
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Fortunat Lufunda Mutunda

Timer Service for an Ethereum BPMN
Engine

Matser’s Thesis (30 ECTS)

Supervisor: Luciano Garcia-Bañuelos

Tartu 2017

Taimeri teenused Ethereumi BPMN mootorile

Lühikokkuvõte: Plokiahela tehnoloogia võimaldab pakkuda platvormi rakenduste käi-
vitamiseks ilma keskse volitajata. Muud atribuudid nagu püsivus, andmete manipulee-
rimatus ja levitamine muudavad selle tehnoloogia atraktiivseks ärirakenduseks. Tartu
Ülikooli tarkvaratehnika rühm on huvitatud, et selles kontekstis rakendada täitmismoo-
tor BPMN mudelile, mis jookseks Ethereumi plokiahela tehnoloogia peal. Antud ma-
gistritööga lisatakse platvormile tugi BPMN taimer-sündmuste jaoks piiratud mustrite
alagrupis. Tulemuseks on loodud prototüüp, mis on testitud hoiustusel põhineva raken-
dusega, mille eesmärk on juhtida omandi lühiajalist rentimist.

Võtmesõnad:
Blockchain tehnoloogia, Business Process Management, Eutereum

CERCS:P170 - Computer science, numerical analysis, systems, control

Timer Service for an Ethereum BPMN Engine

Abstract: Blockchain technology comes with the promise of providing a platform for
execution of applications with no central authority. Other attributes such as persistence,
tampering free and distribution make of this technology an attractive solution for busi-
ness applications. In that context, the group of software engineering at the University
of Tartu is interested in implementing a execution engine for BPMN that runs on top
of the Ethereum blockchain. This work contributes with the addition of the support of
BPMN timer events to the platform, in a restricted subset of patterns. The approach
has been implemented in a prototype and tested with an escrow-based application for
management of short term rental of properties.

Keywords:
Blockchain Technology, Business Process Management, Ethereum

CERCS:P170 - Computer science, numerical analysis, systems, control

2

Contents

1 Introduction 5

2 Background 7
2.1 Business Process Management . 7
2.2 BPM Life cycle . 7
2.3 Business Process Model and Notation 9
2.4 Timer event . 11
2.5 Ethereum . 12

2.5.1 Smart Contract and Execution cost 13
2.6 Ehtereum Alarm Clock . 15

3 Implementation 16
3.1 Code generation . 16
3.2 Timer Event code generation . 21

3.2.1 Delay . 21
3.2.2 Timer on deferred choice . 24

4 Case Study 30
4.1 ChainURent Project description . 30
4.2 ChainURent Architecture . 31

4.2.1 Timer Event ChainURent . 33
4.2.2 Deployment and Transaction Cost 35

4.3 Discussion . 40

5 Conclusions and Future work 41
5.1 Future Work . 41

Appendix 45
I. Glossary . 45
II. Licence . 51

Table of Contents

3

List of Figures

1 BPM Life Cycle [DR13] . 9
2 BPMN Core Concept [OMG10] . 11
3 Different Types of timers events[Camb] 12
4 Transaction Scheduler[Etha] . 15
5 Implementation Process . 16
6 Simple sample BPMN model (no timer event) 18
7 Process with no delay . 21
8 Timer delay . 23
9 Deferred Choice . 25
10 Timer on deferred choice . 26
11 ChainURent Business process . 32
12 72 hours before check in . 34
13 During stay . 35
14 Deployed contract . 37
15 Transactions(Call a function) . 38
16 Deployment and Execution Gas estimation 39

4

1 Introduction

In the recent years, there has been efforts in solving the issue of centralized databases
(i.e. One company owns the database, which can be hacked and cause repercussion on
people), there is also the problem of trust between companies which always requires
a central authority. Because it is not always for two parties to come to an agreement
without one trying to violate the rules. These issues have been addressed recently by
the so-called blockchain technologies[But13; DB17; Nak09], which are currently at-
tracting the attention of both industry and academic communities. A blockchain is a
highly replicated, append-only database, which provides guaranties for concerns such
as reliability, tampering resistance and trust. A blockchain is in some way a reminis-
cence of a ledger, where every transaction is recorded permanently in way that none of
the transaction records in the ledger can be modified. Tampering resistance makes of a
ledger a convenient tool, for instance, in the context of accountancy.

Bitcoin [Nak09] is probably the most well-known example of a digital technology im-
plementing the idea of a digital ledger or a blockchain. Bitcoin has not only shown that
the use of cryptographic methods, replication and consensus make it possible to imple-
ment a digital ledger, but also that this technology can be a platform for performing safe
exchange of cryptocurrencies. Along the same lines, in 2015 an open source project
called Ethereum [But13] entered the arena of blockchain technologies by providing not
only a simile of Bitcoin, but a more flexible platform by the introduction of the so-called
smart contracts[Web+16], which have opened new opportunities for development on top
of blockchain.

The Software Engineering Group at the University of Tartu has started efforts in using
this platform with a lightweight BPMN execution engine. The efforts of this work has
been focused on implementing the BPMN core constructs (cf. script tasks, exclusive and
parallel gateways), by generating smart contracts that implement the process specified in
a given BPMN model. However, the project is still in early stages and more development
is required to cover a richer set of BPMN constructs.

It is in this context that my Masters’ thesis work takes place. More specifically, my
work aims at providing support to Timer Events as defined in the BPMN standard[WG;

5

DR13; LWR14; SH99]. Timer events are an interesting construct in BPMN because
they provide ways to specify temporal constraints such as deadlines and/or milestones
in the underlying business process[DR13; WG; LWR14; SH99]. However, the notion
of time in a technology such as Ethereum does not have a clear meaning: there is not
global clock, and the time for a transaction completion is not fixed (the same transaction
can take a few seconds or several minutes). Nevertheless, we are aware of one existing
solution that provides a sort of timer for Ethereum and, in discussion forums, it is also
claimed that a timer service for Ethereum can implemented via an external service[Etha;
Mer]. However, it is unclear if such solutions can be applied into, and what would the
implications of using them in a BPMN execution engine. Those are in fact the main
goals of my research.

The rest of this research is structured as follow, chapter 2 is about the literature review,
background and related work. chapter 3 the design and implementation of the different
types of timer event onto the execution engine. Next, chapter 4 is the case study analysis
of the implementation and finally chapter 5 is the summary and future work.

6

2 Background

In the content of this chapter, we will evaluate the tools and pre-existing technologies.
First, we are going to discuss Business Process Management, and we will discuss the
timer event. Secondly, we are going to introduce Ethereum and Smart contracts. More-
over, finally, we will talk about the Ethereum alarm clock.

2.1 Business Process Management

Business process management (BPM)[OMG10; OMG11] is a discipline that provides
an overview of an organization’s business process and their interactions to optimize and
automate them as much as possible. To achieve these changes, it is necessary to analyze
the way the organization functions to visualize it by modeling it with BPMN (Business
Process Model and Notation) and related tools. After modeling the process, the second
step is often the process automation, sometimes partially, which are then monitored to
identify the restriction to be undertaken [DR13; RLP16].

2.2 BPM Life cycle

The life cycle of a BPM initiative comprises 7 phases [DR13; OMG11]. It starts with
the identification of the underlying process, and is then followed but process discovery,
process analysis, process redesign, process implementation and finally process monitor-
ing, and the cycle begins again (see Figure 1)[RLP16; DR13]. Each of these phases is
described further in the following:

• Process identification: During the phase of identification we enumerate and pri-
oritize the different business process in an organisation. We scope and define
different relations between each of the business processes to finally have an out-
come of a process portfolio which can give us relevant dimensions of the business
process(.i.e if the process is healthy or not or what has a higher priority than the
other in the business process); The process architecture(the organisation of the
business process inventory accordingly)[DR13]

7

• Process discovery: This is the phase where we make the “AS-IS” process model by
gathering information from different members of the organization etc. In another
words, we discover the business process.

• Process analysis: In this phase we take the current “AS-IS” process and we do
some analysis to find the ongoing issues with the process. A qualitative analy-
sis(.i.e.the route cause analysis, we draw a why why diagram and to find why
some issues are happening), a quantitative analysis for example a process simu-
lation.

• Process redesign: After finding the weakness in the “AS-IS” process model we
will redesign it into a “TO-BE” process which eliminate the issues of the “AS-IS”
process model by making some trades e.g. time or performance.

• Process implementation: We try to put the process into execution, this include
redesign the process by automating some of the process and probably hiring or
training people that have to deal with some new change that have occured into the
business process.

• Process monitoring: Consisting in analyzing the state of the processes through
dashboards showing the performances of the processes, events logs etc.

8

Figure 1. BPM Life Cycle [DR13]

2.3 Business Process Model and Notation

The main purpose of BPMN is to provide a notation that is understandable to all the
users, from business analyst who create the initial draft of a process to the developers
who will responsible of developing the technology that will execute the given process,

9

and ultimately, to the users of the company that are going to implement these processes.
Thus, BPMN creates a standardized bridge to fill the gap between business process
modeling and the implementation of procedures.

BPMN represents an initiative to capitalize on and consolidate good practices in the
various methods and notations that existed in the field of process modeling. BPMN
and UML (Unified Modeling Language) are two modeling specifications developed by
OMG (Object Management Group 1) that are not competing but complementary. UML
would be usually used for the analysis and design of information systems while BPMN
is intended for the analysis and design business processes that involve and interact with
the aforementioned systems. It is thus possible to change from a process diagram defin-
ing the business requirements in BPMN to UML case diagrams to document the re-
quirements for the systems involved.

BMPN is based on three types of models[OMG10; DR13; OMG11; RLP16]:

• Process model to represent the flow of an organization’s internal processes as well
as public processes (i.e., interfacing with external third party activities [DR13;
OMG10]).

• Models of collaboration to represent the processes of several entities and the ex-
changes allowing to link these processes[OMG10; Ora; Cama; RLP16].

• Choreography models to represent expected behaviors of actors in a process[OMG10;
Ora; Cama; RLP16].

BPMN allows to represent internal business procedures, but also B2B systems[OMG10;
F09], through public processes and choreographies, as well as advanced process orches-
tration concepts such as exception handling and transaction clearing.

These models combine the following core elements(Figure 2):

• The "pool" and the "lane" represent the entities and participants in a process

• The activities ("activity") represent the decomposition of the process

• Events ("event")
1omg.org

10

• Sequence flows represent the sequence of these elements

• Gateways allow the splitting or convergence of control flows

• Messages and message flows are used to materialize exchanges

• Data

• Annotations and associations between related elements

Many variants of these basic elements and activity markers further clarify the meaning
of the model[OMG11; Kos+14; DR13].

Figure 2. BPMN Core Concept [OMG10]

2.4 Timer event

The timer event, as it names says it is also a type of event that can indicate the start of a
process, this means, a process can occur only after a specific temporal event, e.g. every
day 12 o’clock, every 10th day of the month, or every Monday. But the timer event can
also be used as an intermediate catching event, e.g. a deadline or timeout, to indicate

11

Figure 3. Different Types of timers events[Camb]

that a process can only proceed after a certain amount of time has happened between
one activity and the previous one [DR13; Biz; OMG11; OMG10; Ora]. These particular
traits make the timer event a catching event only this time just flows but itself and upon
reaching a certain time then the process cannot start or continue, because time is outside
of anyone’s control therefore the event can only wait before triggering another.

BPMN provides four variants of timer event, with two of them being interrupting events
and the other two being not-interrupting events. Usually, an interrupting event would
abruptly interrupt the execution of an ongoing subprocess or task when a dealine is
reached. An non-interrupting event, on the other hand, is used for triggering some
background and/or parallel processing at a given time, without stopping the ongoing
process. The following Figures illustrate both types of timer events.

2.5 Ethereum

Ethereum is a decentralized exchange protocol allowing the creation by users of smart
contracts thanks to a Turing-complete language, see [But13]. These smart contracts are
based on a computer protocol to verify or enforce a mutual aggreed outcome. Smart
contracts are deployed on the blockchain where they can be publicly accesses (e.g. ex-
ecuted).

Ethereum uses a crypto-currency called Ether as the means of payment for these con-

12

tracts. Its corresponding symbol, used by the trading platforms, is "ETH.". Ethereum is
the third largest decentralized cryptographic currency with a capitalization of billion of
euros.

2.5.1 Smart Contract and Execution cost

Smart Contracts are computer programs that can be deployed and ran on the blockchain.
The Ethereum consortium has defined the following contract-oriented programming lan-
guages: Serpent[Ethb] or Solidify[Ethc]. Hereinafter, we will focus on Solidity which is
the most widely use language so far. Listing 1 provides an example of a smart contract
implemented in Solidity.

1 pragma s o l i d i t y ^ 0 . 4 . 1 1 ;
2

3 c o n t r a c t S imp leAuc t i on {
4

5 a d d r e s s p u b l i c b e n e f i c i a r y ;
6 u i n t p u b l i c a u c t i o n S t a r t ;
7 u i n t p u b l i c b idd ingTime ;
8 a d d r e s s p u b l i c h i g h e s t B i d d e r ;
9 u i n t p u b l i c h i g h e s t B i d ;

10 mapping (a d d r e s s => u i n t) p e n d i n g R e t u r n s ;
11 boo l ended ;
12

13 e v e n t H i g h e s t B i d I n c r e a s e d (a d d r e s s b i d d e r , u i n t amount) ;
14 e v e n t Auct ionEnded (a d d r e s s winner , u i n t amount) ;
15

16 f u n c t i o n S imp leAuc t i on (
17 u i n t _biddingTime ,
18 a d d r e s s _ b e n e f i c i a r y
19) {
20 b e n e f i c i a r y = _ b e n e f i c i a r y ;
21 a u c t i o n S t a r t = now ;
22 b idd ingTime = _bidd ingTime ;
23 }
24 . . .
25 }

13

Listing 1. Smart Contract example [But13]

A smart contract in Solidity allows one to define a set of state variables (lines 5-11),
whose value is made implicitly persistent after every transaction, a set of contract events
(lines ...), by means of which the contract communicates facts with the external environ-
ment and a set of functions (lines ...). It is by means of functions that the user specifies
the business logic underlying a smart contract. Generally speaking, Solidity provides
two types of functions: functions that change the contract state and functions that can
be used to query the current state of the contract.

The execution of a smart contract, whether it is a simple transfer of Ether between two
accounts or the execution of several lines of the code of a contract, requires paying
the minors for the tasks’ execution[But13]. This remuneration is done in Ether on an
infinitesimal scale and is then called gas. Each operation on Ethereum costs the gas that
corresponds to the effort to be provided to process it. The price of gas varies according
to the market: each miner can set his price and corresponds to the number of Ether
he/she wishes to receive for the effort he provides.

In June 2016[But13; Ethc], the average gas price was 0.0000000225 Ether25. Thus,
a basic transaction of transfer between two addresses requiring 21000 gas corresponds
to an average cost of 0.00047 Ether in processing costs. To avoid certain contracts
becoming overpriced when the price of Ether has increased; In fact, the number of gas
required for execution is defined by the complexity of the operations while the price
of the gas can be adjusted according to the course of the Ether; To prevent an infinite
loop in a code from turning forever because at the time when all the gas supplied in the
transaction was consumed, the minor stops processing the transaction and records it as
is. The user chooses the price he/she is willing to pay: if he pays the average price, the
execution of his contract will take much longer since all the more profitable transactions
are executed in priority.

14

2.6 Ehtereum Alarm Clock

As mentioned earlier about the way time works on Ethereum, there are two more things
that we need to explain if we want to grasp what the problem Ethereum alarm clock
is solving[But13; Etha; Mer]. Each Ethereum user has an account, and this account
has a private key. However, contracts do not have a private key. Since the private key
based accounts are those operated by humans; Smart contracts accounts are deployed
computer capable of executing a program. However, all the code on the EVM must be
trigger by a private key based account by sending a transaction which will execute some-
thing. The other issue is the fact that as soon as we send a transaction, this transaction
is automatically executed as soon as it is included in a block; The design of Ethereum’s
protocol does not present any way of letting a transaction to be executed later.

When a transaction is created, one contract will be created holding the information of
the transaction request(Figure 4). When it is time to execute the transaction, another
contract sends the transaction request to execute that contract. Finally when all is done,
then the account that requests the transaction in the first place will pay the transaction
gas and the instantiation gas to both. Note that the transaction happens in a time window,
not at a given moment, see[Etha; Mer].

Figure 4. Transaction Scheduler[Etha]

15

3 Implementation

The stages used in the approach are depicted in Figure 5. The first step of the process
takes a BPMN file as input, which is then parsed. As the programming language used
in the implementation is Typescript, the system uses a library (i.e. bpmn-moddle2) to
read the XML file and create an in-memory representation of the process model using
Typescript objects. In the second step, the process model is analyzed (using the in-
memory representation) to determine the underlying control flow information (i.e. list
of nodes and edges in the model). Finally, the Solidity code is generated in the third step
by using the control flow information and the in-memory representation of the process
model, which were computed in the previous steps.

Figure 5. Implementation Process

3.1 Code generation

In this section, we will describe how an input BPMN process model is translated into
Solidity code. Generally speaking, the dynamics of the execution of a process is im-
plemented in a way that resembles the “token game” that is commonly used with Petri

2https://github.com/bpmn-io/bpmn-moddle

16

nets. The idea is the following, when a process model is instantiated, a token is put in
the flow edges outgoing the start event. An activity gets enabled whenever a token is
present in one of its incoming flow edges. When an activity is executed, the token in
the incoming flow edge is removed and a new token is added into (every) outgoing flow
edge. Note, that we assume that one flow edge will hold at most one token. The latter
is a common assumption in the literature and is referred to as one-safeness. Based on
this assumption, we will represent the execution state of a process instance (aka case)
with a bit array: each flow edge is associated with a slot in the array and the value of
such slot is identified with the presence/absence of a token in corresponding flow edge.
Moreover, the full state of a process model, that is the overall distribution of tokens, will
be referred to as the marking.

Let us illustrate the intuition with the example in Figure 6 and its corresponding Solidity
code, which is shown in Listing 2. In the example, we have use two different types of
activities, namely user tasks (tasks decorated with a person-like icon) and script tasks
(decorated with a paper-like icon). According to the BPMN specification, user tasks
must be used when an external actor, basically a user, interacts with the business pro-
cess. In the context of blockchain, this could corresponds to tasks where users agree to
pay some ether or to enter information for the processing of the business process. On
the other hand, script tasks are used to represent processing steps that can be executed
internally by the blockchain, for instance, to enforce a business rule (e.g. checking pro-
cess data or the balance in ether for a given user). It should be clear, that the execution of
a user task requires interaction and for this reason is implemented as an externally vis-
ible function in Solidity. On the other hand, a script task is implemented as an internal
function and, hence, can only be called from the Solidity contract.

For convenience, each edge flow in the model is labeled with a red number, which
corresponds to the slot in the bit array. Solidity does not provide an explicit data type
for bit arrays, but we use integer values to this end. More specifically, each smart
contract has a variable tokens (line 3). As we mentioned above, after instantiation, a
token will be put in the flow edge that outgoings the start event. Since such flow edge
is labelled as edge 0, the initial marking will be encoded as a 1 in the position 0 of the
integer, i.e. tokens is 20.

17

Under the circumstances described above, task A will be enabled. In Solidity, that
means that the execution of the function A in the smart contract (lines 5-11) will lead
to a positive outcome, i.e. if called it would return true. It is worth noting that the
Solidity code checks in line 7 if a token is actually present in position 0 of the integer
tokens. Now, if task A is executed the token in position 0 needs to be removed and
a new token would be put in the edge flow that corresponds to position 1. The latter
can be implemented with bitwise operations: tokens & uint(1) corresponds to
removing the token from position 0, and tokens | 2 corresponds to adding a token
in position 1 (i.e. 21). Since read/write operations on state variables has cost in ether,
we update not the variable tokens but a local copy of it localTokens.

Figure 6. Simple sample BPMN model (no timer event)

1

18

2 c o n t r a c t Example_Con t r ac t {
3 u i n t t o k e n s = 1 ;
4

5 f u n c t i o n A() r e t u r n s (boo l) {
6 u i n t l o c a l T o k e n s = t o k e n s ;
7 i f (l o c a l T o k e n s & 1 != 1)
8 r e t u r n f a l s e ;
9 s t e p (l o c a l T o k e n s & u i n t (~ 1) | 2) ;

10 r e t u r n t r u e ;
11 }
12

13 f u n c t i o n B(u i n t l o c a l T o k e n) i n t e r n a l r e t u r n s (u i n t) {
14 u i n t l o c a l T o k e n s = t o k e n s ;
15 / / code t o be e x e c u t e d
16 r e t u r n l o c a l T o k e n s & u i n t (~ 4) | 1 6 ;
17 }
18 f u n c t i o n C () r e t u r n s (boo l) {
19 u i n t l o c a l T o k e n s = t o k e n s ;
20 i f (l o c a l T o k e n s & 8 != 8)
21 r e t u r n f a l s e ;
22 s t e p (l o c a l T o k e n s & u i n t (~ 8) | 32) ;
23 r e t u r n t r u e ;
24 }
25 f u n c t i o n s t e p (u i n t l o c a l T o k e n s) i n t e r n a l {
26 boo l done = f a l s e ;
27 w h i l e (! done) {
28 i f (l o c a l T o k e n s & 2 == 2) {
29 l o c a l T o k e n s = l o c a l T o k e n s & u i n t (~ 4) | 1 2 ;
30 c o n t i n u e ;
31 }
32 i f (l o c a l T o k e n s & 4 == 4) {
33 l o c a l T o k e n s = B(l o c a l T o k e n s) ;
34 c o n t i n u e ;
35 }
36 i f (l o c a l T o k e n s & 16 == 16) {
37 l o c a l T o k e n s = l o c a l T o k e n s & u i n t (~ 1 6) ;
38 c o n t i n u e ;
39 }
40 i f (l o c a l T o k e n s & 32 == 32) {

19

41 l o c a l T o k e n s = l o c a l T o k e n s & u i n t (~ 3 2) ;
42 c o n t i n u e ;
43 }
44 done = t r u e ;
45 }
46 t o k e n s = l o c a l T o k e n s ;
47 }
48 }

Listing 2. Simple process smart contract

As mentioned earlier we have different tasks which could correspond to different types
of activities. Now, the executions of these tasks also depend on whether their are auto-
mated or require external interaction. Let us consider the example in Figure 6 on which
we can see two different types of tasks in action. Task A is a user task, that means
after the user has done what they were supposed to do(i.e. fill a form and validated).
Then the token will more from position 0 to position 1 where there is a parallel gateway.
Some tasks and all gateways are automated, in such a way that when token reaches the
position the process are implement as internal functions(see Listing 2, lines(13-17)) and
are self-executed then the token will move to the next position. Hence, once the token
his on position 1, the and-split gateway will be executed then one token will be placed
on position 2 and 3. As task B on position 2 is a script task, hence automated it will
run and move to token to position 4 then finish its side of the process. On the other
hand, there is still a token on position 3, taking into consideration that task c is a user
task, then the process would not execute directly but wait for user interaction. Right
after the users have done what they had to do then execute the task then the process will
continue and end. That is the reason why there function step(see Listing 2 lines 25-
47) to manage all the cases mentioned. As its name suggests, the step serves to take
steps during a whole business process execution by executing events(which are internal
and do not require direct human interaction) and some of internal tasks that have to be
self-executed.

20

3.2 Timer Event code generation

The EVM(Ethereum Virtual machine) does not provide the possibility of scheduling,
that simply means it is not possible to just set a timer and expect it to be triggered at
a given time. In the light of this document we have covered two cases of intermediate
timer event. The first one being the case when a timer is in between two tasks and acts
a stopwatch, and the second is when the timer is one of the deferred choices right after
an event-based gateway. Here is the link to the project repository in Bitbucket3.

3.2.1 Delay

The way we implemented the timer event remains true to the token game just with a
small addition, a guard to check if a task is preceded by a timer or not. We are going
to give a comparative example of a normal task and a task preceded by a intermediate
timer event. On Figure 7 we have the example of a simple process, with a start event,
task A, task B and the end event. As we are using the “token game” to go through each
step, the flow of this process will be as expected: A token is place on position A, we
then execute A. Afterwards we remove that token from position A to move it to position
B. This procedure is repeated dependent on the size of a business process, however in
our case the process execution will end after B.

Each node contains a guard that checks if the token is at a given node. After checking,
the node will execute and then the token is removed and pass the next node. Therefore,
at this point we only need one guard(see Listing 3, line 13) which does check where is
the token and see if the token is still on position B or it should move to the next direct
successor. And if B has a successor, this successor will do the same.

Figure 7. Process with no delay

3https://bitbucket.org/lgbanuelos/bpsol-frontend/branch/fortunate

21

1 c o n t r a c t MyContrac t {
2

3 f u n c t i o n A() r e t u r n s (boo l) {
4 u i n t l o c a l T o k e n s = t o k e n s ;
5 i f (l o c a l T o k e n s & 2 != 2)
6 r e t u r n f a l s e ;
7 s t e p (l o c a l T o k e n s & u i n t (~ 2) | 4) ;
8 r e t u r n t r u e ;
9 }

10

11 f u n c t i o n B () r e t u r n s (boo l) {
12 u i n t l o c a l T o k e n s = t o k e n s ;
13 i f (l o c a l T o k e n s & 4 != 4)
14 r e t u r n f a l s e ;
15 s t e p (l o c a l T o k e n s & u i n t (~ 4) | 8) ;
16 r e t u r n t r u e ;
17 }
18 / / code h e r e . . .
19 }

Listing 3. Smart contract with no delay

In contrast to that, there are cases when a task has to be delayed for some reason. That
implies the setting of time which will mean the green-light of the task execution. i.e.
In cases when a person purchases an article at the store, and they are given 14 days to
try it out, withing those 14 days they can return it and get the full refund but after that
period they can not. That is one the cases when we need an intermediate timer event to
handle such delayed times. In this case, the procedure is a bit similar to the previous
with differences. Since we now have a timer one guard will not suffice. Therefore we
had an extra guard to meet the timer requirement. The procedure is a follow:

• First of all, if a process contains a timer event, at the creation of the contract we
initialize a variable with the same name as the timer event with and ending with
the expression “time”(see Listing 4, line 3). This variable will later on hold the
value of the timestamp when the timer is called.

• Secondly, the timer function itself is internal,that is to say once the token reaches

22

the timer event, the function will take a timestamp(see Listing 4, lines 7-10) then
remove the token and place it in the position of its following activity, see Fig-
ures 8b and 8c.

• Thirdly, as compared to the previous example with no timer, the difference is not
big but it is major. We have added an extra guard(a timer guard) that basically
checks if the timestamp now is is higher comparing to the timestamp taken previ-
ously plus the time specified by the timer(see Listing 4, lines 16-17).

(a) step 1 (b) step 2

(c) step 3 (d) step 4

Figure 8. Timer delay

1 c o n t r a c t MyContrac t {
2 u i n t t o k e n s = 1 ;
3 u i n t d e l a y _ t i m e = 0 ;
4

5 f u n c t i o n A() r e t u r n s (boo l) {
6 u i n t l o c a l T o k e n s = t o k e n s ;
7 i f (l o c a l T o k e n s & 2 != 2)
8 r e t u r n f a l s e ;
9 s t e p (l o c a l T o k e n s & u i n t (~ 2) | 4) ;

10 r e t u r n t r u e ;
11 }
12

13 f u n c t i o n d e l a y (u i n t l o c a l T o k e n s) i n t e r n a l r e t u r n s (u i n t) {
14 d e l a y _ t i m e = now ;
15 r e t u r n l o c a l T o k e n s & u i n t (~ 4) | 8 ;
16 }
17

18 f u n c t i o n B () r e t u r n s (boo l) {
19 u i n t l o c a l T o k e n s = t o k e n s ;
20 i f (l o c a l T o k e n s & 8 != 8)

23

21 r e t u r n f a l s e ;
22 i f (now < 20 s e c o n d s + d e l a y _ t i m e)
23 r e t u r n f a l s e ;
24 s t e p (l o c a l T o k e n s & u i n t (~ 8) | 16) ;
25 r e t u r n t r u e ;
26 }
27

28 / / more code below
29 }

Listing 4. Smart contract with delay

Note that now is an inbuilt Ethereum function, it is an alias to block.timestamp,
which take the timestamp in UNIX time at the time at which it is called within a smart
contract.

3.2.2 Timer on deferred choice

Event based gateways are not depending on data but on the event that occur first, i.e. A
person has booked a hotel room and he or she is supposed to show up at a certain time
or the room will be given to another person or if the person delays but call the hotel
manager the room will be kept and finally if the person shows up on time they get the
key and go to the room booked. This case shows the necessity of have a timer set which
can be used as a last resort in a process(or decision making).

A depiction of a case where a event based gateway and a timer event are needed is show
in Figure 9. It is worth knowing that in a case where there is an eventbased gateway
once one event happens the others will be automatically cancelled, leaving only one
path.

24

Figure 9. Deferred Choice

As shown in Figure 9 right after the event based gateway there are three options that
can happen based on the choices that the persons involved can or will make, if none of
the the first two options do not happen then automatically the last option will happen
based on the timer has set time. We are going to describe step by step the means used
to achieve this as represented on Figures 10.

As other processes, a token moves from one edge to another only then a node(task/event)
can be executed.This rule remains even in the case of deferred choice, when a token is
at the edge of an event based gateway(the gateway is executed internally), Figure 8a,
the execution of the gateway distributes the tokens at each edge of its successors. This
distribution enables the activation of each node at any moment all depending on the
user’s choice. As indicated on Figure 10b each intermediate catching event receives one
token.

Note that on Figure 10b not all the intermediate catching events are just simple message
events but one of the is a timer event. As mention in the previous section we only need
to take a timestamp with the timer event and then place the token to the next edge for it
to be executed at the appointed time. Therefore, when a token is put on the timer event,
the system will execute it internally and take a timestamp then move the token to the
next node, see Figure 10c and Figure 10d. As described in Listing 5 on lines 32-35 the

25

timer will behave as it should then pass the token to the next node; the step function
Listing 5 (lines 84-86), will automatically execute the timer.

(a) step 1 (b) step 2

(c) step 3 (d) step 4

(e) step 5 (f) step 6

Figure 10. Timer on deferred choice

1

2 c o n t r a c t MyContrac t {
3

4 u i n t t o k e n s = 1 ;
5

6 u i n t w a i t i n g _ t i m e = 0 ;
7

8

9 f u n c t i o n msg () r e t u r n s (boo l) {
10

11 u i n t l o c a l T o k e n s = t o k e n s ;
12

26

13 i f (l o c a l T o k e n s & 8 != 8)
14 r e t u r n f a l s e ;
15 i f (now >= w a i t i n g _ t i m e + 3 s e c o n d s)
16 r e t u r n f a l s e ;
17 s t e p (l o c a l T o k e n s & u i n t (~ 5 6) | 128) ;
18 r e t u r n t r u e ;
19 }
20

21 f u n c t i o n msgx () r e t u r n s (boo l) {
22 u i n t l o c a l T o k e n s = t o k e n s ;
23

24 i f (l o c a l T o k e n s & 16 != 16)
25 r e t u r n f a l s e ;
26 i f (now >= w a i t i n g _ t i m e + 3 s e c o n d s)
27 r e t u r n f a l s e ;
28 s t e p (l o c a l T o k e n s & u i n t (~ 5 6) | 256) ;
29 r e t u r n t r u e ;
30 }
31

32 f u n c t i o n w a i t i n g (u i n t l o c a l T o k e n s) i n t e r n a l r e t u r n s (u i n t) {
33 w a i t i n g _ t i m e = now ;
34 r e t u r n l o c a l T o k e n s & u i n t (~ 3 2) | 6 4 ;
35 }
36

37 f u n c t i o n B () r e t u r n s (boo l) {
38 u i n t l o c a l T o k e n s = t o k e n s ;
39

40 i f (l o c a l T o k e n s & 64 != 64)
41 r e t u r n f a l s e ;
42 i f (now < w a i t i n g _ t i m e + 3 s e c o n d s)
43 r e t u r n f a l s e ;
44 s t e p (l o c a l T o k e n s & u i n t (~ 6 4) | 0) ;
45 r e t u r n t r u e ;
46 }
47

48 f u n c t i o n end () r e t u r n s (boo l) {
49 u i n t l o c a l T o k e n s = t o k e n s ;
50

51 i f (l o c a l T o k e n s & 128 != 128)

27

52 r e t u r n f a l s e ;
53 s t e p (l o c a l T o k e n s & u i n t (~ 1 2 8) | 0) ;
54 r e t u r n t r u e ;
55 }
56

57 f u n c t i o n endx () r e t u r n s (boo l) {
58 u i n t l o c a l T o k e n s = t o k e n s ;
59

60 i f (l o c a l T o k e n s & 256 != 256)
61 r e t u r n f a l s e ;
62 s t e p (l o c a l T o k e n s & u i n t (~ 2 5 6) | 0) ;
63 r e t u r n t r u e ;
64 }
65

66 f u n c t i o n endb () r e t u r n s (boo l) {
67 u i n t l o c a l T o k e n s = t o k e n s ;
68

69 i f (l o c a l T o k e n s & 512 != 512)
70 r e t u r n f a l s e ;
71 s t e p (l o c a l T o k e n s & u i n t (~ 5 1 2) | 0) ;
72 r e t u r n t r u e ;
73 }
74

75 f u n c t i o n s t e p (u i n t l o c a l T o k e n s) i n t e r n a l {
76 boo l done = f a l s e ;
77 w h i l e (! done) {
78

79 i f (l o c a l T o k e n s & 4 != 4) {
80 l o c a l T o k e k n s = l o c a l T o k e n s & u i n t (~ 4) | 5 6 ;
81 c o n t i n u e ;
82 }
83

84 i f (l o c a l T o k e n s & 32 != 0) {
85 l o c a l T o k e n s = w a i t i n g (l o c a l T o k e n s) ;
86 c o n t i n u e ;
87 }
88 done = t r u e ;
89 }
90 t o k e n s = l o c a l T o k e n s ;

28

91 }
92 }

Listing 5. Smart contract with delay

Also, all the intermediate catching events part of a deferred choice aside the timer will
also get a conditional guard. In that sense, if the specified time has reached they
can no longer be activated. As described on line 26 in Listing 5(if (now >=

waiting_time+ 3 seconds)). Given this example, if the time specified by
the timer(3 seconds) at which it should be executed. Added to the timestamp
(wating_time) taken in the timer execution is less than or equal to now(the time at
which we are trying to execute an event) then this event can not be executed, but they
time alone.

29

4 Case Study

A project suggested at our University during the blockchain seminar was to implement
a blockchain-based marketplace that enables people to list and/or rent short-term prop-
erties. The idea is comparable to services as such as AibBnB 4, HomeAway 5, etc. The
main difference with other solutions is that there is no middleman, which potentially
reduces some of the costs the costs for both guests and hosts. The suggested project
is presented in the following chapter, which is then by discussion and potential future
improvements.

4.1 ChainURent Project description

The system is built in such a way that only the portion of the application that requires
currency transactions is deployed on the blockchain but the rest is stored in a regular
database, considering that every transaction on the blockchain costs a fee. The system
provides a web application/interface that allows a host to list all rooms/houses that is
available for renting, with respect to specific criteria(i.e. the location of the place, the
area in m2, number of beds, kitchen, WI-FI, parking space, if it is possible to smoke,
availability dates, etc.). A basic query interface is provided for the guest, using this
interface, the guest enters the name of a city and a rental period of time. The system then
return a list of available properties, matching the query input data (A more advanced
query can be implemented that can allow a client to make more advanced queries, but
since this does not have an impact on the blockchain; it is not the main focus here).
Once the guest finds a property that meets his/her requirements, the system would allow
this renter to book the property. We can consider that rent prices would be determined
by the market (e.g. supply/demand).

4https://www.airbnb.com/
5https://www.homeaway.co.uk/

30

4.2 ChainURent Architecture

The core of the system is a smart contract implementing an escrow-based transaction.
That is an understatement of the fact that there is no more need of middle man but
the system will be the middle-man. Therefore, in order to book a property for a given
period of time, both then host (owner) and the guest (renter) must deposit an amount
of cryptocurrency that is equal to 50 percent of the daily rental price. Then the smart
contract would keep the money from both of them. Since nobody loves losing money,
the fact of keeping money from both client and owner increases trust between each
other and removes the necessity of a middle-man whom would have been needed to
keep not only their deposit money but also get paid for doing so. Booking cancellation
will be possible up to 72 hours prior to the rental. Note that both parties (guest/host) are
allowed to cancel a booking. The canceling party, however, will be penalized with the
withdrawn of half of the deposit which will be given to his/her counterparts. Thus, the
security deposit serves to protect one party from the other party violation on the terms
of the rental agreement (e.g. the guest never shows up at the check-in date, the property
was occupied, etc.).

Assuming that the property has a digital lock that can be opened with a 4-digit code.
The code is sent by SMS on the check-in date when the guest transfers the full amount
of the rent to the host via the smart contract. The 4-digit code will become invalid at the
end of the rental period. A rating system is also available to allow the users(guest/host)
to rate each other other and leave some comments.

31

Figure 11. ChainURent Business process

32

4.2.1 Timer Event ChainURent

The escrow system blocks both money from the guest and the client, so most of the
time this technique will enforce people to always manage to be on time and respect the
regulations of the platform. Obviously the happy path is the one when both the client
nor the host suddenly cancel the booking and everybody get satisfied. However, if the
user has to cancel before the appointed time the system will take half of the deposit
money then give it to the host and the return also the deposit money from the host; If
the owner happens to also cancel, the system will do the same on behalf on the user
and then the process will end. Basically both the client and the host still have time to
cancel before 72 hours before the time of check in, In case they do not the process will
automatically move to the next step. When the time has reached, the time for check in
has arrived, naturally at that point it is impossible to block “cancel” in that sense of the
word but the process can still be terminated in three ways(see Figures 11,12).

First of if there is no issue or whatsoever during the entire stay, and the timer to checkout
has reached, the only path that would be active is the one that allows the guest to take
his/money because the timer-event will execute automatically and block the other two
paths, the paths that allows one of the parties fire a violation action where their deposit
will be sent back to them hence allowing them to cheat, buy staying in the premises and
keeping the money on top(see Figure 13).

33

Figure 12. 72 hours before check in

Secondly, in case the time for checkout has not reached(the guest is still using renting
the place), one of the two possibilities is that something occurs that was caused by
the renter(guest) and that causes the the contract to be interrupted. Note this occurs
during the stay not after, therefore since the smart contract timer has not registered the
timestamp for checkout the host has the right to kick them out and end the contract. In
other cases if the guest is not satisfied with the stay or if the place does not look like
it was shown on the pictures or anything, he/she can also decide to break the contract,
which is an understatement of owner violation, and just leave. In this later case the
system will send back the right amount to the user, penalise the host and the will be the
end of the business process.

34

Figure 13. During stay

4.2.2 Deployment and Transaction Cost

In Bitcoin, an address has as its attribute a value corresponding to an amount used in
a monetary system. In Ethereum, an address is associated with account objects. In the
case of the user account, one finds the private key and an amount. In the case of the
contract account, these two first attributes are found plus the hash of the code and the
root of the data tree. The state of the Ethereum protocol is therefore the set of these
attributes.

Each transaction specifies a destination address. If this address is a user, then funds are
transferred in ETH (similar to Bitcoin or other cryptocurrencies). If this address is a
contract, then the code runs in 3 ways:

• Send ETHs to other contracts

• Read or write to the associated memory

• Initiate the execution of other contracts

It is necessary to understand that all nodes in the Ethereum network run all of the trans-
mitted transactions by running the code and then maintaining the total state of the pro-

35

tocol after execution. Thus, each of the nodes possess the same state of the protocol at a
given instant. So we can see Ethereum as a set of programs on a single supercomputer
that is massively decentralized, relocated and secured by thousands of machines.

Ethereum solves the problem of shutdown where programs run indefinitely by charging
each step of the code execution calculation gas. The blocks of the Ethereum blockchain
have a fuel limit. Each transaction(see Figure 15) indicates the maximum amount of
fuel and the price in Ether it wants to pay per unit of gas. If the transaction does not
have enough gas, the performance is canceled, but the amount is still paid. The gas
principle is an incentive to use network resources in a responsible manner. The gas
limit, equivalent to the block size limit in Bitcoin, can be changed by a simple voting
system when a block is generated, but other strategies can be considered.

Ethereum transactions contain the following:

• A nonce (an arbitrary number used only once) to avoid replay attacks

• Gasprice (amount of Ether per unit of fuel)

• The startgas (maximum amount of usable fuel)

• The destination address

• Amount in ETH sent

• Data (readable by the contract code - adds fuel costs)

• v, r, s (data values for the cryptography of elliptic curves)

When a contract is deployed or a transaction is completed, a receipt object is created and
hashed in the blockchain to validate and count transactions. It shows the intermediate
state of the protocol after execution of the contract, the amount of fuel used and the
logs(see Figure 15, 14). These are only valid in the current block and are not retained
later. They are therefore not accessible by contracts, but are used by a thin client to view
events and transaction history.

Now concerning chaiurent, since it is the owner who deploys the contract on ethereum
then it is not be profitable it a contract had to be deployed every single time a client

36

Figure 14. Deployed contract

37

Figure 15. Transactions(Call a function)

38

wanted to rent a place. Because the deployment of a contract cost much higher than
just running it(calling different functions). As Figure 16 can show the creation and the
transaction resulting into create of the smart contract is much higher than calling one of
the functions .i.e. checkout_date().

The table 1 and Figure 16 shows how significant is the difference between the smart
contract deployment and a function execution.

Gas estimation

Contract deployment and execution 35,563+507,400 = 542,963

Function execution 20,054

Difference in % 3.69 %

Table 1. Gas estimation

Figure 16. Deployment and Execution Gas estimation

39

Due to this major difference in gas consumption the wise choice is to deploy a contract
once but run multiple instances of the same contract running in parallel. Therefore, at
the deployment time of the smart contract we create array of bit vectors which is empty
at first then it get populated each time a instance of the smart contract is instantiated
alongside a unique ID [Web+16] assigned to each contract. Each bitvector is just a
token, in other words it’s just an uint witch cost almost nothing. In conclusion the
host can have multiple guest all using the same smart contract and saving a lot of ether
by just running one business process smart contract.

4.3 Discussion

Although some services AirBnB and its likeness exist, running a collaborative business
process like chainurent on the blockchain can be proven highly less expensive,
much more profitable and highly secured. Since the core of the whole application is
running on etheruem it is therefore a peer-to-peer for one and it runs on a public ledger
secondly which makes it difficult to cheat and almost impossible to hack. It eliminates
the needs of having to involves banks and other services like Mastercard6, Visa7 or
third party payment services in the likeness of Alipay8, PayPal9 or Stripe10. Running
on ethereum also guarantees no downtime since ethereum is a supercomputer virtually
running on millions of computers.

In addition to that the timer service allows to enforce business rules by enabling or
disabling some branches of business process before or after a specified time. These are
backed up but the blockchain architecture, which as said previously is temper-proof.
This very important in terms of collaboration because it allows full transparency and
shifts the trust from people-to-people to the blockchain.

6https://www.mastercard.us/en-us.html
7http://www.visa.com/globalgateway/gg_selectcountry.jsp
8https://intl.alipay.com/
9https://www.paypal.com/

10https://stripe.com/

40

5 Conclusions and Future work

In this work, we describe the extension of the prototype of a BPMN execution engine
that runs on top of Ethereum. More precisely, we extended the execution engine with
the support to timer events found between tasks in sequence and also timer events as
part of a deferred choice pattern. The approach consisted in adding time-guards inside
the functions that emulate the execution of tasks and events that were affected by the
occurrence of a timer event in the model. In this way, the guards would replace the
need for an explicit external timer service. Thus, the solution rely on the analysis of
the topology of the input model and the use of such information in the generation of
the Solidity code. We implemented the approach and integrated the model analysis and
code generation within the infrastructure of a BPMN execution engine. Finally, we
tested the prototype with a few sample BPMN models.

5.1 Future Work

Because the timer event can also be a start event, a boundary event we could also cover
those cases. e.g. When a timer is a boundary event, it could be interrupting or non-
interrupting. In the case that it is interrupting we would have to remove the token and
move it to the next node. Moreover, if the timer event is non-interrupting, the oppo-
site will occur, on token will be placed on the node following the timer event without
ever removing the token at the position at which the timer event is being a boundary.
Moreover, if the timer event is a start event we have to find a way to set time in case the
process a occur once or repeatedly.

On the other hand, we can also add a javascript service to the engine so that it take care
of the time externally whenever a timer event is triggered. In that case, the external
javascript service would keep counting the passing time and not just take a timestamp
then compares it with another one later, but instead count the time and execute a given
node at once.

Some work on the engine is also needed, in some cases when a process has a higher
amount of nodes(tasks) the compilation time increase exponentially. This compilation

41

slowdown occurs when the process executes in testing mode. So, if a computer low in
memory it could crush the computer; a feasible solution is to separate the backend and
the frontend and push all of the heavy liftings at the backend.

42

References

[Biz] Bizagi. BPMN 2.0 by example. URL: %7Bhttp://resources.bizagi.
com/docs/BPMNByExampleENG.pdf%7D.

[But13] Vitalik Buterin. Ethereum White Paper. 2013. URL: https://github.
com/ethereum/wiki/wiki/White-Paper.

[Cama] Camunda. BPMN 2.0 Implementation Reference. URL: https://docs.
camunda.org/manual/7.3/api-references/bpmn20/.

[Camb] Camunda. Camunda docs. URL: %7Bhttps://docs.camunda.org/
manual/7.6/reference/bpmn20/events/timer-events/

%7D.

[DB17] Institute for Development and Research in Banking Technology. “Opti-
mized Execution of Business Processes on Blockchain”. In: Application of

Blockchain techonlogy to bankning and Financial Sector in India (2017).
URL: http://www.idrbt.ac.in/assets/publications/
Best%5C%20Practices/BCT.pdf.

[DR13] Marlon Dumas and Marcello La Rosa. Foundamentals of Business Process

Management. Springer, 2013.

[Etha] Ethereum. Ethereum alarm clock. URL: http://www.ethereum-
alarm-clock.com/.

[Ethb] Ethereum. Serpent programming language. URL: %7Bhttps://github.
com/ethereum/wiki/wiki/Serpent%7D.

[Ethc] Ethereum. Solidity prgraming language. URL: %7Bhttp://solidity.
readthedocs.io/en/latest/%7D.

[F09] Pfitzner K.and Decker G.and Kopp O.anf Leymann F. Web Service Chore-

ography Configurations for BPMN. Springer, 2009. ISBN: 978-3-540-93851-
4.

[Kos+14] Felix Kossak et al. A Rigorous Semantics for BPMN 2.0 Process Diagrams.
Springer, 2014. ISBN: 978-3-319-09930-9.

43

%7Bhttp://resources.bizagi.com/docs/BPMNByExampleENG.pdf%7D
%7Bhttp://resources.bizagi.com/docs/BPMNByExampleENG.pdf%7D
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://docs.camunda.org/manual/7.3/api-references/bpmn20/
https://docs.camunda.org/manual/7.3/api-references/bpmn20/
%7Bhttps://docs.camunda.org/manual/7.6/reference/bpmn20/events/timer-events/%7D
%7Bhttps://docs.camunda.org/manual/7.6/reference/bpmn20/events/timer-events/%7D
%7Bhttps://docs.camunda.org/manual/7.6/reference/bpmn20/events/timer-events/%7D
http://www.idrbt.ac.in/assets/publications/Best%5C%20Practices/BCT.pdf
http://www.idrbt.ac.in/assets/publications/Best%5C%20Practices/BCT.pdf
http://www.ethereum-alarm-clock.com/
http://www.ethereum-alarm-clock.com/
%7Bhttps://github.com/ethereum/wiki/wiki/Serpent%7D
%7Bhttps://github.com/ethereum/wiki/wiki/Serpent%7D
%7Bhttp://solidity.readthedocs.io/en/latest/%7D
%7Bhttp://solidity.readthedocs.io/en/latest/%7D

[LWR14] Andreas Lanz, Barbara Weber, and Manfred Reichert. “Time patterns for
process-aware information systems”. In: Springer (2014).

[Mer] Piper Merriam. Ethereum Alarm Clock Documentation. URL: https://
media.readthedocs.org/pdf/ethereum-alarm-clock-

service/latest/ethereum-alarm-clock-service.pdf.

[Nak09] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2009.
URL: https://bitcoin.org/bitcoin.pdf.

[OMG10] OMG. BPMN 2.0 by Example. 2010. URL: http://www.omg.org/
spec/BPMN/20100601/10-06-02.pdf.

[OMG11] OMG. Business Process Model and Notation(BPMN). 2011. URL: http:
//www.omg.org/spec/BPMN/2.0/PDF/.

[Ora] Oracle. Fusion Middleware Modeling and Implementation Guide for Or-

acle Business Process Management. URL: https://docs.oracle.
com/cd/E29542_01/doc.1111/e15176/intro_bpm_studio_

bpmpd.htm#BPMPD143.

[RLP16] Marcello La Rosa, Peter Loos, and Oscar Pastor. Business Process Man-

agement. Springer, 2016.

[SH99] August-Wilhelm Scheer and Michael Hoffmann. “From Business Process
Model to Application System - Developing an Information System with the
House of Business Engineering (HOBE)”. In: Springer (1999).

[Web+16] Ingo Weber et al. “Untrusted Business Process Monitoring and Execution
Using Blockchain”. In: Proc. of BPM. Vol. 9850. LNCS. Springer, 2016,
pp. 329–347.

[WG] Peter Y. H. Wong and Jeremy Gibbons. A Relative Timed Semantics for

BPMN. URL: http://www.cs.ox.ac.uk/peter.wong/pub/
bpmntime.pdf.

44

https://media.readthedocs.org/pdf/ethereum-alarm-clock-service/latest/ethereum-alarm-clock-service.pdf
https://media.readthedocs.org/pdf/ethereum-alarm-clock-service/latest/ethereum-alarm-clock-service.pdf
https://media.readthedocs.org/pdf/ethereum-alarm-clock-service/latest/ethereum-alarm-clock-service.pdf
https://bitcoin.org/bitcoin.pdf
http://www.omg.org/spec/BPMN/20100601/10-06-02.pdf
http://www.omg.org/spec/BPMN/20100601/10-06-02.pdf
http://www.omg.org/spec/BPMN/2.0/PDF/
http://www.omg.org/spec/BPMN/2.0/PDF/
https://docs.oracle.com/cd/E29542_01/doc.1111/e15176/intro_bpm_studio_bpmpd.htm#BPMPD143
https://docs.oracle.com/cd/E29542_01/doc.1111/e15176/intro_bpm_studio_bpmpd.htm#BPMPD143
https://docs.oracle.com/cd/E29542_01/doc.1111/e15176/intro_bpm_studio_bpmpd.htm#BPMPD143
http://www.cs.ox.ac.uk/peter.wong/pub/bpmntime.pdf
http://www.cs.ox.ac.uk/peter.wong/pub/bpmntime.pdf

Appendix

I. Glossary

1 pragma s o l i d i t y ^ 0 . 4 . 0 ;
2

3 c o n t r a c t P r o c e s s _ 0 g 2 8 l 4 d _ C o n t r a c t {
4 u i n t t o k e n s = 1 ;
5 u i n t s u b p r o c e s s e s = 0 ;
6 u i n t h o u r s _ b e f o r e _ c h e c k i n g _ 7 2 _ t i m e = 0 ;
7 u i n t C h e c k o u t _ d a t e _ t i m e = 0 ;
8

9 f u n c t i o n h o u r s _ b e f o r e _ c h e c k i n g _ 7 2 (u i n t l o c a l T o k e n s) i n t e r n a l
r e t u r n s (u i n t) {

10 h o u r s _ b e f o r e _ c h e c k i n g _ 7 2 _ t i m e = now ;
11 r e t u r n l o c a l T o k e n s & u i n t (~ 2) | 4 ;
12 }
13 f u n c t i o n O w n e r _ v i o l a t i o n () r e t u r n s (boo l) {
14 u i n t l o c a l T o k e n s = t o k e n s ;
15 i f (l o c a l T o k e n s & 296 != 296)
16 r e t u r n f a l s e ;
17 i f (now >= 4 s e c o n d s + C h e c k o u t _ d a t e _ t i m e)
18 r e t u r n f a l s e ;
19 s t e p (l o c a l T o k e n s & u i n t (~ 2 9 6) | 64) ;
20 r e t u r n t r u e ;
21 }
22 f u n c t i o n Ended_Vio l a t i on_by_owner () r e t u r n s (boo l) {
23 u i n t l o c a l T o k e n s = t o k e n s ;
24 i f (l o c a l T o k e n s & 64 != 64)
25 r e t u r n f a l s e ;
26 s t e p (l o c a l T o k e n s & u i n t (~ 6 4) | 0) ;
27 r e t u r n t r u e ;
28 }
29 f u n c t i o n Checked_out () r e t u r n s (boo l) {
30 u i n t l o c a l T o k e n s = t o k e n s ;
31 i f (l o c a l T o k e n s & 128 != 128)
32 r e t u r n f a l s e ;
33 s t e p (l o c a l T o k e n s & u i n t (~ 1 2 8) | 0) ;

45

34 r e t u r n t r u e ;
35 }
36 f u n c t i o n E n d e d _ V i o l a t i o n _ b y _ u s e r () r e t u r n s (boo l) {
37 u i n t l o c a l T o k e n s = t o k e n s ;
38 i f (l o c a l T o k e n s & 512 != 512)
39 r e t u r n f a l s e ;
40 s t e p (l o c a l T o k e n s & u i n t (~ 5 1 2) | 0) ;
41 r e t u r n t r u e ;
42 }
43 f u n c t i o n C h e c k o u t _ d a t e (u i n t l o c a l T o k e n s) i n t e r n a l r e t u r n s (u i n t)

{
44 C h e c k o u t _ d a t e _ t i m e = now ;
45 r e t u r n l o c a l T o k e n s & u i n t (~ 1 6) | 256 ;
46 }
47 f u n c t i o n U s e r _ v i o l a t i o n () r e t u r n s (boo l) {
48 u i n t l o c a l T o k e n s = t o k e n s ;
49 i f (l o c a l T o k e n s & 296 != 296)
50 r e t u r n f a l s e ;
51 i f (now >= 4 s e c o n d s + C h e c k o u t _ d a t e _ t i m e)
52 r e t u r n f a l s e ;
53 s t e p (l o c a l T o k e n s & u i n t (~ 2 9 6) | 512) ;
54 r e t u r n t r u e ;
55 }
56 f u n c t i o n C a n c e l a t i o n _ b y _ o w n e r _ c () r e t u r n s (boo l) {
57 u i n t l o c a l T o k e n s = t o k e n s ;
58 i f (l o c a l T o k e n s & 2048 != 2048)
59 r e t u r n f a l s e ;
60 s t e p (l o c a l T o k e n s & u i n t (~2048) | 0) ;
61 r e t u r n t r u e ;
62 }
63 f u n c t i o n C a n c e l a t i o n _ b y _ u s e r _ c () r e t u r n s (boo l) {
64 u i n t l o c a l T o k e n s = t o k e n s ;
65 i f (l o c a l T o k e n s & 8192 != 8192)
66 r e t u r n f a l s e ;
67 s t e p (l o c a l T o k e n s & u i n t (~8192) | 0) ;
68 r e t u r n t r u e ;
69 }
70 f u n c t i o n C a n c e l a t i o n _ b y _ o w n e r _ b () r e t u r n s (boo l) {
71 u i n t l o c a l T o k e n s = t o k e n s ;

46

72 i f (l o c a l T o k e n s & 5124 != 5124)
73 r e t u r n f a l s e ;
74 i f (now >= 3 s e c o n d s + h o u r s _ b e f o r e _ c h e c k i n g _ 7 2 _ t i m e)
75 r e t u r n f a l s e ;
76 s t e p (l o c a l T o k e n s & u i n t (~5124) | 2048) ;
77 r e t u r n t r u e ;
78 }
79 f u n c t i o n C a n c e l a t i o n _ b y _ u s e r _ b () r e t u r n s (boo l) {
80 u i n t l o c a l T o k e n s = t o k e n s ;
81 i f (l o c a l T o k e n s & 5124 != 5124)
82 r e t u r n f a l s e ;
83 i f (now >= 3 s e c o n d s + h o u r s _ b e f o r e _ c h e c k i n g _ 7 2 _ t i m e)
84 r e t u r n f a l s e ;
85 s t e p (l o c a l T o k e n s & u i n t (~5124) | 8192) ;
86 r e t u r n t r u e ;
87 }
88 f u n c t i o n A() r e t u r n s (boo l) {
89 u i n t l o c a l T o k e n s = t o k e n s ;
90 i f (l o c a l T o k e n s & 32768 != 32768)
91 r e t u r n f a l s e ;
92 s t e p (l o c a l T o k e n s & u i n t (~32768) | 65536) ;
93 r e t u r n t r u e ;
94 }
95 f u n c t i o n C o n t r a c t _ c r e a t e d () r e t u r n s (boo l) {
96 u i n t l o c a l T o k e n s = t o k e n s ;
97 i f (l o c a l T o k e n s & 1 != 1)
98 r e t u r n f a l s e ;
99 s t e p (l o c a l T o k e n s & u i n t (~ 1) | 32768) ;

100 r e t u r n t r u e ;
101 }
102 f u n c t i o n C () r e t u r n s (boo l) {
103 u i n t l o c a l T o k e n s = t o k e n s ;
104 i f (l o c a l T o k e n s & 65536 != 65536)
105 r e t u r n f a l s e ;
106 s t e p (l o c a l T o k e n s & u i n t (~65536) | 16384) ;
107 r e t u r n t r u e ;
108 }
109 f u n c t i o n J () r e t u r n s (boo l) {
110 u i n t l o c a l T o k e n s = t o k e n s ;

47

111 i f (l o c a l T o k e n s & 296 != 296)
112 r e t u r n f a l s e ;
113 i f (now < 4 s e c o n d s + C h e c k o u t _ d a t e _ t i m e)
114 r e t u r n f a l s e ;
115 s t e p (l o c a l T o k e n s & u i n t (~ 2 9 6) | 128) ;
116 r e t u r n t r u e ;
117 }
118 f u n c t i o n D() r e t u r n s (boo l) {
119 u i n t l o c a l T o k e n s = t o k e n s ;
120 i f (l o c a l T o k e n s & 5124 != 5124)
121 r e t u r n f a l s e ;
122 i f (now < 3 s e c o n d s + h o u r s _ b e f o r e _ c h e c k i n g _ 7 2 _ t i m e)
123 r e t u r n f a l s e ;
124 s t e p (l o c a l T o k e n s & u i n t (~5124) | 131072) ;
125 r e t u r n t r u e ;
126 }
127

128 f u n c t i o n s t e p (u i n t l o c a l T o k e n s) i n t e r n a l {
129 boo l done = f a l s e ;
130 w h i l e (! done) {
131 i f (l o c a l T o k e n s & 2 != 0) {
132 l o c a l T o k e n s = h o u r s _ b e f o r e _ c h e c k i n g _ 7 2 (l o c a l T o k e n s) ;
133 c o n t i n u e ;
134 }
135 i f (l o c a l T o k e n s & 131072 != 0) {
136 l o c a l T o k e n s = l o c a l T o k e n s & u i n t (~131072) | 56 ;
137 c o n t i n u e ;
138 }
139 i f (l o c a l T o k e n s & 16 != 0) {
140 l o c a l T o k e n s = C h e c k o u t _ d a t e (l o c a l T o k e n s) ;
141 c o n t i n u e ;
142 }
143 i f (l o c a l T o k e n s & 16384 != 0) {
144 l o c a l T o k e n s = l o c a l T o k e n s & u i n t (~16384) | 5122 ;
145 c o n t i n u e ;
146 }
147 done = t r u e ;
148 }
149 t o k e n s = l o c a l T o k e n s ;

48

150 }
151

152 f u n c t i o n g e t A c t i v a t e d F l o w N o d e s () r e t u r n s (u i n t) {
153 u i n t f lowNodes = 0 ;
154 u i n t l o c a l T o k e n s = t o k e n s ;
155 i f (l o c a l T o k e n s & 2 == 2)
156 f lowNodes | = 1 ;
157 i f (l o c a l T o k e n s & 8 == 8)
158 f lowNodes | = 4 ;
159 i f (l o c a l T o k e n s & 64 == 64)
160 f lowNodes | = 8 ;
161 i f (l o c a l T o k e n s & 128 == 128)
162 f lowNodes | = 16 ;
163 i f (l o c a l T o k e n s & 512 == 512)
164 f lowNodes | = 32 ;
165 i f (l o c a l T o k e n s & 16 == 16)
166 f lowNodes | = 64 ;
167 i f (l o c a l T o k e n s & 32 == 32)
168 f lowNodes | = 128 ;
169 i f (l o c a l T o k e n s & 2048 == 2048)
170 f lowNodes | = 256 ;
171 i f (l o c a l T o k e n s & 8192 == 8192)
172 f lowNodes | = 512 ;
173 i f (l o c a l T o k e n s & 1024 == 1024)
174 f lowNodes | = 1024 ;
175 i f (l o c a l T o k e n s & 4096 == 4096)
176 f lowNodes | = 2048 ;
177 i f (l o c a l T o k e n s & 32768 == 32768)
178 f lowNodes | = 8192 ;
179 i f (l o c a l T o k e n s & 1 == 1)
180 f lowNodes | = 16384 ;
181 i f (l o c a l T o k e n s & 65536 == 65536)
182 f lowNodes | = 32768 ;
183 i f (l o c a l T o k e n s & 256 == 256)
184 f lowNodes | = 65536 ;
185 i f (l o c a l T o k e n s & 4 == 4)
186 f lowNodes | = 131072 ;
187 r e t u r n f lowNodes ;
188 }

49

189 }

50

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Fortunat Lufunda Mutunda,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the pub-
lic, including for addition to the DSpace digital archives until expiry of the
term of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

Timer Service for an Ethereum BPMNEngine

supervised by Luciano Garcia-Banuelos

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 18.05.2017

51

	Introduction
	Background
	Business Process Management
	BPM Life cycle
	Business Process Model and Notation
	Timer event
	Ethereum
	Smart Contract and Execution cost

	Ehtereum Alarm Clock

	Implementation
	Code generation
	Timer Event code generation
	Delay
	Timer on deferred choice

	Case Study
	ChainURent Project description
	ChainURent Architecture
	Timer Event ChainURent
	Deployment and Transaction Cost

	Discussion

	Conclusions and Future work
	Future Work

	Appendix
	I. Glossary
	II. Licence

