overlapping methods, the local problems are solved independently from other
subdomains. However, the overlapping regions ensure that each subdomain solver would
have more accurate information on the boundary, which would further improve the
effectiveness of the solvers. We benefit from improved convergence due to a better
exchange of information in the overlapping regions and better robustness to problem
parameter variations or discretization errors.

A simple graphical visualization of overlapping domain decomposition methods is
shown in Figure 3. It shows a domain formed by the union of a circle and a rectangle,
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which is donated as Ω = Ω1 ∪ Ω2 The Additive Schwarz (AS), Restricted Additive
Schwarz (RAS), and Restricted Additive Average Schwarz (RAAS) Schwarz methods
are all examples of overlapping domain decomposition methods. The next section will
describe RAAS in more detail because of its usage in our practical implementation.

2.5.1 The Restricted Additive Average Schwarz method

The standard Additive Schwarz method divides the computational domain into overlap-
ping subdomains with minimal overlap. The minimal overlap consists of a single layer of
nodes in the discretization grid. Having a larger extended overlap between subdomains
in domain decomposition methods can improve the convergence rate of iterative solvers
by reducing the number of iterations needed to reach a solution. In particular, this is
known to be true in the case of the Helmholtz problem (see Subsection 3.4) due to the
spectral properties of its stiffness matrix obtained through the discretization. The overlap
allows for a smoother transition of information between adjacent subdomains, which
can help to reduce the influence of interface errors. The minimal overlap is, therefore,
extended. Then, each subdomain solves the local problem independently on the extended
subdomain. However, the Restricted Additive Schwarz methods modify the Additive
Schwarz method by introducing a restriction operator [EG03]. The restriction operator
limits the updates of each subdomain after the subdomain solution to its interior nodes.
The Additive Average Schwar (AAS) method updates the values on the overlap with av-
erages from each neighboring subdomain instead of adding up the separate contributions.
With the Restricted Additive Average Schwarz (RAAS) method, averaging is done only
on the minimal overlap. Outside of the minimal overlap – the extended overlap values –
are used only as an input for the extended subdomain problem solution.

This adjustment leads to improved performance in terms of both convergence and
stability, particularly when dealing with certain large-scale parallel computations, like
the discretization from the Helmholtz equation [GSV17a].

Figure 4 illustrates the partitioning of the unit square into four overlapping sub-
domains. The symbol ∆ represents the extent of overlap between these subdomains,
while red dashed lines demonstrate the minimal overlaps. Consequently, each extended
subdomain will have a dimension of 0.5 + ∆. The solver will then be employed within
these expanded regions. Upon completion of the subdomain solutions, the Restricted
Additive Average Schwarz method will compute an average from the solutions within the
minimal overlap areas while discarding the solutions from nodes located in the extended
overlaps.

25



Figure 4. An example of partitioning the unit square into four overlapping subdomains
with an extended overlap of width ∆.

3 Data and methods
This section will provide detailed insights into the implementation of the solvers. It will
also introduce the experimental data, discuss the generation of Helmholtz matrices, and
outline the specifications of the machines used for conducting these experiments.

3.1 Accelerating Mathematical Operations in the Conjugate Gradi-
ent method

Our primary aim is to develop a CG subsolver in Python using the PyOpenCL library,
with the intention of surpassing other solvers implemented using NumPy and Scipy
libraries. As previously mentioned, this approach enhances code readability, simplifying
maintenance and potential future enhancements. In our application, CG serves as an
inner solver to address subdomains generated from the Restricted Additive Average
Schwarz method, with FGMRES being our outer Krylov subspace solver. The core of
the Conjugate Gradient method involves several fundamental operations such as vector
additions, scalar-vector multiplications, dot products, and matrix-vector multiplications.
When these operations are performed on large data sets or high-dimensional spaces,
they can become computationally intensive. Therefore, our implementation consists
of five different kernels tailored to make the most of the GPU’s computing power
for various mathematical operations. As the Helmholtz matrices can be either real or
complex, we have 2 different sets of kernels to support operations involving both real and
complex values. These kernels enhance performance by enabling faster convergence and
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Figure 5. 3D Visualization of the Helmholtz Equation Solution

facilitating the handling of larger problems that are typical in scientific computing. It is
also worth mentioning that the kernels have support for multiple RHSs where the actual
performance improvement can be observed. Below, we list these kernels and explain
where they are used in the Conjugate Gradient method:

• Axpy - This kernel is used to calculate x+ αd and r − αq in the algorithm 1.

• Aypx - This kernel is used to calculate r + βd in the algorithm 1.

• Spmv - This kernel is used to compute matrix-vector multiplication. In the CG
algorithm 1, this kernel calculates Ax and Ad.
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• Sub - This kernel calculates vector subtraction. In the algorithm 1, b− Ax uses
sub kernel where we already know the result of Ax.

• VDot - This kernel calculates the vector-vector multiplication. It is used to calculate
delta and dq dot operations in the algorithm 1.

The mentioned kernels are written in a language based on the C programming language.
However, OpenCL C, the language used for writing kernels, has some differences and
restrictions compared to standard C. These kernels can be utilized within different tools
to leverage the computation power of GPU. Moreover, you can also see the kernel code
of the Axpy operation for real numbers in the listing 3.

_ _ k e r n e l vo id axpy ( _ _ g l o b a l f l o a t *x ,
_ _ g l o b a l f l o a t *y ,
_ _ c o n s t a n t f l o a t *a ,
c o n s t i n t aSign ,
c o n s t i n t s i z e ) {

c o n s t i n t __ idx = g e t _ g l o b a l _ i d ( 0 ) ;
i f ( __ idx < s i z e ) {

i f ( aS ign )
f o r ( i n t r = 0 ; r < N_RHS ; r ++)

y [ __ idx + r * s i z e ] += a [ r ] * x [ __ idx + r * s i z e ] ;
e l s e

f o r ( i n t r = 0 ; r < N_RHS ; r ++)
y [ __ idx + r * s i z e ] −= a [ r ] * x [ __ idx + r * s i z e ] ;

}
}

Listing 3. Kernel code of Axpy operation for real numbers

3.2 Host-device communication
Host-device communication involves transferring data between the host (typically the
CPU) and the device (e.g., GPU) before and after kernel execution. PyOpenCL provides
APIs for managing data transfer between the host and the device, as well as for queuing
kernel execution commands. APIs provided by PyOpenCL allow us to create a context
with a specified GPU. The chosen GPU is responsible for the execution of the kernel.
I have separated the initialization of the context and loading of kernels from the actual
code in order to avoid the initialization time of context and loading of kernels for each
iteration of the FGMRES method.
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3.3 GPGPU PyOpenCL solver for Block Conjugate Gradient method
Our implementation presents 2 solutions for the Block Conjugate Gradient algorithm
with support for complex-valued inputs and multiple right-hand-side. One of them solves
the linear equation of Ax = b with a single right-hand side. Here, the x is a single
vector that satisfies the equation. When multiple right-hand-sides (RHS) are involved, the
problem extends to solving AX = B, where B is now a matrix of RHS vectors, and X is
a matrix of solution vectors corresponding to each RHS vector. While solving the linear
equation with multiple RHSs, computations are done by sending the whole RHS vector
of the original equation with the submatrix, and the results are mapped into the whole
solution vector. Our setup allows us to use multiple RHS solutions having the exact same
subdomains. This allows us to get rid of the iterations through the subdomains.

3.4 Helmholtz matrices
Helmholtz matrices arise when discretizing the Helmholtz equation using numerical
methods such as finite difference methods, finite element methods (FEM), or boundary
element methods (BEM) [BDJT21]. The matrix represents the linear system that approx-
imates the Helmholtz equation. Helmholtz matrices are an essential aspect of numerical
methods related to the Helmholtz equation, a fundamental partial differential equation
(PDE). In mathematical physics, these matrices represent wave propagation phenomena,
such as sound and electromagnetic waves.

Helmholtz matrices are typically large and sparse because discretization of the domain
involves many grid points or elements but has interaction with only those of its local
neighbors. These matrices can be indefinite or even nearly singular, especially at higher
frequencies, which makes them challenging for standard linear solvers [EG11].

We have a function implemented in Python using NumPy that discretizes Helmholtz
Equation in a square domain Ω = (0, 1)2 using the Finite Element Method (FEM) with
Robin boundary conditions on all sides before the start of the solution process. The
Helmholtz equation is defined as the following [GSV17b]:

−∆u− (k2 + iϵ)u = f onΩ, (5)

where ∆ is the Laplacian, i is the imaginary unit, ϵ is a damping parameter, and k wave
number. On the boundary ∂Ω, the condition is given by:

∂nu− iku = 0 on ∂Ω, (6)

where ∂nu denotes the normal derivative of u.
The implemented function has the following inputs that can be modified to explore

more about the Helmholtz equations and their convergence behavior in different setups:

• N : Number of grid points in each direction on the square domain Ω.
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• k: Wave number, k = ω
c

with ω representing the frequency of a wave and c the
variable wave speed.

• ϵ: The damping parameter quantifies a wave’s energy loss due to absorption,
scattering, or other effects in the medium.

For simplicity, we are using uniform wave speed in our experiments. However, having
a uniform wave speed is also quite common in both theoretical and applied physics.
Some examples of Helmholtz problems where the wave speed is almost uniform are
Underground Seismic Waves, Medical Ultrasound, and Astronomical Observations. How
these changes in these parameters affect Helmholtz matrices’ generation will be described
later. The output of the function is a list of exact same-size sparse matrices. The reason
for having exact same-size matrices is to ease the work of the domain decomposition
method and to be able to solve the problem with multiple right-hand-sides.

Figure 5 illustrates the computed real part of the solution to the Helmholtz equa-
tion. The visualization highlights the dynamic behavior of wave propagation within the
medium, showing variations in amplitude and phase that are critical to understanding the
physical phenomena being modeled. Each peak and trough is represented with a color
gradient, which corresponds to the real value intensity, ranging from -4000 to 4000, as
detailed in the accompanying color bar.

3.5 Experimental Environments
Experiments and benchmarks are conducted at the High-Performance Computing (HPC)
Center of Tartu University[Uni18]. For these tests, I utilized the Rocket cluster at the
HPC. I specifically requested the Falcon GPU nodes for computational tasks, excluding
the Falcon 2 node due to the errors while running OpenCL code. Also, each of these
nodes is equipped with 24x NVIDIA Tesla V100 GPUs. The Tesla V100 GPUs come
with 5120 CUDA cores, which are fundamental to its ability to handle parallel processing
tasks efficiently. Below, you will find the SBATCH script used to submit the job:

#!/bin/bash
#SBATCH -Jp_helm
#SBATCH --partition=gpu
#SBATCH --exclude=falcon2
#SBATCH --gres=gpu:tesla:4
##SBATCH -N 2
##SBATCH --ntasks-per-node=1
#SBATCH -t 10:00:00
##SBATCH --exclusive
##SBATCH --mem=47000
####SBATCH --nodelist=falcon
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S=4
N=128
NIT=512

module load py-numpy/1.22.0
module load py-mpi4py/3.1.4
module load cuda/11.1.0
module load py-scipy/1.8.1
module load py-pyopencl/2020.2.2
module load cmake/3.23.1

cd /gpfs/space/home/ziya/distributed-systems
srun hostname
./p_h-PY_C-CL.py ${S} ${N} 2 ${NIT}

Additionally, you can see the modules that have been loaded to establish an environment
suitable for executing the code. The py-pyopencl library is an essential module for
executing OpenCL (Open Computing Language) programs in Python.

3.6 Evaluation
Four different subsolvers, namely Exact Subsolver (SciPy), PyOpenCL-CG for a single
RHS, PyOpenCL-CG for multiple RHSs, and NumPy-CG, are compared in different
terms. The time complexity of different implementations was the first metric, varying
with the number of subdomains and their sizes. The influence of extended overlaps
obtained from applying the Restricted Additive Average Schwarz preconditioner was the
second metric to observe the convergence of the solution. Additionally, we performed
tests with different wavenumbers to see how well the Krylov subspace methods, with the
inner iterative solver CG and the outer iterative solver FGMRES, perform under varying
medium properties.
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4 Results
In this section, we will take a look at how outer solver FGMRES preconditioned with
either different implementations of Conjugate Gradient method solvers or exact subdo-
main solutions perform in different setups and also show a comparison between solvers
using evaluation metrics mentioned in evaluation subsection 3.6.

Figure 6. 3D Visualization of the Average Solution Showcasing the Propagation of a
Frontal Wave Across the Domain

4.1 Time complexity of the solvers
As time complexity is one of the most useful indicators of performance, we have per-
formed a series of experiments on the Falcon HPC cluster nodes to measure the execution
times of various solvers. The graphs will display the comparison of execution times
in different subdomain setups. These execution times are recorded in seconds. In the
following experiments, we solve the Helmholtz problem with the FGMRES method as
an outer iterative method that is preconditioned either by exact subdomain solutions in
the RAAS method or different implementations of the CG method. The stopping criteria
for the FGMRES method is the initial residual norm decreased by 6 orders of magnitude;
we perform 4 ∗ subdomain_width CG iterations in subdomain solves. If not stated
otherwise, we fix k and eps 20. The subdomain overlap, if not stated otherwise, is chosen
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to be (subdomain_width/2 − 1). The initial guess of the CG method is chosen to be
0s for the experiments. Moreover, calculations are done for special RHS that produce a
frontal wave moving across a medium. This wavefront starts at one corner and moves
diagonally across to the opposite corner of the domain; see Figure 6. The graph also
illustrates how the wave amplitude varies in a square domain.

4.1.1 Time complexity comparison in different subdomain setups

The first element in each tuple shows the number of subdomains, and the second element
shows the width of each subdomain, which is the number of subdomain nodes in each
direction. As the width of subdomains increases, particularly from 64 to 128, there is a
substantial increase in the computational demands across all methods, see Figure 7.

The Scipy exact solver shows a steep exponential increase as the subdomain width
increases. This dramatic rise suggests that the exact subsolves solution method’s compu-
tational demands grow significantly with larger and more complex subdomain configura-
tions. It starts with the lowest value but ends with the 2nd highest, indicating that it may
not scale well with increasing problem size. A similar pattern is also observed in the
CG solver written in Numpy. Although it shows good performance in small subdomain
setups, the performance of the solver is decreased in bigger subdomains compared to
other implementations.

The Performance curve for the PyOpenCL implementation with a single right-hand
side starts with the worst performance in the case of 9 subdomains, having 27 subdomain
nodes in each direction. However, it performs better as the subdomain number and size
increase. That shows the scalability and efficiency of the solver in bigger subdomains
which is typical for Helmholtz problems.

The best performance is obtained in PyOpenCL implementation of Block Conjugate
Gradient method for multiple RHSs. We can see from the chart that multiple RHS
implementations have always outperformed all the solvers.

4.1.2 Time complexity in a big subdomain setup

A similar experiment is performed in a bigger subdomain setup, having 256 subdomain
nodes in each direction and 16 total subdomains, see Figure 8. The number of iterations
for the CG method is set at 1000. This setting can impact performance, as too many
iterations may waste resources. On the other hand, setting too few iterations might slow
down convergence or, in some cases, prevent convergence completely. For example,
while running the experiment within the same subdomain setup, having 500 CG iteration
didn’t converge to the solution because of a few iterations. The size of submatrices
obtained in this setup was 260100, which means that the size of the original matrix is
4161600.
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Figure 7. Comparison of time complexity of different CG solvers

The blue bar in the chart represents the execution time of the Scipy exact solver.
In total, the exact solver took 5223 seconds (87 mins) to calculate the Ax = b linear
equation for 16 subdomains, which was 12 minutes faster than NumPy subsolves. Higher
numbers are indicative of its computationally intensive nature. Exact subsolves often
involve direct methods, which, while accurate, can be significantly slower, especially in
complex or large-scale problems where approximation methods might be more efficient.

Numpy Solver solved the problem in 100 minutes, being the last in the ranking. It
also took 21 iterations of the outer solver to converge to the true solution, while the
exact subsolver only had 20 iterations to converge. Considering the Numpy CG solver is
using approximate solutions, having almost the same number of outer iterations is quite
impressive.

PyOpenCL solution for CG for multiple RHSs shows a significant reduction in
execution time when solving for multiple RHS vectors simultaneously. With 21 outer
iterations, it solved the problem in approximately 16 min that is more than 6 times faster
than the Numpy solver.

PyOpenCL CG for a single RHS also performs considerably faster than exact sub-
solves and NumPy CG subsolves because of it is efficient usage of GPUs.

4.2 Subdomain overlap size
We have conducted 2 experiments with the size of subdomain overlaps. The first exper-
iment illustrates how the number of outer iterations of the FGMRES method changes
as subdomain overlap size increases. This will allow us to see how many iterations it
takes to converge to the true solution. The second experiment shows how the execution
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Figure 8. Execution times for CG solvers in bigger domain with 16 subdomains, each
having the size of 256

time varies with different sizes of subdomain overlap for each solver. It will help us see
if more overlaps lead to longer or shorter execution times for different solvers.

For these experiments, we have used 16 subdomains, each having a subdomain size
of 64. The number of CG iterations was fixed to 256, wavenumber k and eps to 20.

4.2.1 The impact of subdomain overlaps on the convergence of solution

In figure 9, the number of outer iterations needed to converge across different subdomain
overlaps is illustrated. The number of iterations needed to converge decreases as the size
of subdomain overlap increases, stabilizing at 19 iterations from 21 subdomain overlap
sizes onward. This suggests that having a higher subdomain overlap size can initially
speed up the convergence. However, a bigger number of subdomain overlaps doesn’t
bring any benefit but increases the computational time to solve extended subdomains.
Moreover, it is worth mentioning that none of the solvers converged when the number of
overlap sizes was bigger than the subdomain size.

4.2.2 The impact of subdomain overlaps on the performance of solvers

The execution time for four different solvers was compared with the number of subdomain
overlap sizes ranging from 1 to 60. The line plot displays the execution times for each
solver as the number of subdomain layers increases; see Figure 10.
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Figure 9. Convergence Iterations vs. Subdomain Overlap Size

Exact subsolves exhibited a relatively linear increase in execution time with increasing
subdomain overlaps. The execution time was moderate at lower layer counts but escalated
notably beyond 20 layers. For exact subsolves, one may expect that the computational
overhead would grow in larger domains and, hence, be one of the reasons some efficiency
gets lost with a larger overlap.

The execution time of PyOpenCL CG for multiple RHSs initially decreases when the
number of subdomain overlap sizes changes from 1 to 13, indicating improved efficiency
of the solver with moderate overlaps. As the width of the overlap increases, the number
of outer iterations decreases, but the size of the subdomain problem grows. Beyond
13 layers, the execution time increased gradually, reflecting the diminishing returns in
efficiency at higher overlaps.

Starting with execution times comparable to the Exact subsolves, Numpy CG’s
execution time increased significantly with more overlaps. The substantial rise in time
after 20 layers was the steepest among the solvers, suggesting that while Numpy CG can
handle lower overlaps efficiently, its performance degrades under larger computational
loads typical of higher overlaps.

Overall, the data suggests that increasing the subdomain overlap size can initially
reduce the computational complexity. Especially up to the point where the overlap
doesn’t overlap with the third subdomain overlap. In order to avoid such situations, we
have a formula (subdomain_width/2−1) to calculate the maximum subdomain overlap
without extending over the second subsequent subdomain. Also, excessive overlaps lead
to a general increase in execution time across all solvers. This effect is most pronounced
in solvers like Numpy CG, which do not inherently parallelize operations as effectively
as PyOpenCL-based methods.
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Figure 10. Execution Time vs. Subdomain Overlap Size

From the graphs, we can come to the conclusion that PyOpenCL CG implementation
for multiple RHSs showed the best performance when the subdomain overlap size was
13, which is approximately one-fifth of the subdomain size.

4.3 Influence of the wave number to the convergence
As it was mentioned in earlier sections, we have a function to generate Helmholtz
problems. One of the parameters of this function is wave number k, which influences
the complexity of the domain. In this section, we are going to check the convergence
of solvers while using different wave numbers. PyOpenCL-CG for multiple RHSs is
the inner solver for this particular testing, FGMRES being the outer solver. For the
experiment we have set the total number of subdomains to 16 and the size of each
subdomain to 128. Moreover, the subdomain overlap size was set to 31, and the damping
number ϵ to 20. The wavenumber varied from 5 to 150.

The execution time increases as the wavenumber increases from 5 to 50, which is
expected due to the increasing complexity of the problem. Higher wavenumbers in
Helmholtz equations often make the problems more oscillatory and harder to solve due
to their impact on the eigenvalue distribution of the matrix. However, it is surprising that
the solver computes the problem in less time when the wavenumber increases to 100 and
150. This behavior of the solver can be investigated further.

The trend for the number of outer iterations follows the same pattern as the execution
time. Obviously, it takes more to solve the problem as the number of iterations increases.
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Figure 11. Wavenumber vs. Outer iterations and Execution Time

4.4 Weak scaling testing for PyOpenCL-CG for a single RHS
In preparation for weak scaling tests we have performed a series of experiments with
keeping the subdomain size fixed while changing the number of subdomains. Note
that here we still use a single node with a single GPU. Real weak scaling tests will be
performed as a later contribution.

The weak scaling testing is performed on the implementation using the inner solver of
PyOpenCL CG for the single RHS where the workload per subdomain remains constant,
but the total size of the problem increases. For the testing, the subdomain size is fixed to
64, the number of CG iterations to 256, the number to 20, and the subdomain overlap size
to the max, which is 31. You can also see the example of how the number of subdomains
increases during the testing; see Figure 12. Total number of subdomains used for the
testing are 16, 25, 36, 49, 64, 81, 100.

From the graph, we can see that execution time increases significantly as the number
of subdomains increases. This increase appears to be more than linear, suggesting
that adding more subdomains leads to disproportionately higher computation times.
Some of the possible reasons for that increase are increased communication overhead,
synchronization costs, or inefficient parallelization could contribute to this trend. As
more subdomains are added, the complexity of managing them and the data exchange
between them might increase. Also, it was surprising to see some of the iterations took
significantly more time compared to others. For example, although the average time for
iterations was 23 seconds while solving a 9x9 domain, some iterations took more than
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Figure 12. Example of subdomain size increase in weak scaling testing

100 seconds to compute.
Expectedly, the number of outer iterations (FGMRES iterations) also increases as the

number of subdomains increases (Figure 13). This suggests that the problem becomes
more challenging to solve iteratively as it is divided into more subdomains. It indicates
that the preconditioner becomes less efficient as the domain is split into more parts. At
the same time, of course, the potential for further parallelism is increasing, making it
possible to add more nodes with GPUs to contribute to the solution process.
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Figure 13. Number of Subdomains vs. Outer Iterations/ Execution time

5 Discussion
In this section, we compare our implementations using both exact subsolves and the
Numpy CG solver with respect to time complexity. We also conducted experiments to
examine the performance of these solvers under various subdomain configurations, as
well as different characteristics of preconditioners and Helmholtz matrices. We will
discuss the experiments that met our initial expectations and those that did not align with
them. Additionally, we will provide insights into potential future research directions.

5.1 Performance of PyOpenCL implementations in terms of time
complexity

As outlined in previous sections, our goal was to accelerate computational processes by
harnessing the capabilities of GPUs. Our experiments demonstrated that the PyOpenCL
implementation of the Conjugate Gradient method used as an inner solver for both single
and multiple right-hand sides (RHSs), significantly outperformed traditional approaches.
These results confirm that the computational power of GPUs was effectively utilized,
resulting in substantial performance improvements, especially in bigger subdomain
setups.

In those experiments, we have set different numbers for CG iterations considering
the domain size. However, it is obvious that the number of iterations is not always
precise. Setting a higher number of iterations for an algorithm might increase the
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likelihood of convergence, but this approach can lead to resource wastage if the number
is unnecessarily high. Conversely, setting too low a number may prevent the algorithm
from converging at all, as it might not perform enough computations to reach an accurate
enough solution. This balance requires careful tuning of the iteration count to optimize
both computational efficiency and the reliability of results. One solution to that would be
to have a stopping criteria for the algorithm. Each iteration of the CG algorithm typically
involves a check to determine if the solution has converged sufficiently close to the true
solution. This check usually requires calculating the norm of the residual (the difference
between the left and right sides of the equation being solved), which is computationally
intensive. Therefore, stopping criteria should be analyzed in detail to avoid performance
issues.

5.2 Unexpected behavior of the solvers in higher wavenumbers
Algorithms were evaluated across various wavenumbers to assess their performance
in different media. Surprisingly, higher wavenumbers resulted in fewer iterations and
shorter execution times. This phenomenon can be explained as follows: Physically,
higher wavenumbers correspond to shorter wavelengths, which may interact with the
medium in ways that simplify the solution’s structure, thereby reducing the complexity
of the calculations required for convergence. Additionally, the matrix representation of
the problem at higher wavenumbers might become better conditioned, facilitating faster
convergence by reducing the number of iterations needed.

5.3 Future work
There are multiple directions in which further improvement could be done for the
implemented solver. Currently, we are using even subdomains where the subdomain size
is the same. However, an investigation can be done on how to adjust the solvers to work
with uneven subdomains by adding a restriction and an interpolation operator, which
translates between different sizes of subdomains into the setup used here for accelerated
performance with multiple right-hand-sides solved in one go. For example, areas with
higher complexity or finer details might require smaller subdomains to achieve more
accurate results, whereas less complex areas can be represented with larger subdomains.

There can be enhancements to the code, such as using multiple GPUs per computation
node. Each subdomain being computed independently and in parallel in different GPUs
might result in better performance of the code.

Also, the implementation of the GPGPU CG solver can be enhanced by introducing
stopping criteria based on the value of δ in the Algorithm 1. Within CG iterations, the
value of δ (although non-monotonically) decreases. The value can be monitored for each
right-hand side vector until all have reduced beneath a given threshold that guarantees
the best performance for the overall (outer) iterative process.
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The FGMRES solver can use different types of preconditioners at different iterations,
greatly enhancing the adaptability and effectiveness of linear system solutions. In fact,
it allows one to choose between different preconditioners suitably configured to the
characteristics of different subdomains in the solution of a computational problem. In
turn, using AI techniques, it is possible to conduct a dynamic choice or even design a
preconditioner, which is grounded on real-time analysis of the solver’s performance and
on the changing conditions of the domain. AI will help automatically tune the strategy of
preconditioning so that it optimizes the rates of convergence and computational efficiency.
By selecting the most effective preconditioner for each iteration, AI can help minimize
the number of iterations needed to reach convergence, thereby speeding up the solution
process.
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6 Conclusion
This thesis has demonstrated how GPU-accelerated Domain Decomposition methods effi-
ciently solve the Helmholtz equation. More specifically, I have discussed the subsolvers,
and it seems like there are huge benefits from the use of the Restricted Additive Average
Schwarz (RAAS) method as a precondition. PyOpenCL implementation of the inner
solver Conjugate Gradient method showed huge improvements in computational speed
realized through GPU acceleration. The conducted experiments have mainly brought
attention to PyOpenCL-CG implementation for multiple right-hand sides in terms of
time complexity.

The solvers were also compared with different wave numbers and overlapping layers.
The results obtained from solvers in different numbers of overlapping layers were helpful
in finding the better values for the properties of the Restricted Additive Average Schwarz
method.

This work underlines that, indeed, the remarkable potential is held by advanced
GPU programming and domain decomposition in dealing with some of the complex
computational challenges, and it opens up the door for numerical simulations to be
furthered in this advanced skillset.

Overall, the presented results of this thesis prove the necessity of innovations in
preconditioning strategies and the necessity of integration of GPU acceleration in com-
putational science to advance toward more efficient and effective large-scale problem
solvers.
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Appendix

I. Access to Code
The code used to obtain the results can be found in this GitHub repository given below:
https://github.com/ziyamammadov/conjugate-gradient-pyopencl
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