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Systematic Evaluation of Trustworthy AI Augmentation in Modern
Applications

Abstract:
Artificial intelligence (AI) has become pervasive in various sectors, including healthcare,
finance, education, and transportation, transforming how tasks are performed and deci-
sions are made. However, the rapid integration of AI raised significant concerns about
privacy, bias, security, and the opacity of AI systems, often referred to as "black boxes."
These challenges highlight the critical gap in ensuring AI systems are both efficient and
trustworthy. This research addresses this gap by focusing on the practical implementation
of continuous human oversight in AI development. The study specifically evaluates an
adaptive dashboard developed for the SPATIAL platform to enhance AI transparency
and accountability. Through experiments with the Medical Analysis Module (MAM)
that employs Explainable AI (XAI) techniques to provide role-specific explanations for
stakeholders analyzing electrocardiogram (ECG) data, the research assesses the inter-
pretability of AI-generated explanations and the system’s performance under varying
user loads. The findings demonstrate that tailored explanations significantly improve
user understanding and trust while the system maintained robust performance, ensuring
scalability and reliability. These insights provide valuable guidance for developing
practical tools to enhance the monitoring and oversight of AI inferences, aligning with
regulatory requirements for trustworthy AI.

Keywords: Artificial Intelligence, Trustworthy AI, Explainable AI, Measuring
Trustworthiness, AI Applications, Explanatory Platform, Human Oversight
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Usaldusväärse AI süstemaatiline hindamine Laiendus kaasaegsetes
rakendustes Lühikokkuvõte:

Tehisintellekt (AI) on levinud mitmetes sektorites, sealhulgas tervishoius, rahanduses,
hariduses ja transpordis, muutes ülesannete täitmist ja otsuste tegemist. Kuid tehisin-
tellekti kiire integreerimine on tekitanud märkimisväärset muret eraelu puutumatuse,
eelarvamuste, turvalisuse ja tehisintellekti süsteemide, mida sageli nimetatakse „musta-
deks kastideks“, läbipaistmatuse pärast. Need probleemid rõhutavad kriitilist puudujääki,
mis on seotud tehisintellekti süsteemide tõhususe ja usaldusväärsuse tagamisega. Käes-
olevas uuringus käsitletakse seda puudujääki, keskendudes pideva inimliku järelevalve
praktilisele rakendamisele tehisintellekti arendamisel. Uuringus hinnatakse konkreet-
selt SPATIAL platvormi jaoks välja töötatud adaptiivset armatuurlauda, et suurendada
tehisintellekti läbipaistvust ja aruandekohustust. Uuringus hinnatakse eksperimentide
kaudu meditsiinilise analüüsimooduliga (MAM), mis kasutab seletava tehisintellekti
(XAI) meetodeid, et anda elektrokardiogrammi (EKG) andmeid analüüsivatele sidusrüh-
madele rollipõhiseid selgitusi, tehisintellekti genereeritud selgituste tõlgendatavust ja
süsteemi toimimist erineva kasutajakoormuse korral. Tulemused näitavad, et kohandatud
selgitused parandavad märkimisväärselt kasutajate arusaamist ja usaldust, samas kui süs-
teem säilitas tugeva jõudluse, tagades skaleeritavuse ja usaldusväärsuse. Need teadmised
annavad väärtuslikke juhiseid praktiliste vahendite väljatöötamiseks, et tõhustada tehisin-
tellekti järelduste jälgimist ja järelevalvet, mis on kooskõlas usaldusväärse tehisintellekti
regulatiivsete nõuetega.

Võtmesõnad: Tehisintellekt, usaldusväärne tehisintellekt, seletatav tehisintellekt,
usaldusväärsuse mõõtmine, tehisintellekti rakendused, seletav platvorm, inimlik
järelevalve

CERCS: P170 - Arvutiteadus, numbriline analüüs, süsteem, juhtimine

3



Contents
1 Introduction 8

2 Literature Review 10
2.1 Literature Review Methodology . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Eligibility Criteria . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Information Sources . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Search Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Establishing the literature selection process . . . . . . . . . . . . . . . 13
2.2.1 Literature Selection Strategy . . . . . . . . . . . . . . . . . . . 13

2.3 Work Chosen for the Systematic Literature Review . . . . . . . . . . . 14
2.3.1 Literature about “Explainable AI” . . . . . . . . . . . . . . . . 14
2.3.2 Literature about “ Trustworthiness in AI Applications” . . . . . 14

2.4 Artificial Intelligence and AI-based Applications . . . . . . . . . . . . 16
2.4.1 Uses of AI systems in the present day and Age . . . . . . . . . 16
2.4.2 Construction of AI Models in a Nutshell and Decision-making

Process of AI Models . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Large scale AI model- related issues . . . . . . . . . . . . . . . 17

2.5 Trustworthy AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.1 Characteristics of Trustworthy AI . . . . . . . . . . . . . . . . 19
2.5.2 Human-in-the-loop supervision of AI-based applications . . . . 24
2.5.3 Regulations that ensure AI trustworthiness . . . . . . . . . . . 25
2.5.4 How do Existing AI-based Applications support trustworthiness? 25
2.5.5 Existing-Platforms that monitor and gauge AI inference capabilities 26
2.5.6 Modern Architectures . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Explainable AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.1 What is XAI and Why it is needed . . . . . . . . . . . . . . . . 30
2.6.2 XAI Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.3 XAI Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Methodology 36
3.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Augmented Machine Learning Pipeline . . . . . . . . . . . . . 37
3.1.2 AI Sensors in SPATIAL . . . . . . . . . . . . . . . . . . . . . 39
3.1.3 AI Dashboard in SPATIAL . . . . . . . . . . . . . . . . . . . . 39

3.2 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Deployment of the SPATIAL Platform . . . . . . . . . . . . . . 40
3.2.2 Micro-service Deployment . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Integration of Services into the API Gateway . . . . . . . . . . 43

4



4 Experiments 48
4.1 Stakeholder-Adaptive Explanation . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Capacity-load Performance Experiment . . . . . . . . . . . . . . . . . 50

4.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Results 53
5.1 Stakeholder-Adaptive Explanation . . . . . . . . . . . . . . . . . . . . 53
5.2 Performance Testing Results . . . . . . . . . . . . . . . . . . . . . . . 54

6 Discussion 56
6.1 Stakeholder-Adaptive Explanation . . . . . . . . . . . . . . . . . . . . 56
6.2 Performance Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Conclusion 58

Appendix 71
I. Generated explanations from MAM based on the user role . . . . . . . . . 71
II. Licence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5



List of Figures
1 Terms and acronyms chosen to be included in respective search strings. 12
2 Filtering research obtained for "Explainable AI" keyword using inclusion

criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Filtering research based on inclusion criteria for "Trustworthiness in AI

applications" keyword. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Number of studies based on the sector. . . . . . . . . . . . . . . . . . . 16
5 Standard machine learning pipeline. . . . . . . . . . . . . . . . . . . . 18
6 AI risk scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7 Trustworthy AI Overview. . . . . . . . . . . . . . . . . . . . . . . . . 20
8 Relationships between different aspects of AI trustworthiness. [1] . . . 23
9 Basic client-server architecture. . . . . . . . . . . . . . . . . . . . . . . 28
10 Machine learning architecture. . . . . . . . . . . . . . . . . . . . . . . 29
11 Federated learning architecture. . . . . . . . . . . . . . . . . . . . . . . 29
12 XAI publications over the recent years. . . . . . . . . . . . . . . . . . . 31
13 The SPATIAL Architecture. . . . . . . . . . . . . . . . . . . . . . . . . 36
14 Sequence diagram of the SPATIAL architecture. . . . . . . . . . . . . 37
15 Augmented pipeline to analyze trustworthy trade-offs. . . . . . . . . . . 38
16 Conceptual modern system architecture equipped with methods to moni-

tor trustworthiness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
17 SPATIAL concept overview. . . . . . . . . . . . . . . . . . . . . . . . 39
18 SPATIAL system deployment. . . . . . . . . . . . . . . . . . . . . . . 40
19 Example for ordering VMs and corresponding resource profile at HPC

center of University of Tartu. . . . . . . . . . . . . . . . . . . . . . . . 42
20 Example listing further configuration details for the ordered VMs. . . . 42
21 The admin interface of the Kong API gateway. . . . . . . . . . . . . . . 44
22 Steps to define a new SPATIAL service in the Kong API gateway. . . . 44
23 Interface to configure for an exemplary SPATIAL service. . . . . . . . . 45
24 Details for configuring a route for an exemplary SPATIAL service. . . . 45
25 NGINX configuration file for the SPATIAL platform. . . . . . . . . . . 46
26 SPATIAL service IP address specified in the NGINX configuration file. 47
27 Medical Analysis Module. . . . . . . . . . . . . . . . . . . . . . . . . 48
28 Interview Procedure and feedback . . . . . . . . . . . . . . . . . . . . 50
29 Abstract setup for MAM service integrated into the SPATIAL platform . 50
30 JMeter configuration for the load testing. . . . . . . . . . . . . . . . . . 52
31 Explanations based on user role. . . . . . . . . . . . . . . . . . . . . . 53
32 JMeter load testing results. . . . . . . . . . . . . . . . . . . . . . . . . 54
33 Explanation for the end user . . . . . . . . . . . . . . . . . . . . . . . 71
34 Explanation for the medical expert . . . . . . . . . . . . . . . . . . . . 71
35 Explanation for the developer . . . . . . . . . . . . . . . . . . . . . . . 72

6



List of Tables
1 Search strings used to filter through SCOPUS database. . . . . . . . . . 13
2 Research papers discussing trustworthy properties of AI models. . . . . 27
3 XAI publications based on the sector. . . . . . . . . . . . . . . . . . . 31

7



1 Introduction
Artificial Intelligence (AI) has become ubiquitous in the society. It has transcended
from just a mere conception to an advancing technology with profound capabilities
to transform capabilities. The trend of AI is surging across different sectors from
healthcare[2], finance[3], education[4], and transportation[5] This trend seems not to be
slowing down as societies consistently experiencing more profound performance from AI
on complex human tasks. Thus demonstrating its potential to impact everyone in society.
From small wearable devices like rings and smart cards to personal ones (smartphones
and smart speakers), household appliances, machinery, and vehicles, AI is embedded in
nearly every facet of our lives. However, this surge of AI has become worrisome due to
the risks associated with AI, ranging from privacy invasions to discrimination and biased
decision-making that can be significantly consequential to society at large. Another
concern is the opacity of AI’s inference generation, especially for the models behind the
AI systems that undertake complex and human-like tasks. These models are considered
black boxes because it is unclear how the input of the AI system leads to the inference
derived from the AI system [6]. In addition, AI systems can be easily compromised,
making them vulnerable to a wide range of attacks that can jeopardise the objective of
the system[1]. These challenges pose safety and ethical risks that raise concerns about
the trustworthiness of AI systems. Thus, highlighting the need for AI systems that are
not only efficient in performing the assigned tasks but also safe, ethical, and reliable.

Globally, stakeholders are making efforts to ensure that AI is trustworthy. legislation,
regulations, and initiatives are being established to govern the design, development, and
deployment of AI to guarantee safety and ensure that its functionalities comply with
acceptable societal norms and values. AI legislation and regulations provide the legal
frameworks and outline the operational guidelines and requirements for ensuring the
development, deployment, and application of AI systems are ethical and responsible.
The European Union (EU) AI ACT [7] is the foremost AI regulation to be codified in
the world to regulate AI. It aims to protect the fundamental rights of humans without
stifling AI innovation and application in European states. The ACT draws inspiration
from the ethical principles and requirements for trustworthy AI of the EU High-Level
Expert Group on an AI. It mandates that AI commissioning must comply with the seven
key requirements for trustworthy AI, including human control and oversight, ethics,
robustness, privacy, transparency, fairness, and societal well-being. Besides this ACT,
other similar regulations are around the world are: US Executive Order on Safe, Secure,
and Trustworthy Artificial Intelligence (AI)[8], and the Artificial Intelligence and Data
Act (AIDA) of Canada [9]. Countries like China and the United Kingdom are also
finalizing their regulations on AI. All AI legislation strives to promote ethical behavior,
transparency, human supervision, and accountability in AI applications amongst AI
practitioners. Despite the comprehensive stipulations in the regulation, practitioners lack
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practical guidance on implementation towards fulfilling some of the requirements of
trustworthy AI like continuous oversight for monitoring and supervision of AI inference.

This research work seeks to address the gap in the practical implementation of
trustworthy AI requirements on continuous human oversight during AI development
by systematically evaluating an adaptive dashboard of an AI platform designed for
accountable AI development in the context of EU Security and Privacy Accountable
Technology Innovations, Algorithms, and machine Learning (SPATIAL) initiative [10]
and the explanations that it presents. To achieve this aim, this work reviewed existing
works in the literature relating to various trustworthy components of AI in different
contexts, applications, and domains to understand existing efforts in complying with
trustworthy AI requirements. Additionally, a Medical Analysis Module (MAM) that is a
microservice in SPATIAL platform was used to appraise the explainability characteristic
of trustworthiness. MAM uses Electrocardiograms (ECGs) of patients to generate
descriptions and recommendations for stakeholders. The contributions from the results
and findings hope to aid compliance by effectively demonstrating how the requirement
can be translated into practical tools for end-users and regulatory bodies, particularly in
the area of enhancing monitoring and oversight of AI inferences.

The following remaining part of this work is outlined as follows: Section 2 provides
the background of the study, while the introduction of the SPATIAL architecture is
presented in Section 3. The experiments carried out are discussed in Section 4, followed
by the presentation of results in Section 5. In Section 6, we engage in the discussion, and
Section 7 presents the conclusion.
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2 Literature Review
Applications of AI are numerous and versatile. However, the black box-like nature of AI,
the vulnerability of AI systems to indiscernible attacks and data-poisoning, perceived
biases against underrepresented groups, and user privacy concerns, among many other
things, create a perception of unreliability among users [1]. This brings about the need
for research into AI and AI based applications, specifically the trustworthiness of such
systems. As such, the research into the trustworthiness of AI-based applications is vast
and diverse.

A few characteristics have been established as indicators of AI trustworthiness [1, 11]
such as fairness, accuracy, transparency, robustness, privacy, accountability, explainability
and interpretability [21]. Explainability and Interpretability, particularly in the context
of AI trustworthiness, have two different definitions, but they are both tied to context.
Interpretability focuses more on the underlying functioning that leads to decision-making
- it explains how the decision was made, while explainability gives insights into the
logic of the outcome for end users to understand - why the decision was made [12].
However, the explainability of AI can be challenging to compare across studies, owing
to differences in how the model is built, the context in which it is used, and the number
of parameters that contributed towards the decision [12].

Nonetheless, a mere search, “Trustworthy AI,” on the SCOPUS database yielded
13,827 publications, while searching “Explainable AI” yielded 38,399 search results.
This demonstrates the vastness of the amount of literature that exists on the topic.
Although not all of this literature will prove relevant to this study, a clear search strategy
must be established to sift out the applicable studies. Also, it is important to note
that the two main topics in focus, the trustworthiness of modern AI-based applications
and Explainable AI, are intertwined, as Explainable Artificial Intelligence (XAI) is a
characteristic of Trustworthy AI. This stipulates the need for a systematic review of
pre-existing work. Objectives of the literature review, literature selection process, criteria
for inclusion and exclusion, and keyword selection will be detailed in subsequent sub-
chapters. This study aims to build a system architecture that hosts services that evaluate
the trustworthiness of AI-based applications with a distinctive focus on explainability and
interpretability - where the caliber of the XAI model will be evaluated against stakeholder
needs and its ability to detect anomalies in inputs. To explore pre-existing knowledge and
apprehensions in the field, the Systematic Literature Review (SLR) method was applied,
and key terms relevant to this research were used to filter relevant studies that explore
the concepts of Trustworthy AI, explainability, and interpretability in AI systems.
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2.1 Literature Review Methodology
Focusing on research questions, literature on the selected database SCOPUS was sur-
veyed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) 2020 statement for systematic reviews was followed when conducting the
review [13] to ensure a systematic flow of information. By deep diving into the concept
of XAI in particular, the degree to which XAI can detect changes in input in projects done
in similar contexts and user expectations for XAI will be identified, setting a precedent
to what’s expected from the XAI component that’s developed as part of this thesis.

2.1.1 Eligibility Criteria

For the purpose of reviewing and scoping, research work was chosen to be included if the
work contributed towards the Trustworthiness of AI-based applications and Explainable
AI. For the purpose of this work, the definition of AI as presented by National Institute
of Standards and Technology (NIST) is taken as the primary definition. Herein, the term
AI is defined as "An Interdisciplinary field, usually regarded as a branch of computer
science, dealing with models and systems for the performance of functions generally
associated with human intelligence, such as reasoning and learning."[14]

2.1.2 Information Sources

The SCOPUS database was chosen as the primary database for SLR because it is
considered an authentic database of scholarly publications curated by a board of subject
matter experts[15]. It provides advanced analysis tools and indicators that facilitate
customized searches with exclusion and/or inclusion criteria. Search strings that included
appropriate keywords were used to call relevant research publications. To gather the
keywords and for the purpose of obtaining reliable definitions that match closest to
the context of this study, "The Language of Trustworthy AI: An In-Depth Glossary of
Terms" by NIST [14] was used. NIST was considered a reliable source as its information
is subjected to rigorous internal peer review to ensure the integrity of the scientific
information. [28]

2.1.3 Search Strategy

The trustworthiness of AI can be characterized based on its explainability and inter-
pretability, as it is crucial that the reasoning behind the AI model’s decision-making
is understood to determine whether or not its output can be trusted [12]. Therefore, it
was determined that “Explainable AI” and “Trustworthiness in AI Applications” can
be used as primary keywords. A trustworthy AI glossary published by NIST [14] was
used to gather terms and abbreviations related to AI trustworthiness. From there, some
terminology and abbreviations related to keywords were chosen and included in the
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search string. Terms were chosen based on the synonymity of meaning or the conceptual
relevancy they had to the keyword in question. An overview of the terms chosen for
each string is outlined in Figure 1. Search strings were designed with Boolean operators
“AND” and “OR” to combine the terms and abbreviations gathered. Then, the strings
were employed on SCOPUS to retain work with the keywords in the Title, Abstract,
and Keyword sections of the research. The final version of the two strings used to filter
through SCOPUS database is shown in Table 1.

Figure 1. Terms and acronyms chosen to be included in respective search strings.

To ensure that the literature chosen for the systematic literature review has high
relevance to the research topic, Inclusion and Exclusion criteria were established to
filter the chosen literature further. The first inclusion criteria were that the title and the
abstract had the established keywords, and more criteria were put in place to ensure the
information’s relevance, specificity, and correctness.

12



Table 1. Search strings used to filter through SCOPUS database.

Search String for “Trustworthiness in AI
Applications.”

Search String for “Explainable AI.”

TITLE-ABS-KEY (trustworthiness AND
in AND ai OR artificial AND intelligence
AND applications)

TITLE-ABS-KEY ("Explainable AI" OR
"XAI" OR "Interpretable AI" OR "AI trans-
parency" OR "Transparency in Machine
Learning" OR "AI explanation methods"
OR "Understandable AI" OR "Account-
able AI" OR "Explainable Artificial Intelli-
gence" OR "XAI algorithms" OR "explain-
ability" OR "Explainability algorithms"
OR "Interpretability models" OR "inter-
pretability" OR "AI decision-making ex-
planation)

2.2 Establishing the literature selection process
2.2.1 Literature Selection Strategy

Inclusion Criteria :

The SCOPUS database was initially searched to gather publications that had the
chosen keywords in their title and abstracts. Literature was further retained in the search
if they were published within the past decade (2014-2024), and further filtered to include
texts that are in English, sourced from a journal or conference, and the document type
being conference or article. Further, the literature was sorted based on whether the
publication stage is the final and whether the work has been published with open access.
These filters were applied sequentially to gather applicable literature.

Exclusion Criteria :

The exclusion criteria are more or less the inversion of the inclusion criteria. The
publications were excluded if the title and the abstract did not include designated key-
words. Next, items were excluded if the work was published before 2014, was in a
language other than English, and was not sourced from a journal or conference. If the
publication is in an intermediary stage/the final publication has not been made, the work
was withdrawn from the selection. Next, if the work was not available on open-access,
and finally, if the document/content type was not “Article” or “Conference”, the studies
were filtered. It is important to note here, that if any one of the criteria mentioned above
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was met, the work was taken off from the aggregation of selected literature. It is not
needed to meet multiple of these criteria for each study to be excluded.

2.3 Work Chosen for the Systematic Literature Review
2.3.1 Literature about “Explainable AI”

The initial filtering of literature with the keyword search string yielded a total of 80
research publications. Exclusion filters were applied, and Figure 2 provides an overview
of the selection, and outlines how many publications remained after each filtration. In
the end, 32 studies remained.

Figure 2. Filtering research obtained for "Explainable AI" keyword using inclusion
criteria.

2.3.2 Literature about “ Trustworthiness in AI Applications”

The initial filtering of literature with the keyword search string yielded only a total of 395
research publications. After the final filter adjustment only 110 publications remained.
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Figure 3 outlines this process stepwise, highlighting the number of publications retained
after each step.

Figure 3. Filtering research based on inclusion criteria for "Trustworthiness in AI
applications" keyword.
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2.4 Artificial Intelligence and AI-based Applications
2.4.1 Uses of AI systems in the present day and Age

Figure 4. Number of studies based on the sector.

AI-based applications have spread in almost every industry, and many organiza-
tions, businesses, individuals, and governments in the world utilize them to advance
in their respective use cases. An overall analysis of the chosen literature shows that
AI-based applications are being used across different sectors, and Figure 4 provides an
overview of the number of studies based on each sector. For instance, police can utilize
it to enhance their investigation techniques, surveillance capabilities, crime prevention
strategies, and order maintenance efforts [16]. In healthcare, the increased processing
power has amplified the significance and applications of artificial intelligence, where
AI is providing significant benefits to individuals and the healthcare system as a whole,
including addressing patient inquiries, aiding in procedures, and driving advancements
in pharmaceuticals [17]. In fact, Statista predicts that the AI healthcare market, with
a value of 11 billion United States Dollars (USD) in 2021, will grow significantly to
reach an impressive 187 billion USD by 2030 [17]. Financial institutions and the Fintech
industry have adopted AI technology and implemented machine learning algorithms in
trading, portfolio management, and investment advisory [18]. AI has gained footing in
education, marketing, cybersecurity firms[19], in products and manufacturing [20]. It
has also been integrated into day-to-day applications such as dating apps, chatbots[21],
and smart home product management.
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2.4.2 Construction of AI Models in a Nutshell and Decision-making Process of AI
Models

AI models utilize Machine Learning (ML) techniques to provide outcomes and results,
and Linear Regression (LR), logistic regression, Decision Tree (DT), Fuzzy rule-based
systems (FRBS), Bayesian Networks (BNs), are some of the so-called machine learning
models, used to generate these results. Ali et al., 2023 explain that decisions made by
machine learning models, such as LR, logistic regression, DT, FRBS, or BNs, are often
less accurate and unsuitable for large and complex data set analysis because of the non
linearity of real-world data, thus rendering such models impracticable to be used in
real-world applications - paving the way for the need to have more complex models
such as Deep Neural Networks (DNNs). These models are complex, including many
convolutional filters or kernels and neural units to compensate for the non-linearities of
practical data. The immense potential of machine learning (ML) applications stems from
the fact that their behavior is not defined by explicitly written rules but rather inferred
from data. ML approaches are specifically designed to detect patterns in training data
and integrate their statistical insights into a model. Deep neural networks, namely large
machine learning models derived from extensive data, can do tasks that have hitherto
eluded concise descriptions through human-imposed rules. Over time, AI-capable
applications build and improve their models via a systematic workflow. AI’s probabilistic
nature is improved with each contribution. This procedure, shown in Figure 5, consists of
several consecutive steps. First, data is gathered and processed using different methods,
such as removing duplicates and missing information and applying data augmentation
[22] techniques to improve the data quality. Next, the data is labeled, which is often
done by human annotators, in order to prepare it for the AI system. After that, the
training phase starts, during which a suitable algorithm (like a Random Forest or Support
Vector Machine) is selected, and the training procedure (such as data parallelization or
model partitioning [23]) is decided. Next, the model’s performance is evaluated, usually
using methods like cross-validation [24]. Ultimately, the model is implemented, and its
effectiveness is assessed within the application.

Models in traditional architectures typically require retraining and redeployment upon
the availability of new data. In contrast, model updates in more modern paradigms, such
as federated learning, are controlled by a global aggregator that combines contributions
from multiple clients. As a result, all contributors receive the revised model, providing a
more dynamic and cooperative method of model improvement.

2.4.3 Large scale AI model- related issues

As mentioned earlier, complex models have significantly augmented accuracy of results
and predictions. In fact, the study by Ali et al., 2023 [25] evidence that the more
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Figure 5. Standard machine learning pipeline.

profound the network is, the more accurate the generated results are. It is understood
that given the above-mentioned applications of AI, the outcomes it presents need to be
accurate, so complex models with infinite parameters and multiple layers are often used
to obtain results that end users perceive as accurate. However, it has been identified
that there’s a tradeoff between the accuracy of a model and its understandability. In
other words, the more accurate the model is, the more complex it is, thus making it
harder for users to understand the outcome. Complex DNN models used at present
often have millions of parameters that are considered when the model makes its decision.
Between the number of layers and many variables a model considers when making
a decision, it is tough to understand the model’s reasoning, creating a “black-box”
situation. This is the primary cause of doubt and distrust towards AI and AI-based
applications in the present world. However, other factors promote adversity toward
AI-based applications. Machine learning applications pose the risk of incorporating and
replicating discriminating tendencies in actual data, which can have negative effects
on individuals, organizations, businesses, and governments if such results are used in
decision-making processes. A study by A. Schmitz et al.,2022, summarizes the Risks of
AI as shown on Figure 6.

When presented with these threats, to ensure that the adversaries that AI brings to
society do not outweigh the advantages, guidelines need to be put in place to ensure that
AI and AI-based applications can be trusted. As is the case with traditional IT security
and safety, preventing physical harm, property damage, or financial loss cannot be the
only focus of these guidelines, as the intangible effects of AI on society and people also
need to be considered.
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Figure 6. AI risk scheme.

2.5 Trustworthy AI
The term trust in a technical context can be defined as the degree to which a user or a
stakeholder has confidence that a product or system will behave as intended [14]. As
outlined earlier, it is imperative that AI systems and models can be trusted. This brings
forth the concept of trustworthy AI, Artificial Intelligence that can be trusted by humans.
The concept of "AI trustworthiness" has been embraced as a comprehensive measure
of excellence for AI applications, surpassing the traditional notions of IT security and
safety.

2.5.1 Characteristics of Trustworthy AI

The successful implementation of ML technology in recent decades has primarily derived
from the utilization of accuracy-based performance metrics. There has been a major
focus on evaluating task performance using quantitative measures such as accuracy or
loss, and the process of training AI models becomes manageable in terms of optimization.
Meanwhile, even though the use of predictive accuracy indicates the excellence of
an AI product, solely relying on accuracy as a benchmark for performance of a ML
model revealed several new issues, as described under earlier topics. Therefore, additional
metrics of trustworthiness for AI are considered more and more to ensure trustworthiness
of AI based applications [1]. Certain attributes characterize trustworthiness in AI-based
applications. Li et al., 2023 [1] among other studies [26] outline key elements of AI
trustworthiness, encompassing robustness, explainability, generalization, reproducibility,
transparency, fairness, privacy preservation, and accountability. A representation of

19



Figure 7. Trustworthy AI Overview.
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characteristics of trustworthy AI and principles of Resposible AI has been outlined in
Figure 7.

Robustness: Robustness, in broad terms, pertains to the capacity of an algorithm or
system to effectively handle faults during execution, faulty inputs, or unfamiliar data.
NIST Glossary for Trustworthy AI [14] defines Robustness as the ability of a machine
learning model/algorithm to maintain correct and reliable performance under different
conditions (e.g., unseen, noisy, or adversarially manipulated data). Studies indicate
that the resilience of an artificial intelligence (AI) system can be evaluated based on
three vulnerability factors: data, algorithms, and systems. To assess this metric, many
conventional functional test strategies, such as monkey tests, as well as innovative testing
approaches like mathematical proof of an AI model’s adversarial robustness, can be
employed [1].

Explainability and Interpretability: Explainability of an AI model is defined as the
process of elucidating or revealing the decision-making mechanisms of a model. In-
terpretability also has an enmeshed definition with explainability. Interpretability is
understanding the inner workings of the AI models, and understanding the model and
its outcome by the information disclosed about the model itself. Interpretability helps
developers, and explainability helps end users, to gain confidence in the decision-making
process of AI and AI-based models. Interpretability focuses more on the underlying
functioning that leads to decision-making - how the decision was made, while explain-
ability gives insights into the logic of the outcome for end users to understand - why the
decision was made [25].

Generalization: Generalisation refers to the ability of an AI model to extract information
from a small amount of training data and use it to generate precise predictions about
new, unknown data. Unseen or test inputs generally exhibit the same distribution as
the training data. AI models can attain a satisfactory level of accuracy on training
datasets, however, a notable disparity called the generalisation gap arises between their
accuracy on training data and their accuracy on testing data. It is necessary to study
statistical and deep learning methods in order to improve the generalisation of the model.
Common techniques encompass cross-validation, regularisation, and data augmentation.
In order to develop a contemporary AI model that relies on data, a substantial quantity
of data is necessary during the training phase. As a result, producers and users incur
significant expenses when they have to gather and annotate data in order to train the
model for each specific activity. Conversely, AI models should possess the capability to
make generalizations without the necessity of extensively gathering and annotating vast
quantities of data across different domains, so a balance need to be obtained between
reducing the generalization gap, and model training efforts and costs [1]. Generalisation
is not commonly discussed in relation to trustworthy AI.
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Reproducibility: Reproducibility, as defined by the NIST glossary, refers to the degree
of agreement between measurement results of the same measurand when conducted
under different measurement settings. Research indicates that achieving the lowest
level of reproducibility necessitates replicating an experiment precisely using the exact
implementation and data. On the other hand, a higher level of reproducibility can
be attained by employing various implementations or data. In addition to the initial
verification of research, a greater level of repeatability enhances comprehension of the
research by differentiating the main aspects that impact effectiveness.

Transparency : NIST defines transparency as a property of a system that ensures
appropriate information about the system is made available to relevant stakeholders.
Appropriate information for system and model transparency can include aspects such
as features, performance, limitations, components, procedures, measures, design goals,
design choices and assumptions, data sources, and labeling protocols [14]. To better
understand this concept, [1] cites an interesting example that highlights the transparency
of an AI model with regard to a biometric identification system. Users typically express
concern regarding the purpose and utilization of their biometric information. Business
operators prioritize precision and resilience against attacks in order to effectively manage
threats, while the government sectors are primarily focused on ensuring that the AI
system adheres to established norms, laws, and regulations. The availability of this infor-
mation stipulates transparency and helps establish public trust in AI systems. However,
inappropriate disclosure of some aspects of a system can violate security, privacy or
confidentiality requirements.

Fairness: There are so-called biases in prediction models. A bias is a systematic error,
and unwanted bias places privileged groups at systematic advantage and unprivileged
groups at systematic disadvantage, leading to "unfair results. The Metric of Fairness
quantifies unwanted bias in training data or models. As mentioned earlier in the chapter,
AI systems assist processes such as recruitment, financial risk evaluation, and facial
recognition, and having unnecessary biases can lead to adverse social consequences.
Marginalized groups may face consistent disadvantages in hiring processes or be dis-
proportionately affected by criminal risk profiling. This can undermine the confidence
society as a whole have in AI, but also hinders the progress and use of AI technology for
the benefit of society. Therefore, it is important to measure the fairness of AI models to
ensure users can trust its outcomes.

Accountability: Accountability for systems, is a measurement that ensures that actions
of an entity can be traced uniquely to the entity. Accountability is a fundamental aspect
of the AI development lifecycle, as it necessitates that the individuals involved in the
development, execution, and maintenance of the AI system be responsible for explaining
how their actions are consistent with intuitive human values [1].
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Privacy : Privacy, as defined by the NIST glossary, refers to the state of being free from
intrusion into one’s private life or affairs. This intrusion occurs when there is an unjust or
illegal collection and use of data about an individual. AI-powered applications may have
access to a diverse array of data, such as an individual’s name, age, gender, facial image,
fingerprints, and other related information. Anonymity, confidentiality, and a strong
dedication to privacy protection are considered crucial aspects in assessing the trustwor-
thiness of an AI system. Government entities are developing an increasing amount of
policies to oversee the privacy of data. The General Data Protection Regulation (GDPR)
is a comprehensive regulatory framework that compels organisations to use appropriate
steps to safeguard user privacy [1]. Differential privacy is a widely used approach for
assessing privacy. It is a technique used to quantify the amount of information that may
be inferred about an individual from the result of a calculation. The process relies on the
randomized introduction of "noise." Noise refers to the introduction of random changes
to data inside a dataset, with the purpose of making it more difficult to identify specific
individuals through direct or indirect identifiers [14].

Figure 8. Relationships between different aspects of AI trustworthiness. [1]

The above mentioned characteristics are also connected to each other and serves as
metrics to a wide range of other representative requirements. The connectivity between
these characteristics are outlined in Figure 8. Additionally, it has been noted that to
implement trustworthy AI effectively, it is necessary to comprehend its connection to the
measures taken throughout the development process, despite the fact that it is commonly
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stated as a system need. [27].

2.5.2 Human-in-the-loop supervision of AI-based applications

It is evident that, Human social morality and ethical principles should be followed by
artificially intelligent systems intended for decision-making and other purposes, to ensure
trustworthiness. It is a crucial need to prevent personal prejudice and discrimination
and to promote the reliability and trustworthiness of AI systems [28]. The best, most
accurate outcome may not always be the correct course of action, as the sustainability,
morality, and ethical standing of decisions also may need to be considered depending on
the context. Pal, 2020 presents an example for this: For instance, an AI system designed
to aid farmers should not solely focus on optimising crop production, but should also
consider the ecological consequences of excessive nitrogen fertiliser usage [29]. Both
human and artificial intelligence has advantages of its own [29]. It should be mentioned
that when AI helps people make decisions, those decisions may perform differently than
those made by the AI alone or by humans acting without AI help. In the researched
scenario of a Swedish labor market decision-support system, for instance, caseworkers
are told to follow the automated advice mainly but can override it in specific situations to
reach the best decision [30].

In fact, trustworthiness is promoted by combining the two to ensure that humans
are in the loop and monitoring the system. Person-machine cooperation and integration
are expected to become mainstream trends of intelligent society in the future, and a
man-machine-object ternary system with a person in the loop will be created. Humans
and machines typically interact extensively in this system through monitoring, collecting,
transmitting, analyzing, fusing, and using information [28]. The system design mode
of "human in the loop" should be used especially in judicial, medical, military, and
other applications that involve significant human interests to guarantee the maintenance
of the final decision-making right by human beings [28]. This makes it necessary
to create a strong and effective evaluation and monitoring system to realise whole-
process supervision on artificial intelligence algorithm design, product development,
data collecting, and product application as well as to promptly identify and address
new issues and challenges in the creation of man-machine inclusive society [28]. Also,
it is important to note the accountability aspect of human oversight. Specifically, it
means that the system should be designed to enable human decision-makers to answer
for the choices they make with AI assistance. For instance, caseworkers must be able
to somehow supervise the AI and come to a judgement, considering not only the AI’s
output but also other important factors, and if they are officially in charge of making
choices there should be a system in place that ensures that the accountability of such
decisions can be traced back to the decision maker [30].
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2.5.3 Regulations that ensure AI trustworthiness

As important as it is to have characteristics that define trustworthiness, it is imperative
to have legal regulations to ensure that these characteristics are sought after. At the
moment, more than 700 AI policy proposals from 60 nations and territories, together
with over 170 new AI-related legislation projects exist, and the characteristics necessary
to verify and validate the appropriate development and application of AI models are
specified by AI regulations. However, it is evident that there are varying perspectives
worldwide regarding the appropriate use of AI. So many guidelines exist because of
the variety of national and territorial AI strategies that influence official guidelines and
regulations on AI. Although criteria vary widely, common components are included in
many AI guidelines, particularly in Western programs. Specifically, both European and
US American guidelines agree that privacy, fairness, and transparency are important
aspects of AI, in addition to the already recognized aims of reliability, safety, and security.
These dimensions are considered necessary for ensuring the quality of AI. [31] The EU
AI Act, proposed by the European Commission on April 21, 2021, and passed on 13
March 2024, pioneers in this context as the first comprehensive regulation of AI by a
significant regulatory authority. Furthermore, the EU-AI Act strongly emphasizes human
autonomy and oversight as crucial criteria for ensuring trustworthy AI [7].

Another pertinent guideline in the European legal ecosystem with regard to AI would
be the General Data Protection Regulations (GDPR). It establishes the protocols for
handling personal data within the European Union (EU), emphasizing the importance of
transparency, impartiality, security, privacy, trust, and explanation in the development
of AI-based solutions and software. Other existing regulations include, for instance, the
Health Insurance Portability and Accountability Act (HIPAA), the Cybersecurity Law of
China, the California Consumer Privacy Act (CCPA) and the Data Governance Act [32].
Considering the above mentioned aspects, modern applications need to include tools or
methods that let people understand the inference capabilities of artificial intelligence.
However, this necessitates a comprehensive examination of the AI model’s construction,
which warrants its own challenges.

2.5.4 How do Existing AI-based Applications support trustworthiness?

Existing regulations for AI and the ever-growing popularity of AI have motivated re-
searchers and developers to consider the trustworthiness aspect of AI. Studies emphasize
that the European Commission’s trustworthy AI principles, in particular, which stress the
importance of data protection, security, and responsible governance, serve as the founda-
tion for AI’s universal acceptance [33]. It has been studied that there’s an apparent link
between social perceptions of AI’s impact and factors such as trustworthiness, associated
hazards, and usage/acceptance [33]. According to the survey I conducted on the literature
acquired for the "trustworthiness in AI applications" keyword string, embedding trust-
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worthiness in applications is an increasing trend in modern AI-powered applications. A
recapitulation of the survey is outlined in Table 2. This shows conclusively that existing
AI-based applications support trustworthiness characteristics. Therefore, a subsequent
need arises, for a platform that can monitor the inference capabilities of such AI systems,
so that human operators can visualize and evaluate the trustworthiness of the application.
So as the natural next step, the abundance and workings of platforms that can monitor
the inference capability of the underlying AI model of such applications were examined.

2.5.5 Existing-Platforms that monitor and gauge AI inference capabilities

The selected literature library of 110 studies contained one study that dedicated efforts
toward assuring the trustworthiness of high-risk AI systems, to comply with the EU
AI Act. To be deployed, high-risk classified AI systems need to meet seven human-
centric and trustworthy standards. The study evaluated them throughout the AI life
cycle. Researchers Stettinger et al, 2023 employed risk assessment methodologies such
as Operational Design Domain (ODD) and Behavior Competency (BC) , to evaluate
residual hazards, in other words, to evaluate the risks of the AI systems - inversely
proposing a brief idea about the trustworthiness of the same. The methodology of this
study followed a continuous application of the ODD and BC throughout the AI life cycle,
focusing on the trustworthiness assurance framework and process for AIS certification,
and proposes a trustworthiness assurance assessment for High-Risk AI applications [26].
This is the closest approach I found from the selected literature, focusing on creating a
"trustworthiness evaluation" for AI applications, but the evaluation of trustworthiness
is indirect and not extended toward trustworthy AI characteristics in this context. This
highlights the existing gap in research for a platform that monitors and gauges AI
inference capabilities and AI trustworthiness.
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2.5.6 Modern Architectures

Building a platform that monitors trustworthy AI metrics involves employing an architec-
ture that suits the underlying functionality. Therefore, an analysis needed to be done on
the underlying system architectures of modern applications to determine the most suitable
architecture for the SPATIAL platform. There has been an increase in the attention given
to design and development considerations. In the initial stages of development, within a
simple client-server framework, end devices functioning as clients transmit requests to
the server. Upon reaching the server, the request undergoes processing and a response is
then transmitted back to the client (as shown in Figure 9).

Figure 9. Basic client-server architecture.

Subsequently, more advanced frameworks are developed to gather data in a cen-
tralized manner (at the server) from users interacting with applications. The data is
subsequently utilized to train machine learning models in order to enhance certain func-
tionality over time (Figure 10. Advancements have enabled these systems to collect data
from clients in a distributed manner, allowing for the utilization of more resilient datasets
for model training.

At the moment, the global model receives training using client-provided data in a
manner that respects their privacy, such as through Federated Learning (FL). Once the
model is developed, it is then distributed to all the end devices. Figure 11 expands upon
the ML architecture introduced in [79] to illustrate the most latest advances in distributed
training.
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Figure 10. Machine learning architecture.

Figure 11. Federated learning architecture.
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2.6 Explainable AI
2.6.1 What is XAI and Why it is needed

This chapter deep dives into explainability and sets precedence for the explainability
microservice of the SPATIAL architecture. As such, this section describes explainability
and explainable AI (XAI) and establishes the need for this measurement. Furthermore,
XAI taxonomy and different XAI methods are also outlined.

AI and AI-based models are currently being utilized widely, across many fields and
applications. However, as mentioned previously, the results or outputs of such AI models
are sometimes difficult to comprehend, and challenging to trust, as users don’t have an
idea as to how this outcome was generated. This is known as the black box nature of AI,
and is currently challenging the trustworthiness of AI. The concept of XAI was brought
about to specify a system’s capacity to explain the actions of AI-based applications.
From the user’s perspective, it sheds some light on the reasoning behind an AI model’s
decision-making [12] and helps shed some light on the “black-box” like nature that’s
typical in complex AI models. The terms interpretability and explainability are used here
as intertwined concepts that complement each other. Interpretability helps developers,
and explainability helps end users gain confidence in the decision-making process of
AI and AI-based models. Interpretability focuses more on the underlying functioning
that leads to decision-making - how the decision was made, while explainability gives
insights into the logic of the outcome for end users to understand - why the decision was
made. The amount of literature and research on AI explainability has steadily risen over
time, indicating a growing interest in XAI and its associated applications. Furthermore, it
is evident that various sectors have been actively pursuing the attainment of explainability
in AI-based applications. These trends are clearly apparent in the literature chosen for
this review. The distribution of literature over the recent years is shown in Figure 12 as
evidence of these trends. Table 3 showcases XAI publications categorized by sector.

In recent years, many different approaches have arisen with the goal of providing ex-
planations for AI algorithm behavior and therefore increasing its explainability. Because
several of these techniques exhibit fundamentally distinct properties, we will provide
a quick overview of the taxonomy of explainable AI approaches in the next section.
Following that, we will briefly introduce some relevant state-of-the-art XAI methods that
can support the explainability and thus accountability of AI-based systems and networks.
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Figure 12. XAI publications over the recent years.

Table 3. XAI publications based on the sector.

Sector # XAI method(s) AI
Model(s)

Healthcare

[80] LIME/GradCAM/
SHAP/DeepLIFT

DL

[81] SHAP/ LRP/
GradCAM

ML

[82] CAM NN
[83] Causal Inter-

pretability
ML

[84] LRP/ BERT-LRP ML
[85] LIME/ SHAP DNN
[86] LLM Rule-based

model
[87] SHAP/ BRCG/

Protodash/ LIME/
CEM

ML-based
Wireless
Network
IDS

Continued on next page
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Table 3 – continued from previous page
Sector # XAI method(s) AI

Model(s)
[88] SHAP ML Algo-

rithms
[89] SHAP/ LIME/

Heat map
CNN

[90] LIME DNN
Education [91] LIME DNN

Technology

[92] Post-Hoc/ Model-
specific explana-
tions

ML

[93] SHAP DNN
[94] Concept SA/ LRP

/Propagation rules
TCAV/ LIME

DNN

[73] LRP/ SHAP BNN
[86] Model-agnostic/

Model-specific
explanations

ML

[95] FED-XAI Decision
Trees
Rule-based
Models

[96] GradCAM/ LRP/
SmoothGrad/
LIME/ Integrated
Gradients (IG)

CNN

[97] LIME SHAP ML
[98] LORE/ SHAP/

LIME/ Anchors/
GradCAM/ CEM

DL

Telecommunication [99] DeepSHAP DL
Psychology [100] Grad-CAM LRP DL
Finance [101] TreeSHAP NN
Manufacturing [102] Global explana-

tions
RL
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2.6.2 XAI Taxonomy

The XAI methodologies can be categorised into numerous groups according to different
criteria [103, 104]. Below, we will explore the most prevalent taxonomies based on
Explainable Artificial Intelligence (XAI). Methods of Explainable Artificial Intelligence
(XAI) that belong to these categories are not necessarily limited to each specific group.
Some methods can belong to multiple categories within a taxonomy.

Model-agnostic vs Model-specific methods: Model-agnostic methods for Explainable
Artificial Intelligence (XAI) refer to techniques that are not limited by the fundamental
components of an AI algorithm while producing predictions. They assist in deciphering
the decision-making process of black box models and offer developers ample freedom to
implement them across different machine learning models. However, model agnostic
explanation approaches often have limited access to the machine learning models they
are working with, as they treat them as black-box functions and only have access to
the model’s output. These methods can be applied extensively and are highly flexible
because they do not rely on any knowledge about the internal workings of the model,
such as the topology, learnt parameters (weights, biases), and activation levels, especially
in the case of neural networks. In contrast, model-specific approaches are tailored for
individual models and utilise fundamental components of a machine learning model to
interpret the results. Model-specific approaches are better suited for identifying precise
details of machine learning models, but they lack flexibility.

Local vs Global methods: XAI methods can be categorised into two primary groups
depending on the extent of the function employed by the interpreter to generate an expla-
nation. There are both local and global explanations. Local explainers are specifically
designed to analyse and interpret a specific part of the model function that influences the
conclusion for a particular data point. When creating an explanation, the ML function ex-
plores the immediate proximity of the data point. In contrast, global approaches consider
the ML function as a whole entity when producing explanations for the inference. These
approaches are often slow but reliable, while local methods are rapid but occasionally
unpredictable.

Pre-model, In-model, and Post-model explainers: XAI approaches can be categorised
into three primary groups based on the stage at which they are implemented in the
development process: pre-model, in-model, and post-model. Pre-model approaches are
mostly employed during the dataset preparation phase in the model development pipeline.
These methods are valuable for doing data analysis, performing feature engineering,
and quickly understanding any underlying patterns observed in the data. Explainable
Artificial Intelligence (XAI) methodologies are integrated within the Machine Learning
(ML) algorithms. This encompasses all the transparent models, such as linear regression
or decision trees. Furthermore, model explanations are produced by making alterations to
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the current ML model architectures using inherently transparent models. Post-hoc/post-
model explanations are utilised subsequent to the training of a machine learning model.
This allows us to ascertain the knowledge acquired by the model during the training
phase.

Surrogate vs Visualization: XAI approaches are categorised into two primary groups
based on the specific aspect that is explained during the process. Surrogate model-based
explainers produce explanations by using an approximate model of the black-box model,
which is taught to imitate the behaviour of the actual model. Surrogate models are
generally intrinsically interpretable. Alternatively, individuals can employ visualisation
techniques such as heatmaps and graphs on the original black-box model to investigate
its internal mechanisms without the need for a representation. These XAI approaches are
classified as belonging to the visualisation category.

2.6.3 XAI Methods

LIME: Local Interpretable Model-agnostic Explanations (LIME), as described by
Ribeiro et al. (2016) [105] is a commonly utilised method for evaluating the results
of black-box models across various domains and applications. LIME, as its name im-
plies, provides a localised explanation by focusing on a specific collection of data to
approximate explanations for model predictions. This technique is feasible because any
intricate model exhibits linear behaviour at a local level. However, LIME has lately been
well-known for its fast performance (compared to other global explanation techniques)
and ease. It is able to understand outputs from any type of black-box model, regardless
of the model it is wrapped around (model-agnostic).

SHAP: Shapley Additive Explanations (SHAP) is a model-agnostic technique in Ex-
plainable Artificial Intelligence (XAI) that quantifies the contribution of each feature
value towards a certain prediction. When it comes to explaining individual predictions,
the method employed is based on the concept of Shapley values. The Shapley values
are a widely used technique in cooperative game theory that addresses the issue of
equitable distribution of rewards among participants in a group. Given that players may
contribute to winning in varying degrees, the allocation of rewards should correspond-
ingly reflect their individual contributions. This notion is utilised to elucidate local AI
forecasts and discern the varying contributions of features to the ultimate prediction. In
this case, Shapley values are employed to compute the impact of each feature on the
prediction by evaluating its incremental contribution for every conceivable combination
of characteristics [106].

LRP: Layer-wise Relevance Propagation (LRP) is an explanation approach that relies on
propagation. It necessitates access to the underlying components of the model, such as its
topology, weights, and activations. However, this supplementary knowledge regarding the
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model enables LRP to streamline and thereby enhance its ability to solve the explanation
problem more effectively. LRP, or Layer-wise Relevance Propagation, differs from
model agnostic methods by leveraging the structure of a deep neural network to explain
its predictions. It achieves this by redistributing the relevance factors, layer by layer,
starting from the model’s output and propagating them onto the input variables, such
as pixels. Each redistribution can be viewed as the resolution of a simple explanatory
problem, because it only involves two adjacent layers [107].
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3 Methodology
This section describes the systematic approach employed to design, implement, and de-
ploy the SPATIAL platform, which utilizes a microservice-based architecture to enhance
the trustworthiness of AI applications through thorough analysis and monitoring.

3.1 System Design
The architecture of the SPATIAL platform (See Figure 13), is characterized by a mi-
croservice pattern, enabling the development of advanced AI applications. This approach
involved creating independent, containerized services, each meticulously designed for
specific SPATIAL functionalities. Every microservice encapsulates its unique set of
functions, databases, and libraries, promoting a modular and scalable system. The Appli-
cation Programming Interface (API) Gateway, serves as a centralized access point for
clients and enabling efficient communication and integration across diverse services. It
streamlines request processing and facilitates the discovery and utilization of microser-
vices. Overall, the SPATIAL architecture embodies modularity, scalability, and resilience,
empowering stakeholders with enhanced explanatory capabilities, quantifiable data, and
efficient system management tools.

Figure 13. The SPATIAL Architecture.

Figure 14 illustrates the sequence of interactions between key objects in the SPATIAL
architecture during a user login and request handling process.

36



Figure 14. Sequence diagram of the SPATIAL architecture.

3.1.1 Augmented Machine Learning Pipeline

Our SPATIAL architecture augments latest ML/FL system architectures by building upon
the standard machine learning pipeline that is available to construct the models. Fig-
ure 15(a) shows the additional steps introduced in the pipeline, such that trustworthiness
properties can be verified using XAI and additional specialized metrics (see Figure 15(b)).
This verification consists in building a diagnosis profile about the application that is
analysed, such that it is possible to characterize and quantify the performance of AI
models. The use of a combination of metrics is meant to improve the robustness when
analysing AI models.

Indeed, XAI alone can be used to detect possible issues in models, but the provided
insights are insufficient to accurately identify drifts and errors in performance nor their
root causes. In addition to this, as trustworthy properties depict trade-offs, the main
reason for extending the existing pipeline is to provide a way of tuning these trade-offs
over time, following a tuning based on a human-in-the-loop (stakeholders) feedback
and to avoid post de-facto verification, in which tuning is difficult to be implemented
once the final model is deployed. Thus, our SPATIAL architecture fosters a correct-by-
construction approach as models are updated over time. In parallel to this, Figure 16
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Figure 15. Augmented pipeline to analyze trustworthy trade-offs.

Figure 16. Conceptual modern system architecture equipped with methods to monitor
trustworthiness.

also shows how modern system architectures are augmented when considering this
new functionality. It is possible to observe the new concerns when developing not just
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applications that rely on AI but also ensure that AI is trustworthy.

3.1.2 AI Sensors in SPATIAL

Figure 17 illustrates virtual sensors that continuously monitor and analyze a trustworthy
property over a period of time. Every trustworthy property is connected to an artificial
intelligence sensor. The sensors are integrated into the target application, and their
reliability is measured. These sensors, integrated as APIs within applications, allow
for the measurement of AI compliance with existing criteria, providing information on
how well the model adheres to required specifications. An API instrumentation offers a
significant benefit by allowing the intensive computation required for the functionality of
an AI sensor to be outsourced or offloaded to the server.

Figure 17. SPATIAL concept overview.

3.1.3 AI Dashboard in SPATIAL

SPATIAL’s AI dashboard provide a user interface that allows humans to monitor the
analysis of AI models, both for the data used and the AI model itself once it has been
trained. AI dashboards clearly display all the measurable data collected by the AI sensors
to users. This enables human specialists to collaborate in overseeing the development of
the model and tuning the AI system to solve trade-offs in trustworthiness properties, while
adhering to legal requirements.
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3.2 System Implementation
This section details the practical steps taken to implement the SPATIAL platform, with
a particular emphasis on the deployment of its microservices and the integrations of
microservices into the API Gateway.

3.2.1 Deployment of the SPATIAL Platform

The deployment of the SPATIAL platform involved a systematic approach to config-
uring and launching its various microservices to ensure the overall functionality and
performance of the system. Figure 18 shows the deployment of our augmented software
architecture. We next provide a detail description of each component implementation.

Figure 18. SPATIAL system deployment.

Back-end implementation: SPATIAL employs a micro-service pattern to assess the
trustworthiness of AI by utilizing a combination of metrics and services. The core concept
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is that each micro-service focuses on characterizing a specific, trustworthy property, e.g.,
micro-service for explainability, micro-service for fairness. Micro-service patterns enable
easy replacement of metrics for quantifying trustworthiness. This is beneficial since there
is currently a discrepancy between legal and technical trustworthiness. Thus, metrics that
align better with legal requirements can be easily modified in SPATIAL. Node.js serves
as a foundational runtime environment in our architecture, preceding the API Gateway. It
is used to create server-side applications that can handle several requests at the same time
by using an asynchronous, event-driven programming approach. Our API gateway [108]
is built using the open-source Kong technology, which allows for seamless connection
with OpenAPI and provides extensive configuration options for continuous integration.
The API Gateway coordinates communication, guaranteeing that each micro-service
obtains the required input, handles it, and provides the accurate response. We used
NGINX [109] to define Upstreams and API addresses in the configuration file to target
particular URL paths to route to the corresponding micro-services. The metrics and
services that assess trustworthiness are containerized as micro-services using Docker,
following a request/response model. In the SPATIAL framework, a virtual machine (VM)
is initially set up, onto which Docker [110] images containing all necessary dependencies
and configurations are loaded. The use of Docker containers streamlines the deployment
process by standardizing and isolating the environment, which facilitates consistent
deployment experiences across various setups.

Front-end implementation: The frontend of SPATIAL is developed using React, of-
fering users an easy interface for seamless integration with SPATIAL’s functionalities.
Node.js is the essential runtime environment for React’s development tools, such as
Babel and Webpack. The Bootstrap 5 framework is used for creating responsive designs,
while Tailwind CSS is used for customizing styles, resulting in visually attractive user
interface components. In addition, the SPATIAL client incorporates Okta for identity
management, guaranteeing safe and strong authentication and authorization capabilities
for access control. We employ D3.js, Chart.js, and Papaparse to handle datasets and
create interactive charts. Papaparse is specifically used for processing CSV data.

3.2.2 Micro-service Deployment

To deploy SPATIAL microservices, the initial step involves creating Virtual Machines
(VMs). This process is seamlessly facilitated by the Virtual Desktop/Cloud Service
provided by the High Performance Computing (HPC) Center [111]. Affiliated with
the University of Tartu, the HPC Center excels in maintaining and advancing scientific
computing infrastructure. Their Virtual Desktop/Cloud Service, powered by robust AMD
EPYC servers, plays a crucial role in enabling the smooth and efficient creation of VMs.
HPC Center is also affiliated with other cloud vendors in cooperation with LUMI partners.
For streamlined access to our Cloud services and VM deployment, minu.etais.ee serves

41



as the primary portal. This user-centric interface simplifies the process of requesting,
managing, and optimizing virtual hardware resources. As depicted in Figure 19, ordering
a virtual machine requires a VM name and selection of a VM image. Selecting the initial
VM resource profile is flavour, it will set the initial resource profile for a VM - how much
RAM, virtual CPU cores (vCPU), and storage it will have. Selecting VM flavor will also
update “System volume size” with the option to override it manually (to a higher custom
value). The size of “Data Volume” can be customized and incremented in 1GB steps.
“System volume” must be at least 10GB, whereas “System volume” and “Data volume”
must be equal to or less than VPC’s total Storage. By default, no incoming connections
will be allowed for a VM. Predefined Security Groups (firewall rules) must be linked to a
VM in order to open up access (like ssh, Hypertext Transfer Protocol (HTTP), etc.). A
summary is depicted in Figure 20.

Figure 19. Example for ordering VMs and corresponding resource profile at HPC center
of University of Tartu.

Figure 20. Example listing further configuration details for the ordered VMs.

To access VMs seamlessly, we employ the x2go client [112] , providing a user-
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friendly interface for efficient remote connections. Below are the steps we follow to
configure the VM for optimal use.

1. Connect to the VM:
s s h ubuntu@{ e x t e r n a l IP o f t h e VM}

To securely access the VM.

2. Update the packages:
sudo a p t u p d a t e

To ensure the system is up to date.

3. Install XFCE Desktop:
sudo a p t i n s t a l l x f c e 4

To enhance the user interface by installing XFCE desktop environment.

4. Install x2go Server:
sudo a p t i n s t a l l x 2 g o s e r v e r

To enable seamless remote connection by installing the x2go server.

Deploying the microservices involved leveraging Docker [110] for efficiency and
consistency. After confirming Docker on the VM, we adopted a streamlined approach.
This included creating a Docker image encapsulating the microservice’s dependencies
and configurations, followed by deployment through a Docker container. This Dockerized
deployment simplified the process and provided a standardized, isolated environment,
ensuring a seamless deployment experience across different instances.

3.2.3 Integration of Services into the API Gateway

The integration of components in the context of Kong Gateway [108] involves the
seamless coordination and configuration of services, routes, upstream applications, and
NGINX [109] within the overall architecture. This integration process ensures efficient
traffic management, routing of requests, and reliable distribution of workloads across
backend services. The integration starts in the main admin interface of Kong (see
Figure 21).

Service Definition: In Kong Gateway [108], the service was defined by providing a name
and connection details for the upstream application. The connection details, including
protocol, host, port, and path, were specified either as a single string in the Uniform
Resource Locator (URL) field or through individual values. This was achieved through
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Figure 21. The admin interface of the Kong API gateway.

Kong Gateway’s administration interface or API (see Figure 22), where administrators or
developers interacted with the Kong API to create and configure services.

Figure 22. Steps to define a new SPATIAL service in the Kong API gateway.

Route Configuration: Routes were configured by associating them with the previously
defined services in Kong Gateway [108]. Basic route parameters such as name, paths,
and references to existing services were set up during the service definition process.
Advanced configurations, including protocols, hosts, methods, headers, and tags, were
adjusted based on the specific requirements for routing requests (see Figure 23 and
Figure 24).
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Figure 23. Interface to configure for an exemplary SPATIAL service.

Figure 24. Details for configuring a route for an exemplary SPATIAL service.

NGINX Upstream Configuration: Within the NGINX [109] configuration file, an up-
stream block was defined. This involved editing the NGINX configuration file, typically
located in a directory like ’/etc/nginx/conf.d/’ or a similar location. Addresses of backend
services were specified within the upstream block. These addresses represent where each
service is running, and they could be cloud deployments or virtual machines. Figure 25
illustrates the NGINX configuration file for the current statue of the SPATIAL platform.
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Figure 25. NGINX configuration file for the SPATIAL platform.

API Address Definition: API addresses were defined within the NGINX [109] configu-
ration file (see Figure 26), often using location blocks. Location blocks were configured
to establish rules for routing requests to specific API endpoints based on criteria such as
Uniform Resource Locator (URL) paths. These configurations determined how incoming
requests targeting particular URLs or Uniform Resource Identifier (URI) paths were
routed to the corresponding backend services.
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Figure 26. SPATIAL service IP address specified in the NGINX configuration file.
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4 Experiments
This section describes the experiments designed to evaluate the Medical Analysis Module
(MAM) integrated within the SPATIAL Platform. The initial experiment investigates
the effectiveness of role-specific explanations integrated within the SPATIAL Platform
to understand user needs and improve the interpretability of AI-generated explanations.
Finally, the capacity-load performance of the module was assessed by analyzing the be-
haviour of the system under varying user loads to determine the scalability and reliability
of the module within the SPATIAL platform.

Figure 27. Medical Analysis Module.

4.1 Stakeholder-Adaptive Explanation
The medical analysis module (MAM) caters to medical experts and AI developers, two
stakeholders considered within the SPATIAL project. The module analyzes electro-
cardiogram (ECG) signals from an e-calling medical system using XAI methods to
enable the stakeholders to comprehend and interpret the underlying data effectively. The
system leverages a fall detection model to trigger emergency medical assistance for aged
patients when falling is detected in their daily activity. The role-specific explanations
using LIME and SHAP explainable AI methods are mainly to aid medical experts who
are monitoring emergency calls. This experiment evaluates the interpretability and
relevance of AI-generated explanations for different user profiles using an interactive
interface to improve the explanation to meet stakeholder’s needs. The experiment was
conducted by the Fraunhofer Institute for Open Communication Systems (FOKUS) as
they maintain propriety access to the e-calling application. However, the translation of
the findings to the development of an adaptive and interpretable dashboard and other
design experimentation is the major experimental contribution of this work.
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4.1.1 Experimental Setup

Experimental design and methodology: The investigators carefully considered the
appropriate experimental method that could adequately achieve the objective of the
investigation. Given that context, the perception of users of the MAM, and the adaptive
explanations are relevant to the evaluation, a qualitative study was selected. Specifically,
a participatory study was conducted. This study actively engaged the stakeholders in
the design and assessment of an interactive interface for the emergency e-calling system.
Designed mockups were presented to stakeholders at several workshops or mockup
sessions and interviews to understand their needs and requirements.
E-Calling Medical Application: This is a mobile application, part of an e-calling system
that utilizes accelerometer sensor data to detect the falling of an elderly person. As the
falling event is detected by the underlying AI model in the application, the application
triggers an emergency call to request medical assistance.
Apparatus: During the prototyping, Mockplus, a wireframe tool, was utilized for
creating a static prototype of the interactive interface. The mockup included interactive
elements such as buttons, text inputs, and tabs for information presentation. Likewise,
the Python-based Explainer Dashboard library to develop a fully functional web app for
deriving and presenting explanations generated about the ECG images to stakeholders.
Stakeholders: Two stakeholders were involved in the experiment. The AI develop-
ers are responsible for developing AI models and generating explanations.The second
stakeholder, medical experts, makes medical decisions based on AI predictions and
explanations.
Procedure: The experiment had three phases: (1) No Explanation, where users received
only generic statistics about model performance; (2) Global Explanations, where data
visualizations using dimensionality reduction techniques were provided; and (3) Local
Explanations, where users interacted with specific data instances for detailed explanations.
Participants, selected from AI developers and medical experts, engaged with these
different levels of explanations, performing tasks and providing feedback on the clarity,
relevance, and influence of the explanations. Quantitative metrics like interaction time
and consistency of explanations were recorded, alongside qualitative feedback collected
through surveys and interviews. Follow-up interviews offered deeper insights into user
experiences and needs. This is illustrated in figure 28. The iterative design process
incorporated user feedback to refine the interface, aiming to provide clear, relevant,
and influential explanations, ultimately enhancing user confidence and decision-making
accuracy.
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Figure 28. Interview Procedure and feedback

4.2 Capacity-load Performance Experiment
The development of the stakeholder-adaptive explanation laid the foundation for enhanc-
ing the transparency and trustworthiness of AI systems. Building on this, the performance
evaluation of the medical analysis module (MAM) was conducted to ensure that the
SPATIAL platform could maintain its robust and scalable performance while providing
explanations under varying loads. The evaluation focuses on understanding how the
system behaves under different user loads, which is critical for ensuring reliability and re-
sponsiveness in a production environment. The load tests allow the MAM to be analyzed
in more detail and application-specific ways, allowing room to identify improvement
areas that are only relevant to this service. The load tests are performed by sending
requests against the MAM via the API Gateway link. This provides an estimate for
utilizing MAM in operational settings. As a result, the system under test per isolated test
consists of the MAM to be tested and the API Gateway. Figure 29 illustrates the abstract
test setup for the MAM.

Figure 29. Abstract setup for MAM service integrated into the SPATIAL platform
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4.2.1 Experimental Setup

Experimental design and methodology: The load testing was conducted using Apache
JMeter[113], on a local machine setup. JMeter was particularly set up to simulate
different levels of user load on the MAM system by generating and sending HTTP
requests to the designated REST API endpoints. The configuration enabled scalable,
repeatable tests across varying loads up to a maximum of 100 concurrent users.

The JMeter configuration for the capacity testing experiment was setup to replicate
realistic user interactions with the MAM’s REST APIs. It included Thread Groups to
simulate concurrent users, each set up to send requests to predefined API endpoints.
HTTP Request Samplers were created using specified HTTP methods, URLs, and body
data to mimic regular user requests accurately. Listeners were used to tracking key metrics
such as response times, throughput, and success/error rates in real-time, providing instant
feedback on the system’s performance under stress. However, for the purposes of this
experiment, our primary focus remained on the response time metric. Timers were used
to space out the requests, ensuring a realistic traffic flow while not overwhelming the
server. (See Figure 30 for JMeter configuration)

REST APIs tested: Several REST API endpoints within the MAM were tested, includ-
ing:

POST / e m e r g e n c y _ d e t e c t i o n / m i _ d e t e c t i o n / p r e d i c t

This endpoint is used for the automatic emergency detection. It expects a 12-lead ECG
signal encoded in WFDB as JSON input and returns 1) the probability that the ECG
contains indications for an acute MI, 2) the predicted class, and 3) a 70oolean flag
describing whether the situation is expected to be an emergency. For the emergency
detection, a pre-defined default model is used.

POST / m e d i c a l _ a n a l y s i s / e c g _ a n a l y s i s / v i s u a l i z e _ e c g

This endpoint can be utilised to visualise a 12-lead ECG signal. Similar to other endpoints
of the MAM, it takes a 12-lead ECG signal encoded in WFDB as JSON input. Afterwards,
a PNG image of the plotted signal will be provided.

POST / model / { model_ id } / e x p l a i n / { xa i_method }

In order to generate numeric explanations for the decision-making of hosted ML models,
this endpoint can be used. First of all, the endpoint requires 12-lead ECG signal encoded
in WFDB as JSON input. Furthermore, the user needs to specify the ID of the model to
use as well as the XAI method to apply in the request path parameters.

POST / m e d i c a l _ a n a l y s i s / e c g _ a n a l y s i s / { xa i_method } / {
v i s u a l i z a t i o n _ a p p r o a c h }
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This endpoint can generate visual explanations for ML models performing ECG analysis.
The user needs to specify which XAI method to be selected. Moreover, the user can
choose between three visualisation methods by selecting the path parameter visualization
Approach accordingly. The following values are currently supported:

1) ‘tick importance’, which highlights the relevant time ticks in the ECG signal,
2) ‘time importance’, which marks relevant aggregated time segments, and
3) ‘lead importance’, which highlights the most important relevant ECG lead.
Finally, the endpoint also requires a 12-lead ECG signal encoded in WFDB as JSON

input. The endpoint will then return a PNG Image visualising the relevances as a heatmap
overlaying the original ECG signal.

Figure 30. JMeter configuration for the load testing.
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5 Results

5.1 Stakeholder-Adaptive Explanation
The experiment on the explanations derived from the Medical Analysis Module demon-
strated that the interactive interface effectively provided clear, relevant, and influential
explanations tailored to the needs of AI developers and medical experts. Feedback
examination revealed pertinent design considerations that were incorporated into the
development of the platform’s MAM explanation dashboard .

Figure 31 illustrates the SPATIAL platform’s dashboard for medical analysis, focusing
on ECG data. It outlines the process from dataset upload, AI model building, and
comparison to XAI analysis using LIME and SHAP and fairness assessment. The central
dashboard integrates these functions, providing a unified interface for different user roles,
including developers, end-users, and medical experts. The medical analysis section
displays ECG data with detailed explanations to enhance interpretability. This setup
ensures that users can effectively understand and utilize complex medical data, improving
the overall usability and transparency of the AI system.

Figure 31. Explanations based on user role.

Implicationn of result: Stakeholders tend to find the explanations on the dashboard
to be generally clear and relevant, which positively influences their confidence and
decision-making. Interaction time varied with explanation complexity, indicating the
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cognitive effort required. Quantitative metrics showed consistency across different
XAI methods, while qualitative feedback highlighted areas for further improvement.
Overall, the iterative design and user feedback significantly enhanced the usability and
interpretability of the emergency e-calling system’s interactive interface. (See Appendix
I for other explanation figures)

5.2 Performance Testing Results
We assessed the performance of the MAM by testing it with up to 100 concurrent
demanding users. As previously mentioned, the performance was evaluated based
on the response time. Since the MAM operates on an HTTP-based REST API, this
statistic primarily provides external users with relevant information about the anticipated
performance of the component in a real-world operational environment.

The load test was executed for a duration of 7.9 hours. The load on the service
was gradually increased by executing and managing concurrent threads for different
endpoints. A user load of up to 100 concurrent users was simulated. In addition, a grand
total of 18267 samples were utilized for the MAM service in the studies, out of which
17475 were successful. The average response time for the analyzed API endpoint is
displayed in Figure 32. In addition, Figure 32 depicts the 95 percent confidence interval
of the observed measurements. Furthermore, it is essential to mention that only the
succeeded requests are considered.

Figure 32. JMeter load testing results.

As we can see, the response time of the service endpoints increases significantly

54



with increasing user load. Although processing requests for high user loads takes
more time, the MAM can still reliably answer requests for up to 100 parallel users.
As shown in Figure 32, the endpoints that only calculate and return numerical values
are significantly more performant than those that plot and return ECG signals or XAI
explanations. Precisely, the endpoints "Classify and Detect Emergency", "Numeric
Grad-Cam Explanation", and "Numeric SHAP Explanation" are among those that return
numerical values. All other endpoints generate and respond with PNG images.

In addition, we can observe that the functions "Classify and Detect Emergency" and
"Numeric Grad-Cam Explanation" are the most efficient. These manifest a minimum
response time of 512ms and 651ms, and a maximum response time of 45206ms and
46752ms, respectively. Interestingly, the calculation of the Gradient-weighted Class
Activation Mapping (GradCAM) values performs similarly to the pure inference of the
hosted TensorFlow models, indicating the Grad-CAM method’s computational efficiency.
In contrast, the calculation of the SHAP values for the "Numeric SHAP Explanation"
function is significantly more computationally intensive, resulting in a higher response
time. Here, the minimum response time was measured at 851ms, and the maximum
value was at 67990ms for generating explanations for ECG classifications.

The functions "Visual SHAP Explanation" and "Visual Grad-CAM Explanation"
perform the same calculations as those just discussed for calculating the numerical
relevance based on the XAI methods SHAP and Grad-CAM. However, these functions
also plot these values and overlay them on the original ECG as a heat map. As we can
observe from Figure 32, the computational and transmission overhead for creating and
sending the images is significant. A minimum response time of 2557ms and a maximum
response time of 300867ms were measured for "Visual Grad-CAM Explanation". In the
case of "Visual SHAP Explanation", values of 2657ms and 300745ms were observed.
This indicates that plotting is significantly more computationally expensive. In this
context, the "Visualise ECG Signal" function provides an estimate of the pure effort
required for plotting, where a minimum response time of 1669ms and a maximum value
of 242872ms is manifested. The increased overhead for creating the images and the
increased amount of data required for transferring the images suggest using the numeric
functions and moving the plotting to the clients for time-critical applications.
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6 Discussion

6.1 Stakeholder-Adaptive Explanation
The experiment conducted on stakeholder-adaptive explanations within the Medical
Analysis Module (MAM) demonstrated the effectiveness of an interactive interface in
addressing the specific requirements of AI developers and medical experts. It enhanced
clarity, relevance, and influence by tailoring explanations based on user roles and prefer-
ences. Incorporating iterative feedback from stakeholders proved invaluable in refining
the explanation dashboard, ensuring that it met the evolving needs of end-users. The en-
hanced interpretability of AI-driven medical analysis not only improves user confidence
and accuracy in decision-making but also facilitates transparency, which is essential for
trust-building in sensitive healthcare applications.

The iterative design process employed in the experiment highlights the necessity of
stakeholder collaboration in creating effective AI interfaces. The participatory study,
which included workshops, mockup sessions, and interviews, provided valuable insights
into requirements and preferences of the users. This feedback was helpful in improving
the explanation dashboard, making it more relevant and user-friendly. The distinction
between global and local explanations addressed the stakeholders’ various cognitive
needs, resulting in a deeper understanding of the AI models’ predictions.

Furthermore, the results revealed that explanations not only improved the trustwor-
thiness of AI systems but also facilitated better decision-making by providing clear and
actionable insights. This relates with existing literature, emphasizing the importance of
explainability in building trust in AI applications [93].

6.2 Performance Testing
The performance evaluation of the Medical Analysis Module (MAM) within the SPA-
TIAL platform provides critical insights into its operational efficiency and scalability
under varying loads. The results showed that the platform could handle a significant
load without laying down performance, ensuring reliable and efficient operation even in
high-demand situations. This is particularly important in real-world applications where
AI systems need to process enormous amounts of data and provide prompt responses.

The experimental configuration simulated up to 100 concurrent users interacting with
MAM’s REST API endpoints. Endpoints tested included emergency detection, ECG
visualization, and the generation of numerical and visual explanations using SHAP and
Grad-CAM techniques. The findings revealed significant differences in performance
depending on the type of request. Endpoints that return numerical results, such as
"Classify and Detect Emergency" and "Numeric Grad-CAM Explanation," had much
shorter response times than those that generated and returned visual explanations, such
as "Visual SHAP Explanation" and "Visual Grad-CAM Explanation." This insight is
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crucial because it highlights the importance of balancing computational efficiency and
the depth of analysis provided. For time-sensitive applications, offloading plotting tasks
to client-side process could reduce response time issues, ensuring that the MAM remains
responsive even under high load conditions.
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7 Conclusion
In this paper, we set out to systematically evaluate the augmentation of trustworthy AI in
modern applications through the development of the SPATIAL architecture. This study
aimed to fill the void in the practical implementation of trustworthy AI requirements
regarding continuous human oversight throughout AI development, by methodically
assessing an adaptive dashboard of an AI platform intended for trustworthy AI devel-
opment within the framework of the EU SPATIAL initiative. SPATIAL, we conclude,
diagnoses the functionality of artificial intelligence by integrating various techniques
that characterize and quantify the inference process of AI. By utilizing an interactive
interface to assess the interpretability and relevance of AI-generated explanations for
various user profiles, this study enhanced the explanations to better cater to the stake-
holders’ requirements. With regard to the reliable explainability metric, we improved the
user experience by tailoring explanations for stakeholders concerning Medical Analysis
Module (MAM) to their respective user roles. The stakeholder-adaptive explanation was
considered satisfactory due to the integration of user feedback into interface refinement.
The SPATIAL architecture was able to deliver explanations that were unambiguous,
pertinent, and persuasive, ultimately resulting in increased user confidence and improved
decision-making accuracy for the MAM.

Moreover, we effectively showcased the platform’s efficacy in delivering explanations
tailored to stakeholders’ needs while ensuring the dependable operation of AI systems.
The results and findings are expected to provide valuable insights for compliance, specif-
ically in the realm of enhancing monitoring and oversight of AI inferences. They will
effectively demonstrate how the requirement can be operationalized into practical tools
that can be utilized by end-users and regulatory authorities.
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Appendix

I. Generated explanations from MAM based on the user
role

Figure 33. Explanation for the end user

Figure 34. Explanation for the medical expert
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Figure 35. Explanation for the developer
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Acronyms
AI Artificial Intelligence. 8

AIDA Artificial Intelligence and Data Act. 8

API Application Programming Interface. 36

BC Behavior Competency. 26

BNs Bayesian Networks. 17

CCPA California Consumer Privacy Act. 25

DNNs Deep Neural Networks. 17

DT Decision Tree. 17

ECGs Electrocardiograms. 9

EU European Union. 8

FL Federated Learning. 28

FOKUS Fraunhofer Institute for Open Communication Systems. 48

FRBS Fuzzy rule-based systems. 17

GDPR General Data Protection Regulation. 23

GradCAM Gradient-weighted Class Activation Mapping. 55

HIPAA Health Insurance Portability and Accountability Act. 25

HPC High Performance Computing. 41

HTTP Hypertext Transfer Protocol. 42

LIME Local Interpretable Model-agnostic Explanations. 34

LR Linear Regression. 17

LRP Layer-wise Relevance Propagation. 34

MAM Medical Analysis Module. 9
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ML Machine Learning. 17

NIST National Institute of Standards and Technology. 11

ODD Operational Design Domain. 26

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses. 11

SHAP Shapley Additive Explanations. 34

SLR Systematic Literature Review. 10

SPATIAL Security and Privacy Accountable Technology Innovations, Algorithms, and
machine Learning. 9

URI Uniform Resource Identifier. 46

URL Uniform Resource Locator. 46

USD United States Dollars. 16

VMs Virtual Machines. 41

XAI Explainable Artificial Intelligence. 10
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