
1

UNIVERSITY OF TARTU

Institute of Computer Science
Software Engineering Curriculum

Grace Achenyo Okolo

±ŀƭ/ƘǊƻƳ ς {ƻƊǿŀǊŜ ¢ƻƻƭ ŦƻǊ ±ŀƭƛŘŀǝƻƴ ƻŦ
/ƘǊƻƳŀǘƻƎǊŀǇƘƛŎ !ƴŀƭȅǎƛǎ aŜǘƘƻŘ

Master Thesis (30 ECTS)

 Supervisors: Professor Marlon Dumas

Associate Professor Koit Herodes

Asko Laaniste, PhD

Tartu 2019

2

Acknowledgements
Firstly, I would like to thank God almighty for giving me strength and His amazing grace. I would like to

express my gratitude to the University of Tartu for the opportunity to study in Estonia and for giving me

the chance to follow my dreams and expand my knowledge. I would like to thank Professor Marlon

Dumas for believing in me and providing support and encouragement throughout my studies and my

thesis. I am also grateful to my supervisors Associate professor Koit Herodes and Asko Laaniste PhD, for

giving me the opportunity to be a part of developing ValChrom. Working on my thesis has helped me

grow professionally and personally. Finally, I would like to thank my family and friends for their constant

support. May God bless you all.

3

ValChrom ς Software Tool for Validation of Chromatographic Analysis

Method

Abstract
Quality assurance is an important aspect in all industries. Most products and services are legally

obligated to undergo some quality checks before they are sold to consumers. This concept also applies

to the field of analytical chemistry. The results of chemical analysis can only be accepted if the analysis

follows a method that has been proven to produce correct results. Analytical methods are the blueprints

that determine how the analysis should be performed, therefore they need to be carefully validated

before use. Analytical method validation has received attention from regulatory bodies and expert

groups who have developed guidelines by which methods should be validated. Now, analytical chemists

can validate their methods using these guidelines to prove that they are fit for their intended purpose.

Analytical method validation is no easy process and it involves a lot of tasks that are currently being

done manually. This creates room for error and can make the process slower and so, more expensive.

Consequently, the Institute of Chemistry at the University of Tartu initiated the development of a

software-as-a-service (SaaS) solution called ValChrom, that will solve the prominent problems faced in

analytical method validation. This thesis presents the development of the client-side application of

ValChrom. The author discusses the rationale for the project, the development lifecycle of the

application and how the requirements where elicited and specified. The author presents the system

design and implementation and discusses future works and possible improvements to the delivered

product.

Keywords: analytical method validation software, chemical analysis, chromatography, method

validation, client-side application development

CERCS: P300, P170

4

ValChrom ς kromatograafiliste analüüsimeetodite valideerimise tarkvara

Lühikokkuvõte
Kvaliteedikontroll on kõikides tööstusharudes oluline osa tööprotsessist. Enamik tooteid või teenuseid

peavad enne üleandmist kliendile läbima kvaliteedikontrolli. Kvaliteedikontroll on oluline ka analüütilises

keemias. Keemilise analüüsi tulemuse usaldusväärsus on tagatud ainult siis kui analüütiline meetod on

valideeritud ehk, on tõestatud, et saadavad tulemused vastavad analüüsi eesmärkidele.

Ametlikud järelvalvet teostavad asutused kontrollivad pidevalt, et keemilised analüüsid oleks

usaldusväärselt kontrollitud ja teostatud. Selleks on mitmed ekspertgrupid (ICH, EMA, ISO, Eurachem jt)

arendanud juhendmaterjalid, mis sätestavad analüütilise meetodi valideerimise juhised ja kriteeriumid.

Valideerimise etapis on analüütilistel keemikutel tihtipeale kohustuslik järgida konkreetset

juhendmaterjali, et tõendada meetodi sobilikkust konkreetses valdkonnas (nt bioanalüüside valdkonnas).

Valideerimine on küllaltki keerukas ja spetsiifilist kompetentsi nõudev töö, mille lihtsustamiseks võiks

kasutada IT-vahendeid. Siiani viiakse valideerimisel vajalikud arvutused tihti läbi tabelarvutustarkvaras ja

tulemused vormistatakse tekstiredaktori abil. Sel juhul on inimlike vigade arv suur ning kogu valideerimise

protsess aeganõudvam. Seetõttu algatati TÜ Analüütilise keemia õppetoolis poolt teenusena pakutava

(SaaS) tarkvara ValChrom arendamist. Eesmärgiks on pakkuda kasutajatele tööriista, mis abistaks

kasutajat kogu valideerimise protsessi vältel.

Antud töös kirjeldatakse ValChromi kliendipoolse osa arendamist. Arutletakse projekti põhimõtete ja

tarkvara elutsükli üle ning protsessi kasutaja vajaduste väljaselgitamisest kuni tarkvaralise lahenduseni.

Samuti pakutakse võimalikke arendussuundi edasiseks.

Märksõnad: keemiline analüüs, kromatograafia, metoodika valideerimine

CERCS: P300, P170

5

ACKNOWLEDGEMENTS .. 2

ABSTRACT .. 3

LÜHIKOKKUVÕTE ... 4

1. INTRODUCTION ... 6

2. LITERATURE REVIEW ... 8

2.1 CHROMATOGRAPHY ... 8
2.2 ANALYTICAL METHOD VALIDATION ... 11

3. BACKGROUND ... 14

3.1 PROBLEM STATEMENT ... 14
3.2 EXISTING SOLUTIONS ... 14
3.3 VALCHROM ... 15

4. SCOPE AND APPROACH ... 16

4.1 SCOPE OF THESIS .. 16
4.2 APPROACH ... 16

5. REQUIREMENTS ELICITATION AND SPECIFICATION .. 17

5.1 REQUIREMENTS ELICITATION ... 17
5.2 FUNCTIONAL REQUIREMENTS .. 17
5.3 NON-FUNCTIONAL REQUIREMENTS ... 22

6. SYSTEM DESIGN ... 24

6.1 CONTEXT-LEVEL DATA-FLOW DIAGRAM .. 24
6.2 SEQUENCE DIAGRAM ... 25
6.3 DOMAIN MODEL DIAGRAM .. 26
6.4 STATE CHART DIAGRAM ... 27

7. IMPLEMENTATION .. 28

7.1 TECHNOLOGY STACK .. 28
7.2 ARCHITECTURE ... 30
7.3 APPLICATION .. 33
7.4 TESTING .. 42

8. CONCLUSION AND FUTURE WORK .. 43

9. REFERENCES .. 44

APPENDIX A ... 46

APPENDIX B ... 49

LICENSE .. 60

6

1. Introduction
Before companies sell their products to people, the products must undergo tests and analyses to ensure

compliance with regulations. The same principle applies to chemically engineered products. Chemical

analyses are performed on them to know their quality and understand their chemical composition.

Often those analyses use analytical methods to obtain the composition of the product. It may be an

analysis to determine the content of active pharmaceutical ingredient of a tablet, pesticide residue in

tomatoes, ƻǊ ŀƴ ŀƴŀƭȅǎƛǎ ǘƻ ŘŜǘŜŎǘ ŘƻǇƛƴƎ ǎǳōǎǘŀƴŎŜǎ ƛƴ ŀǘƘƭŜǘŜǎΩ ōƻŘƛƭȅ ŦƭǳƛŘǎΦ Lǘ ƛǎ ƛƳǇƻǊǘŀƴǘ ŦƻǊ ǘƘŜǎŜ

analyses to produce accurate and consistent results all the time. For example, contents of active

ingredient and impurities should always be accurately determined. In order to correctly perform

chemical analysis, there needs to be a blueprint that specifies the steps to follow and tools to utilize.

This blueprint is called an analytical method.

Often the use of analytical methods yields significant results that can affect several aspects of life. In the

medical field, an inaccurate result could imply an incorrect diagnosis of a patient. In food production, an

inaccurate result could imply that people will consume harmful food. That is why before an analytical

method is used to perform chemical analysis, it must be validated to determine whether it produces

results that comply with regulations and to ensure that it fits the intended purpose.

Even though today, sophisticated lab equipment is available to help chemists perform chemical

analyses, there are still a lot of manual and time-consuming activities involved in the method validation

process. These activities include reading lengthy method validation guidelines to decide which

techniques to utilize to assess the different criteria and parameters of the analytical method, preparing

samples for laboratory analyses, collecting and compiling the results of the analyses, performing

mathematical and statistical computations on the analyses results and finally producing a document to

ǊŜǇƻǊǘ ǘƘŜ ŀƴŀƭȅǘƛŎŀƭ ƳŜǘƘƻŘΩǎ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎ ŀƭǎƻ ƪƴƻǿƴ ŀǎ ǾŀƭƛŘŀǘƛƻƴ ǇŀǊŀƳŜǘŜǊǎΦ !ƭƭ ǘƘŜǎŜ ŀŎǘƛǾƛǘƛŜǎ

create room for errors. In some cases, chemists may use several software tools at different stages of the

validation process, which means that they need to transfer data between different tools. This can easily

lead to the isolation of information in several files or databases, the loss or inconsistency of data, and

the difficulty to share data and collaborate with each other.

An intuitive solution to this problem is to create a software for analytical method validation. The

software will automate the process and basically eliminate the problems faced by the current analytical

method validation process. This is the rationale behind ValChrom, a software project initiated by the

Institute of Chemistry at the University of Tartu. ValChrom is envisioned as a software-as-a-service

(SaaS) solution to help analytical chemistry laboratories plan, assess and report the validation of

analytical methods in accordance with validation guidelines.

In this thesis, the author presents the development of the frontend application of ValChrom, which is

built using the Vue.js Framework and how it interacts with the backend application to provide the

complete ValChrom SaaS solution. The backend system and the front-end system communicate through

a Representational State Transfer (REST) Application Programming Interface (API). The frontend is

developed to be an interactive and dynamic single page application (SPA). It provides the user interfaces

that mirror the analytical method validation process and provides the desired user experience.

This thesis is divided into eight (8) chapters. This introductory chapter is followed by chapter 2, which

provides some context and background about the domain. It introduces analytical methods, specifically

7

chromatography and discuses about chromatographic analytical method validation. Chapter 3 discusses

the problem statement and reviews existing solutions for analytical method validation on the market

and then introduces ValChrom as a solution. In chapter 4, the scope of the thesis and the approach

taken are discussed. The requirements are discussed and illustrated in chapter 5 while chapter six

presents the system designs and chapter 7 discusses the implementation. The thesis is concluded in

chapter 8 which provide some possible improvements that can be made to the delivered system.

This software project was a joint work with Kodjovi Hippolyte-Fayol Toulassi, also a student in the

Software Engineering curriculum and Karl Kruuse, a software developer. Karl Kruuse handled the

implementation of the computation modules needed to compute the characteristics of the analytical

procedures, while Hippolyte-Fayol and the author of this thesis were respectively in charge of the

backend application and the frontend application. This thesis focuses on the development of the

frontend application while Hippolyte-FayolΩǎ thesis [14] focuses on the implementation of the backend

application.

Only Section 1 of this thesis was written jointly with Hippolyte-Fayol. All the other sections are the

individual work of the author of this thesis.

8

2. Literature Review
An analytical method is a way of conducting an analysis, detailing the step-by-step procedure necessary

to carry out the analysis [3]. It is used to quantitatively and qualitatively determine the chemical

composition of a compound.

2.1 Chromatography
Chromatography is a type of analytical method for separating the analytes (or components) of a sample

to discover what they are and their concentration level [1]. This process of separation involves two

phases, the mobile phase and the stationary phase. The stationary phase is usually a porous solid that

stays motionless inside a column (or tube) and acts like a resistance to the substances flowing through

the column. The mobile phase is the substance that moves throughout the process, transporting the

sample to be separated over the stationary phase. The individual analytes in a sample interact

differently with the stationary phase due to differences in size, partitioning or adsorption etc.

phenomena. These differences between the components of a sample enable them to be separated from

each other [2]. Chromatography has an elaborate historical background, it began with simple column

chromatography, where mobile phase moved through the stationary phase under the influence of

gravity. Chromatography has since evolved and produced many modern techniques such as ultra-high-

performance liquid chromatography (UHPLC), fast protein liquid chromatography (FPLC), supercritical

fluid chromatography (SFC) and gas chromatography (GC).

2.1.1 Liquid Chromatography
Liquid chromatography is a type of chromatography where the mobile phase is a liquid. The separation

process takes place in a column (special tube). In a liquid chromatography system, the stationary phase

is held in place inside the column. The column is where the mixture of the sample and the mobile phase

passes over the stationary phase and then the sample components get separated from each other.

These analytes are eluted from the other end of the column in the order of their separation.

2.1.2 High-performance liquid chromatography (HPLC)
High-performance liquid chromatography (HPLC) is a type of liquid chromatography that makes use of a

high-pressure pump to pass the mobile phase and sample mixture as a pressurized liquid solvent

through a column containing the stationary phase [8]. The diagram in Figure 1 shows the components

that make up a High-performance liquid chromatography system. This system is designed to support a

standard HPLC process described below.

HPLC Process

The system has a Reservoir that contains the mobile phase (a solvent which will be transported

throughout the system). The Pump is used to supply and regulate the flow of the mobile phase into the

system. The sample is introduced into the system using the Injector which injects the sample into the

flow of the mobile phase. The mobile phase acts as a transporter, flowing into the column where the

stationary phase is attached to the hardware of the column. As the mixture of the sample and mobile

phase flows through the column, the analytes in the sample get separated. After which they flow out

from the column and into the detector [8]. The Detector registers the individual analytes that pass

through it. Then they can either be stored for further analysis or discarded depending on the purpose of

the separation. The detector is connected to a Computer data station which identifies and quantifies the

concentration of the analytes that are being eluted from the column after separation. It collects and

9

stores the electrical signals and then generates a Chromatogram - change of detector signal over the

time of chromatographic analysis. One HPLC system can have multiple detectors depending on the

sample or analytes characteristics.

Figure 1 High-Performance Liquid Chromatography [HPLC] System

The column

Figure 2 provides a clearer illustration on how the analytes of a sample are separated in a column. The

sample used in this example is a mixture of blue, yellow and red dyes which now appears as a dark

substance. The first image is a snapshot of the column at time zero, when the sample is injected into the

column and it appears at that point as one single dark band. The arrows indicate the direction of flow of

the mobile phase.

Figure 2 [8] How a Chromatographic Column Works

10

The second image of the column shows the situation ten minutes after the sample was injected. During

this time the mobile phase continued to flow through the column over the stationary phase while

moving the analytes in the sample further along the flow direction. This has caused the individual dyes

to separate into three different band moving at different speed. The yellow band moved the fastest and

is at the point of exiting the column. This is because the yellow analyte is more attracted to the mobile

phase and so it moves faster compared to red and blue dye. The blue analyte on the other hand is more

attracted to the stationary phase and so has a slower speed and it is the most retained analyte of the

sample. The red band is moderately attracted to the mobile phase and so it moves at a moderate speed.

This difference in speed of analytes is what enables them to be chromatographically separated.

Figure 3 [8] How Peaks Are Created

The Detector

The exit point of a column is connected to a detector. Figure 3 shows how different analytes leave the

column and enter the detector. The detector has a flow cell that detects every analyte that enters into it

and then sends an associating electrical signal to a computer data station about the analyte it detected.

The Chromatogram

The chromatogram is a visual representation of the result of the separation. The computer data station

plots the chromatogram based on the electrical signals it receives from the flow cell of the detector (see

Figure 4). The computer data station starts plotting the chromatogram from time zero, when the

sample is first injected [8]. That is why it starts off as a straight line, because the detector has not

detected anything other than the pure mobile phase (called the baseline). As an analyte enters the

detector, it sends a stronger signal to the computer data station. The stronger signal causes the plot to

create an upward curve to the proportion of the concentration of the analyte, it goes high and as the

ǎƛƎƴŀƭ ǊŜŘǳŎŜǎ ǘƘŜƴ ƛǘ ǊŜŘǳŎŜǎ ǘƛƭƭ ƛǘ ǊŜǘǳǊƴǎ ǘƻ ŀ ǎǘǊŀƛƎƘǘ ƭƛƴŜΦ ¢ƘŜǎŜ άƳƻǳƴǘŀƛƴǎέ ƛƴ ǘƘŜ ŎƘǊƻƳŀǘƻƎǊŀƳ

are called peaks. Peaks are registered for every analyte that the detector encounters.

11

Figure 4 Chromatogram

2.2 Analytical Method Validation
The objective of analytical method validation is to determine whether an analytical method used for an

analysis fits its intended purpose [1]. Analytical method validation is a vital aspect of a good analytical

practice and sometimes it is obligatory by law. The results from validation are used to ascertain the

reliability, quality, and consistency of methods. The validation of analytical methods must be done

before they are introduced into routine use. Also, revalidation of an analytical method needs to be

carried out whenever the state for which the analytical method was validated changes.

Substantial attention is given to validation from regulatory bodies and industrial committees because of

its importance in the field of analytical chemistry. This has resulted in various international bodies

(organization and conferences) creating guidelines about analytical method validation. Some of the

most important bodies and validation guidelines are:

o Eurachem (European network of analytical chemistry) analytical method validation.
o ICH (International Conference on Harmonization) validation of analytical procedures.
o EMEA (European Medicines Agency) bioanalytical method validation

2.2.1 Validation Parameters
All guidelines specify a set of parameters that must be assessed to determine whether an analytical

method is valid or not. Each parameter evaluates a different aspect of a method. Below are some of the

most common parameters currently being used in validation.

Linearity

The linearity of an analytical method is demonstrated by its ability to derive results from the analysis

that are directly proportional to the level of concentration of analytes in a sample within a specified

range. Linearity is sometimes evaluated visually by examining a graph of signals plotted as a function of

analyte concentration. This graph is called the calibration graph. It shows the concentration level of an

analyte and can be used to predict the concentration level in an unknown sample. Linearity is evaluated

by inspecting the calibration graph that contains signal heights (peak areas) as a function of the

concentration level of the analyte.

12

Limit of detection

The limit of detection of an analytical method is the minimum amount of an analytes in a sample that

can be detected but cannot be exactly quantitated as a precise value. It is an acceptable level to say that

an analyte is present in a sample, but it does not say how much of it is present.

Limit of quantitation

The limit of quantitation of an analytical method is the minimum amount of analyte in sample that can

be quantitatively determined with appropriate accuracy and precision.

Precision

The precision of an analytical method is measured by how close the individual results of analysis are to

each other or how well they agree when the method is applied several times to samples of the same

type. The acceptability of precision depends on the type of analysis being done. The objective of

validating an analytical method with respect precision is to make sure that the analytical method will

output homogeneous results. For example, a sample is taken and analysed five times and then the

individual results are compared to assess how close they are to each other.

Trueness

The trueness of an analytical method checks how close the results are to the true value (concentration).
If the results are close to the true value, the average is on the true value when plotted, then the
analytical method is precise with high trueness. Otherwise, if the results are only close to each other but
not to the true value then the precision is good, but the trueness is low.

Accuracy

The combination of precision and trueness forms the accuracy. An analytical method is accurate when it

is true and precise. It is measured by how close the results generated from an analysis are to the true or

acceptable value and how close the individual results of analysis are to each other. The guideline by ICH

suggests that accuracy should be determined using a minimum of nine analyses. Every guideline has

established a criterion ς the maximum deviation of results from true value for it to be considered

accurate. The trueness and precision of an analytical method is sometimes regulated by laws for

example, the quality of drinking water.

Selectivity/Specificity

The specificity of an analytical method is measured when it is possible to undoubtedly establish that a

signal is only due to a specific analyte, in the presence of other analytes. This test of identification must

be able to map each peak with its corresponding analyte.

Range

The range of an analytical method is the interval between the highest and lowest concentration level of

analytes in a sample, where the method is considered applicable.

Ruggedness/Robustness

The ruggedness or robustness of an analytical method is measured by how much (small but intentional)

variations of the experimental conditions (that are likely to occur during the routine usage in the process

of performing an experiment) affect the result. If the method is unaffected by these variations, then it is

robust.

13

2.2.2 Validation Process
The validation of analytical method begins after it has been developed. Then one or multiple guidelines

will be chosen by an analytical chemist(s). The selected guideline(s) will determine the parameters and

experiments that should be used to validate the method. The next task for the analytical chemist(s) is to

create a well-documented experimental plan. This experimental plan is created using the information in

the analytical method and in the selected guideline(s). The experimental plan is taken into the

laboratory where the necessary experiments will be conducted in accordance to the plan.

After the experiments have been successfully performed, the analytical chemist(s) will have the results.

These results are often in the form of tabular datasets, with each column in the dataset represents some

aspect of the experiment, and the rows contain the values that were recorded. Each test in an

experiment produces its own result dataset. The volume of the experimental dataset produced from

running experiments greatly depend on the experiment themselves. The product owners of ValChrom,

who are themselves expert analytical chemist, states that each assessment method produces its own

result dataset containing the results for each analyte in the analytical method. Figure 5 is an example of

ŀƴ ŜȄǇŜǊƛƳŜƴǘŀƭ ŘŀǘŀǎŜǘ ŦƻǊ ŀƴ ŀǎǎŜǎǎƳŜƴǘ ƳŜǘƘƻŘ ŎŀƭƭŜŘ ά.ŀǎŜŘ ƻƴ ŎŀƭƛōǊŀǘƛƻƴ ƎǊŀǇƘ μ {ƭƻǇŜ ŀƴŘ

standard deviation of y-ƛƴǘŜǊŎŜǇǘέ ŎƻƴǘŀƛƴƛƴƎ ǊŜǎǳƭǘǎ ŦƻǊ ǘǿƻ όнύ ŀƴŀƭȅǘŜǎ ά!/9έ ŀƴŘ ά¢I/έΦ ¢ƘŜ

attributes in an experimental dataset vary depending on assessment methods.

Figure 5 Experimental Dataset

The datasets need to be mathematically analysed and validated against the validation criteria which are

specified for assessment methods in the guideline(s). This involves the analytical chemist(s) performing

statistical and mathematical evaluations on the datasets. The results of the evaluations will tell if the

analytical method is valid or not based on the criteria specified by the guideline(s). Once the datasets

have been analysed, the analytical chemist(s) creates a detailed report of the entire process so far. The

report is a cumulative document from all the stages starting from the method description, guideline

14

selection, experimental plan, experimental dataset generation and validation analysis. All these phases

are explained in a report.

3. Background

3.1 Problem Statement
The frequency, how often a laboratory has to validate an analytical method depends on the field and

type of laboratory. For example, laboratories, which often develop analytical methods for new analytes

and operate in regulated field (like pharmaceutical industry), perform different validations virtually

daily. In addition to validating newly developed methods, every method needs revalidation if substantial

changes are introduced: new sample type, new analyte or different instrument is used. Also, methods

have to be revalidated at least once in five years.

Due to frequency and high significance of method validation, there is a need for the validation process

to be fast and accurate. However, most analytical chemistry laboratories do not have the luxury of

ŘŜǎŎǊƛōƛƴƎ ǘƘŜƛǊ ǇǊƻŎŜǎǎ ǳǎƛƴƎ ǘƘŜ ǿƻǊŘǎ άŦŀǎǘ ŀƴŘ ŀŎŎǳǊŀǘŜέΦ CǊƻƳ ƛƴǘŜǊǾƛŜǿǎ ǿƛǘƘ ǘƘŜ ǇǊƻŘǳŎǘ ƻǿƴŜǊǎ

of ValChrom, who are also domain experts, it could take a laboratory up to two weeks to conduct an

analytical method validation process from start to finish if they have never done it before and up to one

week if they have done it before and have a system or process to follow. A significant portion of this

time is spent on mundane but essential task in the validation process e.g. information transfer,

calculations, result checking, report writing etc. This is an inefficient use of personnel time and

resources.

Another problem with this process of method validation is that there is a lot of tasks requiring human

interaction. This leaves a lot of room for errors and mistakes. An analytical chemist is required to utilize

several tools to complete a method validation, e.g. Word Processing for reporting, Statistical tools for

calculations and Excel to view datasets. All these tools add extra complexity to an already complex

process. There is a need for a solution that can automate and simplify the process for chemists to enable

them focus on the actual analytical chemistry tasks.

3.2 Existing Solutions
Several software solutions have been created to automate the process of analytical method validation.

Unlike other fields, analytical chemistry and method validation do not have a variety of software

solutions to automate its processes. Below are some existing solutions for analytical method validation:

Analyse-it is a software solution that helps to automate aspects of method validation [4]. It is developed

by a company called Analyse-it as an extension of Microsoft Excel and all input data and results are

stored in Excel workbooks. It is compliant to a few validation guidelines. The software analyses an

experimental dataset using guideline-compliant statistical computations and then generate a result

about the validation conducted [4].

Fusion is an analytical method validation (hosted) software developed by a company called S-Matrix to

work with chromatography data station software [5]. Fusion is compliant to two validation guidelines,

ICH and Food and Drug Administration (FDA). It provides experiments needed to support method

validation and automated calculations, graphing and reporting [5].

15

3.3 ValChrom
ValChrom is a SaaS platform that fully automates the process of analytical method validation and

eliminates problem faced in traditional analytical method validation. Analytical chemists no longer need

to spend hours reading long documents of guidelines to create experimental plans, users simply need to

enter the information of their method and select the guideline they want to use - ValChrom will

automatically generate an experimental plan. ValChrom currently supports three distinct guidelines and

offers a combination of all three as a fourth option; Eurachem, ICH (International Conference on

Harmonization) and EMA (European Medicines Agency).

With ValChrom, analytical chemists no longer need to perform the statistical computations on their

experimental datasets by themselves. ValChrom takes the datasets and performs the necessary

computations required by the selected guideline(s) and presents the results in a clear and detailed

report with all the input data and graphs generated. With ValChrom, all the analytical chemist needs to

do is make high-level decisions while the software takes care of the tedious but necessary tasks.

ValChrom can be accessed from anywhere with a stable internet connection and these are the benefits

that have been achieved by implementing ValChrom:

o users will always have the latest version of the software.

o Paperless analytical method validation processes to eliminate unnecessary costs and data

inconsistencies and errors.

o Real-time analytical method validation results.

There are potential disadvantages associated with developing ValChrom as a SaaS solution. There is the

issue of a customer's data not being stored on their premises. This could raise concerns about data

confidentiality and some customers (e.g. large pharmaceutical companies) might be resistant to the idea

that their highly confidential business data will be stored outside their premises and that it can be

accessed by a SaaS provider. Another issue is that the software cannot be accessed if the SaaS service is

temporarily unavailable. This could result in disruptions to the customer's business. There are also

security risks involved in ǘǊŀƴǎŦŜǊǊƛƴƎ Řŀǘŀ ōŜǘǿŜŜƴ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ǇǊŜƳƛǎŜ ŀƴŘ ǘƘŜ {ŀŀ{ ǇǊƻǾƛŘŜǊ that

could raise concern from potential clients.

Considering the advantages and disadvantages of the SaaS approach, the major reason for the product

owners to choose SaaS is the fact that ValChrom is still at an early stage of development. It is very

important at this stage for the solution to be tested and validated by potential users and clients. Using

the SaaS approach provides the ability to ship out new versions easily and quickly to get valuable

feedback from a wide range of users.

Target User characteristics
ValChrom is aimed at one type of user at this stage of development and this is described below:

o A chemist who is familiar with the field of Chromatographic Method Validation.

o Has a computer.

o Possess basic knowledge of computers and English language.

o Accustomed to using the Internet.

o Have access to high-speed internet connection.

o Have an updated version of one of the modern browsers on their computer.

o Knowledge of Microsoft Excel or similar programs, to work with .csv files.

16

Operating Environment
ValChrom can be accessed through any modern web browser on a computer that is connected to a high-

speed internet connection. It does not require any installation.

Browser Support
ValChrom works on recent versions of Firefox, Chrome, Edge, Opera and Safari, with cookies and

JavaScript enabled.

4. Scope and Approach

4.1 Scope of Thesis
This thesis focuses on the development of the Frontend application of ValChrom. The application

communicates with the Back-end API of ValChrom which was developed alongside the Frontend

application. The scope of work includes:

o Requirements elicitation and specification

o Design and Validation

o Implementation

o Testing

Each of these stages will be further explained in this thesis.

4.2 Approach

Team Structure
The team was comprised of two product owners, one data scientist and two developers: frontend and

backend. The two product owners (also the thesis supervisors) are Associate professor Koit Herodes and

Asko Laaniste, PhD. They possess a wealth of knowledge about the domain of Analytical method

validation. They developed the initiative of ValChrom as a product. The product owners defined the

requirements for the system. During the development process, they tested and validated the designs

and deliverables against their requirements.

The mathematical modules of the application were developed by Asko Laaniste and Karl Kruuse. These

modules performed analyses on the experimental datasets. The backend of ValChrom was developed by

Hippolyte Fayol, a Software Engineering student and the author of this thesis developed the frontend

application.

Development Process
The entire project was designed using the agile software development process, which is an iterative

development process. The requirements evolved and pivoted throughout the project. Therefore, it was

important to keep an active collaboration between all the stakeholders of the project. The scrum

methodology was used for the development which follows the principle that a project should progress

through a series of fixed-length iterations called sprints.

Estimation and Planning
The project was structured and divided into sprints of one week. Each sprint started by defining a goal

and then all the features of the product that needed to be implemented during that sprint to achieve

the goal. These features were then discussed and refined before adding them to a collection called the

17

sprint backlog. For each sprint, a backlog was defined which described the amount of work that should

be completed during that sprint. At the end of the sprint, the team produced a potentially shippable

product increment which was tested and validated by the product owners before it got accepted as

completed. The backlog was then updated according to the amount of work completed.

5. Requirements Elicitation and Specification
The goal of this section is to present the requirement specification. This section provides a view of

ValChrom from a user centric perspective, the goals and requirements. This software requirements

specification will show the different use cases of ValChrom and the steps necessary to accomplish

certain tasks.

5.1 Requirements Elicitation

Discussion Sessions
The first method used to elicit requirements was discussion sessions. At the first meeting, the product

owners introduced ValChrom, the goals and expectations. They introduced the existing software, which

was not in use as it had not met all their requirements. Discussion sessions were held to present the

domain and the requirements of the software. The discussions were done with the aid of screen mock-

ups to visualize the user interfaces and user experience that was expected.

Prototyping
The second method used for gathering requirements was prototyping. After the discussion sessions, the

author of this thesis would follow up and create user interface prototypes of the features that had been

discussed. These prototypes will then be tested and validated by the product owners. If they met their

requirements then they would be implemented, if not the prototypes will be revised to implement

whatever changes where specified. This was an essential method to make sure time is not spent

implementing features that were not what the product owners wanted. The discussion sessions and

prototype presentations happened weekly during the sprint meetings.

5.2 Functional Requirements

ValChrom Process Description
Here is a description of the process as described by the product owners during the requirements

elicitation phase. The software is accessible online through a modern browser on a computer that is

connected to the internet. On entering ValChrom, a visitor or user will see the home page. The home

page will contain textual and visual contents that describe ValChrom to them. A visitor will be able to

navigate to the About page and Contact page and will have the option to create an account on

ValChrom. Existing users simply login to their account. After a visitor has created an account, they

become a system user. A user will be able to access the six (6) modules of the system namely: Analytical

Methods, Validation Plan Templates, Experimental Plans, Experimental Datasets, Report Templates and

Reports.

18

Figure 6 Flow of ValChrom

19

Figure 6 illustrates the process flow that a user goes through to perform an analytical method validation.

They start from either the άAnalytical Methodsέ ƻǊ ǘƘŜ ά±ŀƭƛŘŀǘƛƻƴ tƭŀƴ ¢ŜƳǇƭŀǘŜǎέ module of the

system. The user will create an Analytical Method by providing all the required information and saving

it. In the Analytical Methods section of the system a user will be able to see a list of all the methods they

have created. This list will be grouped into two collections namely, Active and Archived. The analytical

methods that are actively in use will appear in the Active list and the methods that were archived by the

user will appear in the Archived list. In the active list the user can search, view, modify, duplicate and

archive analytical methods. In the archived list, a user can only search and duplicate an analytical

method. Once all the information has been added to the analytical method, the user can change the

status from IN PROGRESS to COMPLETED. Status helps inform users of the progress of each method in

the active list. Completed analytical methods can be accessed from other modules of the system.

The next stage is in the άValidation Plan Templatesέ section of the system. The user will create a

validation plan template using one of the four guidelines supported by the application. The user will

create a validation plan template by selecting all the options relevant to their validation and set the

expected values of validity and save it. Like the ά!nalytical Methodsέ section, the user will also be able

to view all their validation plan templates in two lists: Active list and Archived list. Similarly, in the active

list the user can search, view, modify, duplicate and archive validation plan templates. In the archived

list, a user can only search and duplicate validation plan templates. When all the information has been

provided for a template, the user can mark it as complete, which will change the status from IN

PROGRESS to COMPLETED. This status will allow the validation plan template to be accessed from other

sections of the system.

When a user has created an analytical method and a validation plan template, the next step in the

process is the experimental plan. The user will navigate to the άExperimental Planǎέ module of the

system and create a new experimental plan using the completed analytical method and validation plan

template that was created previously. After saving the experimental plan the system generates an

experimental plan document from the analytical method and validation plan template. This document

will be used by the user in the laboratory to perform the specified experiments to test the validity of the

analytical method. The experimental Plan module also has an Active list and Archived list with the same

functionalities to search, view, modify, duplicate and archive. Once all the information is satisfactory to

the user, the status can be changed from IN PROGRESS to COMPLETED.

When the results from the experiments are ready, the user will proceed to the άExperimental Datasetsέ

module of the application. Experimental plans and Experimental datasets have a one-to-one

relationship. This is because one laboratory experiment cannot produce more than one result. At this

stage of the process the user will create an experimental dataset using the completed experimental plan

created earlier. In the experimental dataset entity, there are subsections for the various experiments

performed. The user will be able to upload the laboratory result datasets to their relevant subsection.

Once the user has uploaded all the result data from the experiment, the user will be able to see an

overview or a detailed view of the validation results. The ά9xperimental Datasetέ module also has an

Active list and Archived list. In the active list the user can search, view and archive experimental

datasets. In the archived list, a user can only search an experimental dataset. Once all the information

has been added to the experimental dataset entity, the user can change the status from IN PROGRESS to

COMPLETED. This status change will allow the experimental dataset to accessible from other modules of

the system.

20

At this stage of the process, the user has completed the analytical method validation. The next step is to

create a report of the process so far. The user will navigate to the άReportsέ module of the system and

create a new report using the completed experimental dataset entity. The report is structured according

to a report template which can be viewed in the άReport Templatesέ module of the application. The user

will provide all the necessary information for the report and save it. After creating a report, a user will

be able to see a list of all the reports they have created. In the active list the user can search, view,

download, duplicate and archive reports. In the archived list, a user can only search and duplicate a

report. Once all the information has been added to the report, the user can change the status from IN

PROGRESS to COMPLETED. This status change helps inform the user of the progress of each report in the

active list.

Use cases
This section further illustrates the functional requirements of the frontend application of ValChrom as

use cases. As described above, there are two actors that interact with the application, visitors and users.

Below their functional requirements are illustrated in individual diagrams in Figure 7 and Figure 8

respectively. The six modules in the application have a similar structure of presenting their entities as

data collections. These data collections have similar requirements that are reflected in the use case

diagram in Figure 8. Appendix B contains comprehensive outline of the user cases implemented in the

frontend application of ValChrom.

Figure 7 Visitor - Use Case

21

Figure 8 User Use Cases

22

User Stories
User stories are agile project management tools that help to define the requirements of a system and

reveal the benefits or value of that requirement. These user stories present a high-level and simple

description of the front-ŜƴŘ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ǊŜǉǳƛǊŜƳŜƴǘs from the perspective of the end-users of the

system. They were used during development to describe the functional requirements. Since the

requirements where being set by non-technical product owners it was relevant to use a tool that would

enable them communicate domain needs into implementable feature description. Figure 9 gives a

glimpse of how the user stories were structures and Appendix A contains a comprehensive list of the

user stories used to implement the frontend application of ValChrom.

Figure 9 Sample User Stories

5.3 Non-functional Requirements
This section contains the non-functional requirements of the Frontend application of ValChrom. These

are the non-behavioural requirements or quality attributes of the system derived from the requirements

elicitation with the product owners. These quality attributes have been categories according to those

defined in ISO/IEC 9126 [9]. They were used to establish the standards used to judge the operation of

the system.

23

FUNCTIONALITY

Security

o In order to control access to the functionalities of the application, users account validation must

be strictly enforced. A user must be authenticated from the Backend API prior to gaining access

to any UI features (except the home page, about, contact, Signup and Login).

o Users must be logged out of their session after a period of inactivity in the system and their

authentication token must be deleted from memory.

o The system must not save any cache or cookies ŎƻƴǘŀƛƴƛƴƎ ŀ ǳǎŜǊΩǎ ƭƻƎƛƴ ŎǊŜŘŜƴǘƛŀƭ όŜƳŀƛƭ ŀƴŘ

password) ƻƴ ǘƘŜ ǳǎŜǊΩǎ ŎƻƳǇǳter. The reason for this is to prevent the userΩs account from

being ŎƻƳǇǊƻƳƛǎŜŘ ƛŦ ǘƘŜ ǳǎŜǊΩǎ ŎƻƳǇǳǘŜǊ ƻǊ ƭƻŎŀƭ ǎǘƻǊŀƎŜ ƎŜǘǎ ƘŀŎƪŜŘΦ

USABILITY

Learnability

o 80% of novice users should be able to learn and operate the major features with assistance of a

tutorial.

o The major feature of the system must be accessible from the navigation bar of the system.

o The UI elements must be intuitive to the system users.

Attractiveness

o All UI elements must have a consistent format, placement and style.

o Conceptual integrity in the UI of the system.

o Professor Koit Herodes must be satisfied with the user interface design of the system.

MAINTAINABILITY
o A software developer that is new to the project and has up to 6 months experience in coding,

should be able to fix issues in the code and add new features in less than 2 person-days.

o Frontend architecture design must be done with modularity in mind so that maintainability can

be done efficiently.

24

6. System Design
This section of the thesis specifies the architecture and software design decisions used for the

implementation of the frontend application of ValChrom system. The different diagrams in this section

are used to show distinct properties of the application to properly communicate all the essential

requirements of the system.

6.1 Context-Level Data-Flow Diagram
Data flow diagram (DFD) is a graphical representation of the flow of information through the processes

in a system. The goal of using DFD is to make system requirements clear and identify major data

transformations that will be implemented in the system [10]. The Context diagram helps to establish the

boundaries and the scope of the system. Figure 10 shows the context of the application (referred to as

ValChrom Client). ValChrom client interacts with the users by collecting and presenting information. The

client is a άThick Clientέ, that is it performs processing and structuring of the data retrieved from the

backend database before it is presented users.

Figure 10 Context Diagram

o Figure 10 presents ValChrom Client and shows its interaction with external entities, namely the user and
the backend API. The user inputs data and the ValChrom Client validates it and the sends it to be stored
in the database through the API. The user saves information for their analytical method, validation plan
template, experimental plan and experimental dataset. Once all that information is saved, the user will
then be able to view the validation result for the analytical method. The API performs mathematical
analysis on the experimental dataset based on the Eurachem (European network of analytical
chemistry) analytical method validation.

o ICH (International Conference on Harmonization) validation of analytical procedures.
o EMEA (European Medicines Agency) bioanalytical method validation

Validation Parameters selected by the user in the validation plan template. The computation results

derived from performing the mathematical analyses are sent to the Client when the user makes a

25

request to view the validation results. The computation results received from the API do not say

whether the analytical method is valid or not. The validity of the analytical method (based on each

validation parameter) is computed in the Client application using a service.

Due to the API and database design of the backend, the frontend needs to perform this real-time

processing of the computation result to deduce the validity of an analytical method. The Client

structures the data and computes the validity results before presenting it to the user. The user can

simply view in their browser or decide to print out a PDF report. When a report is generated by the

Client, it also sends the PDF version to be stored in the database through the API. The reason for storing

the PDF versions of the report is to have an audit trail. It is a way of taking a snapshot of the process so

that it could be traced when and with what data a report was generated. Also, the product owners

would like to add a signature functionality to the system in later versions, so when a report is generated

and signed it will be saved as a PDF file.

6.2 Sequence Diagram
Sequence diagram is a visual representation of the interactions in a system. It shows how operations

occur, what messages are sent and received and when they happen in the lifeline. Everything is ordered

in a sequential manner according to the time of occurrence.

The sequence diagram below will further illustrate the process of retrieving a Validation result of an

analytical method. Prior to this the user has saved the information for their analytical method, validation

plan template, experimental plan and experimental dataset.

Figure 11 Sequence Diagram

26

Figure 11 shows the user making a request through the application UI to get the validation request. The

UI forwards this request to a service. This service is a script that gathers all the necessary data and

performs the analysis to transform the data received into the information the user requires. This service

will be discussed in detail in the Validation Result Computation subsection of the Implementation

section. Finally, the resulting information is sent back to the UI and it is display in a specified structure

for the user.

6.3 Domain Model Diagram
A domain model is a visual representation of the real-world entities of the domain being modelled [11].

In the case of ValChrom, the domain modelling is used to translate the requirements of the domain into

a conceptual solution. Figure 12 shows the conceptual model of ValChrom that incorporates the

conceptual classes, associations between conceptual classes, and the multiplicity of their associations.

Figure 12 Domain Model

Figure 12 shows that an analytical method is composed of one or many analytes. A validation plan

template is derived from one guideline. A guideline is composed of multiple validation parameters and

each validation parameter is composed of multiple assessment methods. Assessment methods are the

ways a validation parameter can be assessed. Each assessment method is composed of one or more

criteria that needs to be satisfied to prove that a method is valid. An experimental plan is made from

combining an analytical method and a validation plan template. This experimental plan can only

produce (link to) one experimental dataset entity. An experimental dataset object can be used to

produce multiple reports and a report is structured according to one report template.

27

6.4 State Chart Diagram
A state chart (or sometimes referred to as automata, state diagram or state machine) is a graphical

representation of the different states of an entity. The five main entities in ValChrom, namely: Analytical

Methods, Validation Plan Templates, Experimental Plans, Experimental Datasets and Reports, respond

to various event during their lifecycle and change from one state to another. Figure 13 is used to model

the dynamic nature of these entities.

Figure 13 State Chart

When an eƴǘƛǘȅ ƛǎ ŎǊŜŀǘŜŘ ƛǘ ŜƴǘŜǊǎ ǘƘŜ ǎǘŀǘŜ ά!ŎǘƛǾŜέΦ Lƴ ǘƘŜ ŀŎǘƛǾŜ ǎǘŀǘŜΣ ŀƴ Ŝƴǘƛǘȅ Ŏŀƴ ōŜ ǾƛŜǿŜŘΣ

modified, completed and archived. In the άLn Progressέ state an entity can be marked as complete so

that it can be accessed from other modules of the system. When an active entity is used (connected) in

another module, it becomes άLockedέ and when it is no longer used (disconnected) it becomes

ά¦nlockedέ, and an unlocked entity can be archived. When an entity is archived, it can no longer change

to another state and so its lifecycle ends.

28

7. Implementation
This section of the thesis explains the process involved in implementing the frontend application of

ValChrom. It discusses the technology stack used to develop the application along with the reasons for

choosing them. It then presents the architecture of the application and the implementation of the major

features of the application.

7.1 Technology Stack
The development of the application was done using Vue.js Framework using JavaScript, HTML, and CSS.

Bulma CSS framework and Buefy UI component library were used to create the User Interface (UI)

designs. Visual Studio Code was used as the code editor and Bitbucket as the version control repository

for the application code.

Frontend Framework
The application is a SPA, that is a web application that runs inside a browser and interacts with a user by

dynamically modifying elements on the current page rather than loading a new page from the server. A

SPA performs all the page rendering in the frontend and only requests the server when new data is

required or needs to be stored or refreshed. Angular, React and Vue are the most popular frontend

frameworks (according the number of stars on their GitHub repositories) and they are used for building

user interfaces and SPAs. Each framework has its advantages and disadvantages and they were

considered when deciding which framework to use for ValChrom client. The factors considered for each

framework are discussed below:

Learning Curve:

The product owners had a strict deadline to present the software at the Eurachem conference in May

2019 and so they needed the development to progress at a fast pace. They required a framework that

will have a low learning curve for the developer and thus translate to a quicker implementation of

features. The author of this thesis had more experience working with Vue.js than Angular and React.

Angular and React are considered to have a higher learning curve than Vue [16] so Vue had an

advantage.

Popularity:

The product owners also required the technology stack to be popular enough in Estonia so that they

could easily find and recruit developers to work on the application. Popularity was also a priority for the

author of this thesis because popular frameworks have communities were developers can ask for help

when they are stuck. They also have design pattern or solution for commonly faced problems which can

help save time during development. React is the most popular framework according to a survey

conducted by State of JS [17] followed by Vue and then Angular.

Core Features:

Angular is intended for large applications and it comes with modules that handle task like templating,
state management, form validation and processing, HTTP communication and routing etc. out of the box
which makes it a relatively heavyweight framework. React and Vue on the other hand are considered
lightweight frameworks. At their core, they only represent the view layer of an application. Therefore,
features like state management, form validation and processing, HTTP communication and routing are
left to be customized. Developers can choose what features they would like to add to the framework
and customize is as required by their project. React and Vue have support from their ecosystem of
libraries that provide solutions for most common problems. The lightweight nature of React and Vue

29

was an advantage when considering the framework to use for ValChrom bearing in mind the time
constraint set for the project, there was no need to add features not needed at that time.

Final Decision:

After comparing Angular, React and Vue against the constraints and requirements of ValChrom, Vue was
chosen as the framework to implement the frontend application. Vue has a strong advantage with
learning curve and it is popular enough to easily find new developers to continue the project. Vue also
supported the features required to implement ValChrom and it offered the flexibility to customize what
features we use (to maintain a lightweight project).

Vue Libraries
This subsection will introduce the libraries that were added to the core Vue.js to customise the

framework to suit the requirements need.

Vue Router:

The Vue Router library is the official router for Vue.js applications. A router is a part of a SPA that
synchronizes the address in the browser address bar with the currently displayed view. The router is
what makes the URL change when navigation is triggered and helps to display the correct view matching
the URL.

Vuex:

Vuex is the official state management pattern and library for Vue.js. Managing state in a SPA that has

multiple components can be challenging. Vuex library is used to manage the state in the application.

Axios:

It is a promise-based HTTP client for JavaScript that provides a frontend application with a single
interface for handling asynchronous HTTP requests to RESTful APIs.

Buefy:

It is a lightweight library based on Bulma framework that offers responsive UI components for Vue.js

applications. Bulma is a CSS framework based on Flexbox that offers the elements to create web

interfaces. It offers pre-built UI components that comply with web standards and best practices.

Integrated Development Environment (IDE)
Several factors were considered when selecting the tool to use for the development of the application,

they are discussed below. Three popular JavaScript IDE/source code editors were compared before

selecting one, they are: Visual Studio Code (VSCode), Atom and Sublime Text. VSCode, Atom and

Sublime Text are ranked high in a survey conducted by the State of JS about the most used JavaScript

tools [18].

Similarities:

All three tools are lightweight when compared to other IDEs like Eclipse and IntelliJ [19]. They have the

advantage of being cross platform and supporting syntax auto-completion. VSCode provides syntax

auto-complete by IntelliSense based on imported modules, function definitions, and variable types.

Atom provides autocomplete through the autocomplete-plus package.

30

Cost:

VSCode has the advantage of being the only one among the three that is free of charge to use. Atom and

Sublime Text come with some charges. It was important not to incur any unnecessary cost in

development in areas where there are free solutions available.

Features:

When comparing the features that each tool offers out of the box, VSCode offers more features than

Atom and Sublime text. VSCode supports building and debugging of applications out of the box while

Atom provides installable packages and Sublime text does not support building and debugging.

Atom and VSCode both have Git integration, while Sublime offers git integration through plugins.

Final Choice:

Overall VSCode offers more functionality than Atom and Sublime Text but it is worth mentioning that

VSCode features are relatively limited in comparison to other IDEs like Eclipse and IntelliJ, but these IDEs

are not considered for this project because they are heavyweight and have more functionalities than

was required for this project. VSCode was chosen as the IDE for implementing the frontend application

of ValChrom because it was the closest fit based on the factors considered.

Version Control
Three of the most used repository management services were considered and compared for this project,

they are GitHub, Bitbucket and GitLab. Here are the factors that determined which service to use:

Cost:

All three services offer free unlimited public git repositories, but we needed a private repository for

ValChrom to keep the source code secured. GitHub charges for private repositories while Bitbucket

offers free private Git repositories and each repository can have up to 5 users. The most cost efficient is

GitLab which lets an unlimited number of users on an unlimited number of private Git projects for free.

Usability:

It was important for the product owners to be able to follow up on the implementation and see the daily

progress made in development. Therefore, it became important to choose a repository management

services that the product owners felt comfortable working in. Bitbucket had the advantage in this area

as the product owners found it more usable than GitLab and GitHub.

Final Choice:

Overall Bitbucket was a better fit for this project than the others and it was used as the repository for

the entire ValChrom project.

7.2 Architecture
As mentioned earlier, the Vue core library is focused on the view layer of an application which allows it

to be a lightweight framework, but this implies that it does not enforce any form of application

architecture. Application architecture can vary differently across several projects depending on their

requirements and constraints.

The architecture used for the development of this application is the Component-based architecture. It is

a hybrid between the layered architecture and the feature-based architecture.

31

Examples of the layered architecture are the Model-View-Controller (MVC) and Modelςviewςviewmodel

(MVVM). With this architecture, the application is separated into presentation layer, processing layer

and data layer. The approach satisfies the concept of separation of concerns and decoupling but in a SPA

this architecture can become complex and difficult to maintain as the application grows, this is because

the SPA itself is not separated in layers but in features and components that are reactive to user

interactions.

In a feature-based architecture, the application is separated by features. This helps to mirror the domain

because the code is grouped by the domain entities and their functionalities. A possible area of

complexity forms when we have services that need to communicate with each other, or we have

elements that are used across several features that could be reused.

The Component-based architecture takes the benefits of the layered architecture and the feature-based

architecture and combines them in a new architectural design. In this architecture, the application is

first separated into modules like the feature-based architecture and the within each feature the code is

separated into the layers of the MVVM. Common features and services that are used in several parts of

the application can be reused.

Figure 14 Validation Result Overview Page

To explain the component-based architecture further, let us examine the web page in Figure 14. To a

user, this page contains horizontal bars, texts and dropdown menus but from an architectural

perspective there are only components (representing features). They are placed together to make up a

UI view. These components are organised in a tree structure which begins with a root node (or main

component). This tree structure is the foundation of component-based architecture. Figure 15 shows

the page in Figure 14 from an architectural perspective. Component-based architecture is a method for

32

separation individual elements of a large user interface (or components) into independent, and self-

sustaining micro-systems.

Figure 15 Architectural Perspective of Validation Result Overview Page

Project Structure
The initial setup of the project was done using the Vue command line interface (CLI). Vue CLI is

developed by the Vue team to provide the ability to quickly scaffold a new project and produce a

structure like the one in Figure 16.

Figure 16 Project Structure

33

Figure 16 shows the directory structure of the project after the initial setup. This is the standard project

structure that is provided by Vue CLI on creating a new project. The purpose of each item in the

directory is explained below:

o The node_modules directory is where all the libraries needed to build a Vue application are

stored.

o The public directory holds any static assets that do not need to run through Webpack (JavaScript

module bundler) when the project is being built e.g. the index.html file.

o The assets directory holds files like images, fonts and documents that will be imported into a

component.

o The components directory holds all the components of the application that will be used as

ōǳƛƭŘƛƴƎ ōƭƻŎƪǎ ƛƴ ǘƘŜ ǾƛŜǿǎ ƻŦ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΦ ¢ƘŜȅ ŀǊŜ ǘƘŜ ά5ǳƳōέ ŎƻƳǇƻƴŜƴǘǎΣ ŀƭǎƻ ǊŜŦŜǊǊŜŘ

to as presentational. They handle the look and feel and can be reused across different views.

They are grouped by the domain entity e.g. method, template, plan and dataset etc.

o The views directory holds the components that are routed. They represent pages that the users

will seeΦ ¢ƘŜȅ ŀǊŜ ǘƘŜ ά{ƳŀǊǘέ ŎƻƳǇƻƴŜƴǘǎ ŀƭǎƻ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ ǘƘŜ ŎƻƴǘŀƛƴŜǊǎΦ ¢ƘŜȅ ƘŀƴŘƭŜ Ƙƻǿ

things work and state changes. They are grouped by the domain entity e.g. method, template,

plan and dataset etc.

o The App.vue file is the root component where all other components are nested into.

o The main.js file is the entry point of the application that renders the App.vue component and

mounts it to the Document Object Model (DOM).

o The router.js file contains the routes used in the application by Vue Router.

o The store.js file holds the Vuex elements and properties of the application.

o The .gitignore file specifies to git what files and directories to ignore.

o The babel.config.js and package.json files specify to node package manager (npm) how to

handle dependences and identify the project.

7.3 Application

Entry Point
The main.js file is the entry point of a Vue project (see Figure 17). In this file, an instance of Vue is

created and all the libraries needed in the project are imported. The main.js file is responsible for

rendering the root component (App.vue) into the HTML Document Object Model (DOM) in the

index.html file. The App.vue file is the root component where all other components will be nested.

34

Figure 17 main.js file

Component Structure
The components in this project are structured as single file components. This means that for each

component, the structure (HTML), behaviour (JavaScript) and styling (CSS) are encapsulated into one

file. The reason for this approach is to keep related information together for better separation of

concern. This is how the component-based architecture is applied, each component is a feature and

then each component is an encapsulation of the layered architecture. The resulting structure of a single

file component is shown in Figure 18, consisting of three parts, template (HTML), script (JavaScript) and

style (CSS).

Figure 18 Single File Component

Navigation
Now zooming in on one component in the application, the NavBarComponent. This component

represents the feature for navigating the application. It is displayed as the navigation bar at the top of

the application. The component is directly nested in the App.vue component. It displays the hyperlinks

for the different pages and features in the application. The navigation feature works with the Vue

35

Router through the router.js file. The Vue router is configured with the routes for each view (or page) in

the system. Figure 19 ǎƘƻǿ Ƙƻǿ ǊƻǳǘŜǎ ŀǊŜ ŎƻƴŦƛƎǳǊŜŘ ƛƴ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΦ ¢ƘŜ άǇŀǘƘέ ƛǎ ǘƘŜ ¦w[ƻŦ ǘƘŀǘ

ǾƛŜǿ ŀƴŘ ǘƘŜ άŎƻƳǇƻƴŜƴǘέ ƛǎ ǘƘŜ ǾƛŜǿ όƻǊ ŎƻƳǇƻƴŜƴǘύ ǘƘŀǘ ǿƛƭƭ ōŜ ǊŜƴŘŜǊŜŘ ǿƘŜƴ ǘƘŀǘ ¦w[ƛǎ ŀŎŎŜǎǎŜŘΦ

The Vue Router monitors the URL of the browser for change. Once the URL changes, it searches the

router.js file for the path that matches the new URL and then it displays the corresponding view.

Figure 19 Route configuration

Breadcrumbs
The breadcrumb feature works with the navigation feature to provide a dynamic navigation trail for the

user, to help them to be aware of where they are in the system. To implement this feature, an extra

property is added to the route configurations ŎŀƭƭŜŘ άōǊŜŀŘŎǊǳƳōέ όǎŜŜ Figure 19). The content of this

property is an array containing the navigation trail of the user. Whenever a user navigates in the

application, the breadcrumb feature fetches the content of the breadcrumb property and then it

generates and displays the navigation trail to the user. The breadcrumb component is place in the

App.vue file below the NavBarComponent. This pattern of implementation is ideal because the

breadcrumb and routes are all in a central location in the router.js file and if there are any changes in

future, only one file needs to be changed.

Security
Security was achieved in the application by combining the functionalities of the Vue Router, Vuex store

and Axios. Visitors can access the login page, the signup page and the home page, the about page and

the contact page. All other views are restricted to only authenticated users. User authentication is

handled by the Login feature. When a user provides their login credentials, the login feature makes a

HTTP request to the backend API to authenticate the user. If the login operation succeeds, the API sends

back an authentication JSON Web Token (JWT) ŦƻǊ ǘƘŀǘ ǳǎŜǊΩǎ ǎŜǎǎƛƻn [20]. Every subsequent HTTP

request made to the API ŘǳǊƛƴƎ ŀ ǳǎŜǊΩǎ ǎŜǎǎƛƻƴ Ƴǳǎǘ be sent with a JWT token as a means of

36

identification. Therefore, when the login feature receives the JWT token from the API response, it saves

it in the Vuex store. That way it can be retrieved later ƛƴ ǘƘŜ ǳǎŜǊΩǎ ǎŜǎǎƛƻƴ.

The backend has a specified length for each session, therefore if the user wants to use the application

for a prolonged time, the frontend needs to request a token refresh from the backend. This is simply to

ensure that the user continues interaction with the secured resources of the system. Alternatively, if the

user wants to end their session or if the user has been inactive for a long time (10 minutes), the Logout

feature is invoked. The logout feature sends a HTTP request to the backend API to end the userΩǎ ǎŜǎǎƛƻƴ

and then it removes the JWT token that was stored in the Vuex store.

The navigation guards provided by Vue router were used to protect the secured pages from being

accessed by unauthenticated users. In the application router (the router.js file) a navigation guard is

added to all the secure routers that require a user to be authenticated before they can view them. The

guard used is called the άōŜŦƻǊŜ9ƴǘŜǊέ ƎǳŀǊŘ ƻŦ ±ǳŜ ǊƻǳǘŜǊ. It is a property added to a route

configuration and its value is a method which will determine whether to redirect to the desired route or

to cancel it. This method is implemented to interacts with the Vuex store and check if the current user

has an active session before it allows the user to access the requested route.

REST API Calls
The API calls are the interactions between the frontend and the backend applications of ValChrom. The

frontend application uses Axios to send asynchronous HTTP calls (GET, POST, PATCH/PUT and DELETE) to

the API. The API calls are made in the smart components (views). When an API call is made, there is an

implicit promise to return its result. Two things can happen either the result is returned, or an error is

returned. Axios provides a way to handle both cases. In this application the Vuex store is used as a

repository to store the data returned from API calls. If an error is return, the appropriate message is

displayed to the user that requested a resource.

State Management
Vuex provides state management that offers a way to make state changes in the application. The need

for state management became evident as the application grew, each component had a version of state

that it utilised and there needed to be a way to communicate changes in state between components.

One instance of this is the case of the Validation Result view (called Overview) which nests multiple child

components and each of them needs to interact and modify the same states. Using Vuex store provided

the ability to consolidate all the states into a single location that can be accessed by every component.

To utilise Vuex in this application a store.js file was created to hold the implementation of state

management. Inside this file there are four (4) main properties state, getters, mutations and actions (see

Figure 20). The state property serves as the "single source of truth". It is implemented as a single object

that comprises of all the application-level state. Simply put, it is an object that contains variables of the

different state in the application. The getters property is a collection of functions that use the state in

the state property and then returns a value based on the manipulations in the function. The return value

of a getter function is cached based on its dependencies, it only gets re-evaluated when a dependency

has changed its value. One example of a getter function in the application is authenticated, this function

checks to see if there is a JTW token for the user in the store and then it checks if the token is still active.

The return value is of type Boolean, to indicate whether a user is authenticated or not.

37

Figure 20 Anatomy of Vuex Store

The mutations property is the only way states in the store can be modified. An example of its usage is

when an active session of a user is about to expire and the user would like to continue using the

application, as mentioned earlier, the frontend sends a request to the backend to refresh the token. The

backend then sends a new token and this token needs to be saved to make future request to the

backend. Since session tokens are stored in the Vuex store, the new token needs to be updated. There is

a mutation function called REFRESH_TOKEN. This mutation is committed by calling the REFRESH_TOKEN

function and passing in the new token value. The function will then modify the state for the JWT token

in the store. This is how state management is handled in the application.

Validation Result Computation
This is a core functionality of ValChrom. It is responsible for providing users with the validation result of

their chromatographic analytical method. The implementation of this feature involved making an API

call to the backend to fetch the computation results for the experimental datasets uploaded by the user.

The response comes back as a json object that contains all the input experimental datasets and their

computation results. The response data fetched is in a structure that represents how the data is stored

in the database. This structure is very different from how it needs to be presented to the users on the

UI.

38

Figure 21 Anatomy of Computation Results

Figure 21 shows an example of the response data received from the backend after requesting the

computation results. The data comes as a JSON object containing keys and values. The values of the

experimental datasets uploaded by the user (the input data) are the items whose keys are positive

integers, while the negative integers represent any additional input data that the user entered into the

system through a form field and not by uploading a dataset. The computation result values are the items

whose keys contain integers combined with the symbol ~. The format of the computation result item

key is:

<assessment method ID>~<analyte ID>~<series>

A service was created to restructure the data into a format that can be displayed to users through the UI

components. This service also separates the data based on their type (input and computation result).

The restructured data is then pass to another service to compute the validation results.

Several API calls are made at the stage of computing the validation result. All the data about the current

experimental dataset is needed to compute validity. The Analytical method and all the associating

analytes are fetched, the validation plan template data comprising of all the validation parameters and

their assessment method and the criteria are fetched. The computation service contains functions that

compute the validity of an analytical method. The result of the validity computation is then displayed on

the UI for the user to see as the άdecisionέ ǘƘŀǘ ƛǎ valid or invalid see Figure 22.

39

Figure 22 Analytical Method Validation Results

User experience (UX) and User Interface (UI)
The overall experience that a person has as they interact with a software is a crucial determinant of

whether the person will continue using the software or not. This concept is referred to as the User

Experience (UX). The UX of an application is formed by every aspect of the application like functionality,

processes and the user interface. The UI of an application is the part of an application that the users

interact with directly and has a high impact on the overall UX. Here are some fundamental principles

that were followed to implement the UI of ValChrom in a way that would satisfy the USABILITY of the

product owners and provide the desired UX (see Figure 24).

UserΩǎ need:

This was a major goal behind every UI in the application and it was achieved through design validation

with the product owners (who are experts in the domain and understand the needs of analytical

chemists). The designs were also validated by other analytical chemists that were not part of the project

to get different perspectives on how potential users will interact with the application.

Simplicity and Clarity:

The UI was designed in a way that the content of every page is presented in a simple and clear way.

Whitespaces are essential in making a UI look simple and not over cluttered. Detailed information is

held in dropdown components to keep the pages light. The application has a simple colour theme of

green and white, and light shades of grey are used to highlight some areas in the pages. The breadcrumb

UI component have a simple design and they make it possible for the user to always know where they

are in the application. The navigation menus are placed in the order that makes sense to an analytical

chemist and it mirrors the progression of the validation process (see Figure 24).

Consistency:

The UI design is consistent throughout the application. This is achieved by reusing the same UI

component across the entire application. This provided a consistent layout, colours, font, buttons etc.

The consistency across the application helps users recognise similar elements even when they are on a

different page. The UI element also follows ƳƻŘŜǊƴ ¦L ǎǘŀƴŘŀǊŘǎ ŀŎǊƻǎǎ ǘƘŜ ǿŜō ŀƴŘ ǎƻ ǳǎŜǊǎ ŘƻƴΩǘ

need to get used to strange icons of events in the application (see Figure 24).

40

Confirmation and Feedback:

The application communicates with the users to help them understand what is going on. This is done by

providing informative pop-ups when an action succeeds or fails, asking user to confirm their action

before proceeding with an action (see Figure 23).

Figure 23 ValChrom UI Designs ς Confirmation and Feedback

41

Figure 24 ValChrom UI Designs

