
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science Curriculum

Hannes Metssalu

Demonstrating Android P2P capabilities

through a prototype application

Bachelor's Thesis (9 ECTS)

Supervisor: Artjom Lind, MSc

Tartu 2015

Demonstrating Android P2P capabilities through a prototype ap-
plication

Abstract:
Nowadays more and more people are communicating using electronic devices. This means
that all kinds of data are transferred between devices. These are often private data but
sent in a very public manner. When using traditional client-server approach, data may be
seen or even altered by the server which means that the authenticity and privacy of data
is always under question when using untrusted servers. Furthermore many people prefer
to use mobile devices (tablet or mobile phone) instead of a PC for communicating and
changing data yet there still does not exist a simple way to do it with certain privacy.

This thesis analyzes di�erent methods for sending and receiving data between clients
in a P2P (peer-to-peer) way instead of using traditional client-server model. Also a proof-
of-concept application is written for Android which demonstrates how to easily enable
P2P communication between multiple devices. Application will support sending messages
between peers and also includes an example Hangman game for demonstrating game
programming with P2P communication.

Keywords: P2P, Android, mobile device, game, Sip2Peer

Androidi P2P võimaluste demonstreerimine läbi prototüüprak-
enduse

Lühikokkuvõte:
Tänapäeval suheldakse aina rohkem elektroonilisi seadmeid kasutades. See tähendab, et
seadmed vahetavad palju andmeid. Tihti on need andmed isiklikud, kuid saatmine toimub
väga avalikul viisil. Kasutades levinud klient-server lähenemisviisi, võib server andmeid
näha või isegi muuta, mis tähendab, et andmete autentsus ja privaatsus on rikutud, juhul
kui kasutatakse ebausaldusväärset serverit. Lisaks eelistavad paljud inimesed suhtlemiseks
ja andmevahetuseks mobiilseid seadmeid (tahvelarvutit või telefoni) tavalisele arvutile,
kuid ikka veel ei eksisteeri lihtsat ning turvalist viisi selle tegemiseks.

See töö analüüsib erinevaid andmevahetusmeetodeid P2P (peer-to-peer) viisil, mis er-
ineb traditsioonilisest klient-server andmevahetusmudelist. Lisaks luuakse näiterakendus
Androidile, mis demonstreerib, kuidas lihtsal moel luua P2P ühendus mitmete seadmete
vahel. Rakendus toetab sõnumite saatmist klientide vahel ning sisaldab Hangmani mängu,
mis demonstreerib mängude programmeerimist P2P suhtluse abil.

Võtmesõnad: P2P, Android, mobiilne seade, mäng, Sip2Peer

2

Contents

1 Introduction 4
1.1 Problem overview . 4
1.2 Motivation . 4
1.3 Goal . 4
1.4 Outline . 4

2 State of the art 6
2.1 Peer-to-Peer . 6

2.1.1 Advantages . 6
2.1.2 Disadvantages . 7

2.2 Related works . 7
2.2.1 Freenet . 7
2.2.2 LogMeIn Hamachi . 7
2.2.3 BitTorrent Sync . 8
2.2.4 P2P developement frameworks/libraries 8

3 Problem statement 10
3.1 Di�culties of P2P . 10

3.1.1 Network Address Translator . 10
3.1.2 NAT Traversal . 10

3.2 S2P library . 11
3.3 Application speci�cation . 11

4 Implementation 14
4.1 Demo application . 14

4.1.1 Application structure . 15
4.2 Result analysis . 18
4.3 Running the system . 18

5 Conclusion 19
5.1 Future Work . 19

6 Appendices 21
6.1 Appendix A: Prototype Application . 21
6.2 Appendix B: S2PBootstrap project . 21
6.3 Appendix C: Sip2PeerSBC project . 21
6.4 Appendix C: License . 22

3

1 Introduction

1.1 Problem overview

Most of the communication between electronic devices involves passing data through
servers. This means that we have to rely on central servers sending our data around the
globe without us knowing who reads or changes it. P2P communication often has its
advantages over client-server model, yet there are no reliable and simple ways to achieve
that. This thesis tries to analyze di�erences between client-server and P2P model and
also bring out some of the current P2P applications both for PCs and mobile devices (for
mainly Android OS). Creating P2P connection poses many di�culties due to �rewalls.
These will be looked upon and a solution will be proposed. Also a prototype application
will be written, which overcomes these issues and demonstrates di�erent ways to use P2P
communication in Android applications.

1.2 Motivation

Currently the use of P2P in mobile devices is very limited. Nowadays P2P is often
associated with piracy due to its most extensive use but this should not be the case. P2P
communication could be bene�cially used in almost every application. Also, creating
P2P connection between two peers poses multiple issues due to �rewalls and Network
Address Translators (NAT), which will be discussed later. For mobile devices even more
problems arise. Demonstrating overcoming issues will help to popularize developing P2P
applications for mobile devices.

1.3 Goal

The goal of this thesis is as follows:

• Analyze advantages and disadvantages of P2P over client-server communication.

• Analyze the current state of P2P frameworks and applications for mobile devices.

• List out problems of creating P2P connections between mobile devices.

• O�er a solution to creating a successful connection between two mobile devices.

• Create a prototype application which can successfully create P2P between mobile
devices.

• Motivate developers to write P2P applications for mobile devices.

1.4 Outline

Chapter 2 Peer-to-peer communication will be compared to traditional client-server
model. Current P2P applications and frameworks will be analyzed and summarized.

Chapter 3 Speci�cation for the prototype application will be given. Problems involving
P2P connections will be brought out and explained. A mobile framework for solving
these problems will be proposed.

Chapter 4 Detailed overview and a manual for developed application will be given.

4

Chapter 5 Created program will be compared with other similar programs.

Chapter 6 Thesis will be summarized and most important points will be brought out.

5

2 State of the art

This chapter discusses the main uses on P2P and also gives a detailed overview of what
peer-to-peer communication means.

2.1 Peer-to-Peer

Peer-to-peer computing can be de�ned as the sharing of computer resources and services
by direct exchange. P2P network consists of distributed clients or peers. Peers are all
equally privileged participants in the network. Each peer in the network is often called
a node. In such network peers can communicate directly with each other. In case of
more common client-server model, all the data is sent and requested through centralized
server.

Figure 1: P2P Figure 2: Client-server model

P2P networks have been previously used in many application domains, but the use
of it started growing by the creation of di�erent �le sharing systems, the most popular
being Napster in 1999 [Bar02]. In year 2008, P2P accounted nearly a third of tra�c in
North America. This was due to the fact that peer-to-peer �le sharing programs were
used extensively for piracy. By now, this number has declined to about 8% and is still
declining [Fie14]. Yet, P2P still has its advantages over client-server model and has many
potential use cases.

2.1.1 Advantages

Resilience
Since P2P has no central peer, it is not possible to collapse the network without
taking down each individual peer.

Low cost
No special software or hardware is required to set up a P2P network.

6

Easy setup
In a small network, every major operating system has its own feature to set up data
exchange easily.

2.1.2 Disadvantages

Scalability issues
As the number of users grow, the data is very clustered and accessing it by many
people simultaneously causes the peers to slow down drastically.

No administrators
Due to nature of P2P networks there is nobody to monitor which data is being sent
and for which purposes is it used.

Security problems
There is no way to stop any kind of tra�c between nodes which enables viruses to
spread easily without fear of detection by anti-virus software or network adminis-
trator.

Data loss
Information is distributed over all peers which means that in the case of peer failure,
this part of network is also inaccessible.

2.2 Related works

This section contains some popular applications which rely on P2P communication for
both PC and mobile devices. Skype which used to have its own closed source P2P
protocol, is also worth mentioning, but as of June 20, 2014, Skype announced this protocol
to be deprecated and started using Microsoft Noti�cation Protocol 24 which does not
involve the use of P2P networking. [Pet14]

2.2.1 Freenet

Freenet was originally created in 2000 by Ian Clarke as a student project at the University
of Edinburgh [Mar00]. It is written in Java, works on all major operating systems and is
still actively being developed by The Freenet Project Team. Its goal was to create a peer-
to-peer based platform for communication without restrictions or censorship. Freenet also
claims to be used strongly anonymously. By now it has grown into a huge network of
nodes all over the world. Freenet enables peers to access data and webpages which are
uploaded into Freenet network. Storage is distributed between peers which means that
every user acts as a small storage space for the whole system. Every bit of information
is replicated between peers so that no user could not be responsible for any piece of
information. More information 1

2.2.2 LogMeIn Hamachi

Hamachi is an application that is capable of establishing direct connections between com-
puters with whom it would be otherwise impossible due to �rewall and router limitations,
namely NAT (which will be discussed later). It is capable of emulating local area network

1The Freenet Project [con�rmed on 14.05.2015] https://freenetproject.org/index.html

7

https://freenetproject.org/index.html

Figure 3: LogMeIn Hamachi

virtually with devices which are not in local network. The exact means of how Hamachi
bypasses NAT and �rewall for creating direct tunnels are not made public. LAN connec-
tions are very useful for remote administration or computer gaming. All major operating
systems are supported by LogMeIn Hamachi. More information at Hamachi webpage. 2

2.2.3 BitTorrent Sync

BitTorrent Sync is a peer-to-peer �le synchronization tool for Windows, Mac, Linux,
Android, iOS, Windows Phone, Amazon Kindle and BSD, still actively developed by
BitTorrent, Inc. It was �rst released in the beginning of 2013 by Konstantin Lissounov.
BT Sync can synchronize �les between devices on a local network or between remote
devices over the Internet. For creating connections with peers it uses a modi�ed version
of BitTorrent protocol 3. BT Sync has no limitations on speed or size of data synchronized
other than the size of peers' storage space and the speed of the connection. There have
been claims that BitTorrent Sync is not secure enough for private data but these claims
were looked at and given a response quickly by BitTorrent team which showed that there
were no major security issues 4.

2.2.4 P2P developement frameworks/libraries

Android Wi-Fi Peer-to-peer (Wi-Fi Direct) Allows Android 4.0 or later devices to
connect directly to each other via Wi-Fi without using an intermediate access point.
It has very simple methods to create a local network of peers over Wi-Fi yet it lacks
the possibility to use mobile data and create connections with remote peers. Wi-Fi

2LogMeIn Hamachi [con�rmed on 14.05.2015] https://secure.logmein.com/products/hamachi/
3BT Sync technology [con�rmed on 14.05.2015] http://www.getsync.com/how-it-works
4BT reply to Hackito [con�rmed on 14.05.2015]

http://www.networkworld.com/article/2849452/microsoft-subnet/

bittorrent-reply-to-hackito-report-on-bittorrent-syncs-bad-crypto-no-cause-for-concern.

html

8

https://secure.logmein.com/products/hamachi/
http://www.getsync.com/how-it-works
http://www.networkworld.com/article/2849452/microsoft-subnet/bittorrent-reply-to-hackito-report-on-bittorrent-syncs-bad-crypto-no-cause-for-concern.html
http://www.networkworld.com/article/2849452/microsoft-subnet/bittorrent-reply-to-hackito-report-on-bittorrent-syncs-bad-crypto-no-cause-for-concern.html
http://www.networkworld.com/article/2849452/microsoft-subnet/bittorrent-reply-to-hackito-report-on-bittorrent-syncs-bad-crypto-no-cause-for-concern.html

P2P Complies with Wi-Fi DirectTM certi�cation program. 5. The documentation
is very broad and the library is suitable for creating applications which require
creating a small peer-to-peer network in a local area.

P2P-communication-framework-for-android An easy to implement peer-to-peer frame-
work allowing a nearbly cluster of Android devices to easily communicate with each
other. Uses bluetooth for creating a network cluster. Open-source, but not very
well documented. Nowadays bluetooth has much alternatives with better range
and stability, which makes it outdated for most modern applications but still has
its speci�c use cases. More information 6.

OpenPeer An open P2P signalling protocol with their main objectives being open-
source, secure, private and scalable. OpenPeer has beta SDKs for both Android
and iOS developers. Its core-library is written in C++. OpenPeer has its own cen-
tral server for distributing information and creating connections with other peers.
OpenPeer is suitable for developing mobile cross-platform applications which re-
quire direct peer-to-peer communication over the Internet. More information 7.

Hive2Hive An open-source library, written in Java, for secure, distributed, P2P-based
�le synchronization and sharing. It has a very detailed documentation and simple
API. More information: 8.

Sip2Peer An open-source SIP-based middleware for the implementation of any peer-to-
peer application without constraints on peer device and architecture. This library
will be used to create a prototype application for Android and will be looked upon
in detail later. 9.

5Wi-Fi Direct protocol [con�rmed on 14.05.2015] http://blog.broadcom.com/wp-content/

uploads/2013/10/Wi-Fi-Direct-White-Paper.pdf
6p2p-communication-framework-for-android [con�rmed on 14.05.2015] https://code.google.com/

p/p2p-communication-framework-for-android/
7OpenPeer speci�cation [con�rmed on 14.05.2015] http://docs.openpeer.org/

OpenPeerProtocolSpecification/
8Hive2Hive repository [con�rmed on 14.05.2015] https://github.com/Hive2Hive/Hive2Hive
9Sip2Peer [con�rmed on 14.05.2015] https://code.google.com/p/sip2peer/

9

http://blog.broadcom.com/wp-content/uploads/2013/10/Wi-Fi-Direct-White-Paper.pdf
http://blog.broadcom.com/wp-content/uploads/2013/10/Wi-Fi-Direct-White-Paper.pdf
https://code.google.com/p/p2p-communication-framework-for-android/
https://code.google.com/p/p2p-communication-framework-for-android/
http://docs.openpeer.org/OpenPeerProtocolSpecification/
http://docs.openpeer.org/OpenPeerProtocolSpecification/
https://github.com/Hive2Hive/Hive2Hive
https://code.google.com/p/sip2peer/

3 Problem statement

Creating an application which has to communicate via the Internet with other devices
has always been a dubious task. This is even more so when using mobile devices and
P2P due to restrictions that establishing direct connections have. Since generally client-
server model is more suitable for mobile applications, there is no proper documentation
or examples on how to develop a successful mobile application that is capable of both
creating direct connections between each other and sending/receiving data without issues.
This thesis tries to give out an example application which would solve the main di�culties
of P2P and also demonstrate some use cases of a P2P mobile application. The application
will be able to send/receive messages and include a proof-of-concept level Hangman game.
Sip2Peer Java library will be used which will help in successfully creating P2P connections
and managing peers.

3.1 Di�culties of P2P

The biggest problem of creating a successful peer-to-peer connection is NAT and �re-
walls which both block incoming packets unless con�gured properly. There are ways to
get through NAT such as NAT Traversal. Theoretically NAT is only a problem for IPv4
standard on which the majority of Internet is currently based. There is currently under-
going a switch to much newer standard IPv6 which takes a lot time but will eventually
solve the NAT problem for P2P connections [Dee98]. Also for mobile devices a big prob-
lem is that mobile connection changes the device's IP address very often which poses an
issue when trying to maintain connection between both peers.

3.1.1 Network Address Translator

Network Address Translators (NAT) were �rst introduced to stop Internet from running
out of IPv4 (Internet Protocol version 4) IP addresses. IPv4 uses 32-bit address which
limits the space to 232 ≈ 4 billion di�erent addresses (the practical number is really
much smaller). NAT is located between the public Internet and the network it serves.
Its primary function is to translate public IP addresses and port numbers into speci�c
local IP addresses of local machines which are hidden from the public Internet. After a
machine has sent packets to outgoing server, NAT knows that incoming packets from the
same server have to be routed back to the same machine. In all cases, we must assume
that an application will send and receive packets on the same port. In such case the
incoming data gets sent through NAT to correct machine but in the case of P2P and an
uncon�gured NAT router, NAT does not have any information on where to send packets
and they get destroyed [SFK08].

3.1.2 NAT Traversal

NAT Traversal (NAT-T) is a general term for di�erent techniques that establish and main-
tain Internet connection between local and remote client through NAT. These techniques
are typically required in peer-to-peer network applications. The majority of NAT-T tech-
niques do not work for all types of NATs. These methods include:

• Socket Secure (SOCKS)

• Universal Plug'n'play Internet Gateway Device (UPnP IGD)

10

• Interactive Connectivity Establishment (ICE)

• Application-level gateway (ALG)

• Hole punching

• Session Border Controllers

3.2 S2P library

Sip-2-peer (S2P) is a Java library for implementing peer-to-peer communication in any
application without any constraints on peer device nor architecture. It has tutorials for
both PC and Android devices. S2P has its own NAT traversal management through SIP
protocol and is perfectly suitable for this thesis' prototype application.
Session Initiation Protocol (SIP) is a communications protocol for signaling and control-
ling multimedia communication sessions (Internet telephony for voice and video calls)
but can also be used in assisting NAT Traversal successfully. Session Border Controller
(SBC) is a part of SIP network elements, which handles NAT Traversal. [BS] In S2P case,
SBC is a node with public IP that allows a peer to check if it is behind a NAT and to
request a public IP and port that can be used by the requesting node as a contact address
and can be advertised to other peers. Like all the other methods for NAT Traversal, SBC
and SIP do not work for every NAT. Most of the mentioned NAT Traversal methods do
not work for Carrier Grade NAT's (CGN) 10.

3.3 Application speci�cation

The main purpose of the application is to demonstrate the usage of S2P library for
Android for creating a successful peer-to-peer network. It will include a feature to send
messages to other peers and a small Hangman game.

Ideally a working network needs:

1. Boostrap peer which saves data for every peer in network and can share this data
with other peers.

2. SBC server with public IP address which helps connect peers that are behind NAT
by assigning them a public IP address and advertising it to others.

3. Client peers which communicate with each other and can request other peers' data
(IP address) from bootstrap peer. Every client peer can also be a bootstrap peer.

The main speci�cations:

• Uses S2P library

• Written in Java

• Supports Android devices with API (Application Programming Interface) version
above 15

10Carrier Grade NAT [con�rmed on 14.05.2015] https://www.apnic.net/community/ipv6-program/
about-cgn

11

https://www.apnic.net/community/ipv6-program/about-cgn
https://www.apnic.net/community/ipv6-program/about-cgn

Main features:

• Directly connect to other peers using their IP

• Request network members' IP addresses from bootstrap peer

• Ping other peers to acquire their IP address

• Send chat messages to other peers

• Host a Hangman game

• Play Hangman game

One of the ideas which this game demonstrates is that only the host needs the game
code in its application. Other players only receive information about the status of the
game and send messages back to host without really having any knowledge or code how
the game works. This reduces storage space and o�ers security for game developers and
owners.
This Hangman game needs a host and players. Host will pick a word, for example
"machine". A message "Lets play, the current status is ______" will be send out to
every peer in the network 4. After a client has sent for example "a" back to host 5, a new
message will be sent out to every peer. This message includes already guessed letters and
the current status, for example "Current status: _a____ ; Guessed letters: {a,b,c}" 6.
After all the letters of the word are guessed the host will send out a message "Game is
over, the winner is <winner's name>" 7.

Figure 4: Welcome message by host

12

Figure 5: Guess by Peer D

Figure 6: Status message by host

Figure 7: Game over message by host

13

4 Implementation

The application was written using Android Studio 1.2 under Linux environment. All
the testing was done using Genymotion (an emulator for Android devices) and multiple
Google Nexus 5 virtual images. This thesis is written in LaTeX using TeXstudio 2.8.4.

4.1 Demo application

S2P library o�ers multiple template projects both for Android and PC developing. SBC
and Bootstrap peer were both set up on PC without changing any major code. Since
SBC requires public connectivity with remote network, ports had to be opened and router
con�gured. The �rst issue was properly con�guring the router. The router used was
Inteno DG301AL. The solution was to use DMZ (demilitarized zone) which forwards all
the incoming data to a certain IP in a local network which in our case is the PC with SBC
and bootstrap peer. After con�guring the router and setting up the con�guration �les

Figure 8: Router DMZ settings

for SBC and bootstrap, Android application was written. Example Android application
allowed to send pings (request IP address) between peers. Sending chat messages was
implemented through JSON (JavaScript Object Notation) messages since it gives a good
example on how to send more complex objects between devices.
As can be seen from Figures 9 and 10, JSON object corresponds exactly to Java object
and is generated from object variable toString() methods. It is also worth mentioning
that every �eld needs a get method for the JSON object to be generated properly.

Most of the work was done on writing the Hangman game. All the new code was
added in such a way, that it is only required in game host's application. The game
communicates with other peers using already created message sending methods. While

14

Figure 9: JSON structure

Figure 10: Java object structure

the host is hosting the game, a boolean �ag is raised for him that the game has started.
In such way, host knows to treat incoming messages as game messages instead of chat
messages.

4.1.1 Application structure

Android application front-end consists of Activities. Each Activity can be imagined as
one screen on device. Prototype application's Activities are as follows:

1. Main Activity which contains sending messages to other peers and a chat log11.

2. Con�guration activity where SBC and bootstrap peer information is contained12.

3. Bootstrap Activity where peer can connect to bootstrap peer (data is automatically
pulled from con�guration menu)13.

4. Peer list Activity which contains other network members' name and IP addresses13.

5. Host game Activity from which Hangman game can be hosted15.

Navigation from one Activity to another can very well be illustrated with the following
diagram 16.

15

Figure 11: Main activity Figure 12: Con�guration Activity

Figure 13: Bootstrap Activity Figure 14: Peer list Activity

16

Figure 15: Host game Activity

Figure 16: Navigation

17

4.2 Result analysis

The results of this work are divided into two parts both of which are equally informative
and useful. Theoretical part will gives fairly up-to-date and summarized overview of
current state of existing P2P applications and frameworks. Also the main issues with
using P2P with mobile devices were brought out and possible solutions explained.
For the practical part everything also works as stated in application's speci�cation. Since
routers have di�erent built in NATs, this application may not be successful in creating
a connection with every peer. The application has very modular design and logical code
structure, which means that other types of NAT Traversal techniques can be added with-
out changing the majority of the code. All the main features of P2P data exchange were
covered and an example given on how to exchange Java objects through JSON objects.
Also a demonstrative Hangman game was written which shows how P2P connection could
potentially be used for sharing games in a closed environment with other peers without
them having the source code in their application.
Sip2Peer is not very popular library and therefore not very many projects use it. Ogh-
maSip is built on Sip2Peer and is a very similar application for media streaming [Ege11].
It uses OpenId for identifying peers rather than Android device ID which is used in this
thesis' application.

4.3 Running the system

Prerequisites:

• Android device(s)

• Connection with public IP address

• Java 1.8

• S2PBootstrap project

• Sip2PeerSBC project

• Android APK

Bootstrap peer S2PBootstrap should be opened with any development environment
(e.g. IDEA, Eclipse, NetBeans etc.). Con�guring the Bootstrap peer (should not
be necessary) can be done from /con�g/bs.cfg �le. Starting the peer is done from
package it.unipr.ce.dsg.s2p.example.peer with class BootstrapPeer main method.
After starting the method, an IP address will be printed out which can be used by
other peers. The default port is 5080

SBC server Sip2PeerSBC should be opened in a similar manner. For con�guring /con-
�g/sbc.cfg should be used. Starting the SBC server is done from it.unipr.ce.dsg.s2p.sip.sbc
package from class SessionBorderController main method. SBC server IP address
will be printed out.

Mobile application Application can be run by transferring the .apk �le to mobile stor-
age and installing it. It can be also run by opening the project in any of the Android
supporting IDEs and running the application from there.

18

5 Conclusion

This thesis showed that although the use of P2P has declined in past years, there are still
many use cases for peer-to-peer networks. Given the fast speed of modern connections, �le
synchronization using P2P seems to become more popular (BitTorrent Sync) because it
virtually has no limits. NAT and NAT Traversal issues were also looked upon. Currently
switching to IPv6 protocol is undergoing which means soon NAT should not be an issue
anymore and this could mean a potentially huge spike in P2P usage. Sending direct data
directly from peer to peer is also very secure and when using proper encryption is very
hard to tamper with. Piracy has been a big reason why Internet service providers are
limiting P2P tra�c but di�erent market models have been developed to reduce piracy.
This work provides excellent means to start developing P2P applications for Android
which is a huge market and needs more peer-to-peer applications. A modular design
application was developed which can act as a template for basically every program which
needs P2P communication.

5.1 Future Work

This application is currently in a prototype state and needs changes for real world use.
Currently it provides information on how to do certain things.
One possible use case would be to develop a very abstract interface for receiving and
displaying game data. This could be used for simple card games or text based games
with a beautiful graphical user interface. Even a small program language for this can be
developed where so that any application owner can write its own game and share play it
with others without sharing the source code of the game.
Other use case would be a �le sharing application where people can share di�erent �les
from their devices between a network of peers. If multiple people have the same �les,
the speeds will become much faster. It can also be used for synchronizing for example
tablet and mobile storage. The whole application could be updated to support IPv6 IP
addresses to keep up with current Internet protocol standards.

19

References

[Bar02] David Barkai. An introduction to peer-to-peer computing. page 7, Febru-
ary 2002. [con�rmed on 14.05.2015] http://www2.it.lut.fi/wiki/lib/exe/
fetch.php/courses/ct30a6900/p2p_barkai.pdf.

[BS] David Schwartz Baruch Sterman, Ph.D. Nat traversal in sip. page 17. [con�rmed
on 14.05.2015] http://startrinity.com/VoIP/Resources/sip26.pdf.

[Dee98] Stephen E Deering. Internet protocol, version 6 (ipv6) speci�cation. 1998.

[Ege11] Raimund Ege. Oghmasip: Peer-to-peer multimedia for mobile devices. In
MOBILITY 2011, The First International Conference on Mobile Services, Re-
sources, and Users, pages 1�6, 2011.

[Fie14] Seth Fiegerman. The slow decline of peer-to-peer �le sharing. page 1,
May 2014. [con�rmed on 14.05.2015] http://mashable.com/2014/05/14/

file-sharing-decline/.

[Mar00] John Marko�. Cyberspace programmers confront copyright laws. page 10,
May 2000. [con�rmed on 14.05.2015] http://www.nytimes.com/2000/05/10/
business/cyberspace-programmers-confront-copyright-laws.html.

[Pet14] Noah Petherbridge. Skype switched to the msn messenger protocol. page 9,
December 2014. [con�rmed on 14.05.2015] https://www.kirsle.net/blog/
entry/skype-switched-to-the-msn-messenger-protocol.

[SFK08] Pyda Srisuresh, Bryan Ford, and Dan Kegel. State of peer-to-peer (p2p) com-
munication across network address translators (nats). Internet Engineering Task
Forceâ��Request for Comments, 5128:1�32, 2008.

20

http://www2.it.lut.fi/wiki/lib/exe/fetch.php/courses/ct30a6900/p2p_barkai.pdf
http://www2.it.lut.fi/wiki/lib/exe/fetch.php/courses/ct30a6900/p2p_barkai.pdf
http://startrinity.com/VoIP/Resources/sip26.pdf
http://mashable.com/2014/05/14/file-sharing-decline/
http://mashable.com/2014/05/14/file-sharing-decline/
http://www.nytimes.com/2000/05/10/business/cyberspace-programmers-confront-copyright-laws.html
http://www.nytimes.com/2000/05/10/business/cyberspace-programmers-confront-copyright-laws.html
https://www.kirsle.net/blog/entry/skype-switched-to-the-msn-messenger-protocol
https://www.kirsle.net/blog/entry/skype-switched-to-the-msn-messenger-protocol

6 Appendices

6.1 Appendix A: Prototype Application

The prototype application is located in GitHub repository
https://github.com/hannesss81/PrototypeApplication

6.2 Appendix B: S2PBootstrap project

The prototype application is located in GitHub repository
https://github.com/hannesss81/S2PBootstrap

6.3 Appendix C: Sip2PeerSBC project

The prototype application is located in GitHub repository
https://github.com/hannesss81/Sip2PeerSBC

21

https://github.com/hannesss81/PrototypeApplication
https://github.com/hannesss81/S2PBootstrap
https://github.com/hannesss81/Sip2PeerSBC

6.4 Appendix C: License

Non-exclusive licence to reproduce thesis and make thesis public

I, Hannes Metssalu (date of birth: 14th of February 1993),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Demonstrating Android P2P capabilities through a prototype application

supervised by Artjom Lind

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 14.05.2015

22

	Introduction
	Problem overview
	Motivation
	Goal
	Outline

	State of the art
	Peer-to-Peer
	Advantages
	Disadvantages

	Related works
	Freenet
	LogMeIn Hamachi
	BitTorrent Sync
	P2P developement frameworks/libraries

	Problem statement
	Difficulties of P2P
	Network Address Translator
	NAT Traversal

	S2P library
	Application specification

	Implementation
	Demo application
	Application structure

	Result analysis
	Running the system

	Conclusion
	Future Work

	Appendices
	Appendix A: Prototype Application
	Appendix B: S2PBootstrap project
	Appendix C: Sip2PeerSBC project
	Appendix C: License

