
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science curriculum

Siim Raudsepp

Volumetric Fog Rendering

Bachelor’s thesis (9 ECT)

Supervisor: Jaanus Jaggo, MSc

Tartu 2018

2

Volumetric Fog Rendering

Abstract:

The aim of this bachelor’s thesis is to describe the physical behavior of fog in real life and

the algorithm for implementing fog in computer graphics applications. An implementation

of the volumetric fog algorithm written in the Unity game engine is also provided. The per-

formance of the implementation is evaluated using benchmarks, including an analysis of the

results. Additionally, some suggestions are made to improve the volumetric fog rendering

in the future.

Keywords:

Computer graphics, fog, volumetrics, lighting

CERCS: P170: Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaat-

juhtimisteooria)

Volumeetrilise udu renderdamine

Lühikokkuvõte:

Käesoleva bakalaureusetöö eesmärgiks on kirjeldada udu füüsikalist käitumist looduses ja

koostada algoritm udu implementeerimiseks arvutigraafika rakendustes. Töö raames on

koostatud volumeetrilist udu renderdav rakendus Unity mängumootoris. Töös hinnatakse

loodud rakenduse jõudlust ning analüüsitakse tulemusi. Samuti tuuakse töös ettepanekuid

volumeetrilise udu renderdamise täiustamiseks tulevikus.

Võtmesõnad:

Arvutigraafika, udu, volumeetria, valgustus

CERCS: P170: Computer science, numerical analysis, systems, control

3

Table of Contents

 Introduction ... 5

1.1 Fog rendering techniques ... 5

 Volumetric Fog Theory ... 8

2.1 Atmospheric Scattering .. 9

 Algorithm for Rendering Volumetric Fog .. 11

3.1 Noise ... 11

3.2 Sampling the noise ... 12

3.3 Sampling the shadow map .. 12

3.4 Adding lighting ... 12

3.5 Applying blur to the fog ... 12

3.6 Blending and rendering to the screen ... 12

 Implementation ... 13

4.1 Architecture .. 13

4.2 Raymarching ... 13

4.3 Sampling the shadow map and adding lighting .. 14

4.4 Gaussian blur and bilateral filtering ... 18

4.5 Blending the fog with existing scene geometry ... 20

 Results ... 21

5.1 Benchmarks .. 22

5.1.1 Performance without volumetric fog .. 23

5.1.2 Performance comparison on the resolution used... 23

5.1.3 Performance comparison on the noise source used 24

5.1.4 Performance comparison on the number of raymarching samples 25

5.1.5 Performance comparison versus Aura volumetric fog 25

5.2 Visual results .. 26

5.3 Future improvements .. 27

5.3.1 Interleaved sampling ... 27

5.3.2 Blending the effect with the skybox .. 28

 Summary ... 29

 References ... 30

4

Appendix ... 32

I. Parameter descriptions of the VolumetricFog.cs script ... 32

II. Description of the application .. 34

III. License .. 35

5

 Introduction

As the computational power of graphics cards increases, computer games can use more de-

manding and physically-based real-time rendering techniques to bring out the visual quality

of those games. One such effect is fog rendering. In the past, fog has been mainly used to

mask the shortcomings of computer hardware [1]. An example of this is the computer game

Silent hill [2] [3]. Nowadays, fog can be realistically simulated and made to interact with

light.

The objective of this thesis is to explain how fog behaves in real life and to provide an

algorithm for rendering realistic fog in computer graphics. The thesis also comes with a

description of the implementation of the algorithm.

The first chapter of this thesis explains the theory behind fog in real life. The second chapter

describes the algorithm for rendering volumetric fog. The third chapter focuses on describ-

ing the implementation of the algorithm. The final chapter discusses the results and contains

benchmarks of the author’s implementation and gives some suggestions on how to improve

the algorithm in the future.

1.1 Fog rendering tech niques

Historically, the render distance in video games has been low, because computers were not

as powerful as they are today. To save performance, the camera’s maximum rendering dis-

tance was set closer to the camera. By doing this, most of the scene geometry farther away

would be clipped by the camera’s far plane and thus not rendered. This produced an effect

known as “pop-in”, where the objects suddenly appeared in the camera’s view if the camera

was close enough.

The solution to this was to fade each pixel on the screen to a predetermined color when it

was farther than a fixed distance from the camera (a technique also known as depth fog).

This made the popping effect go away and gave the scene a certain atmosphere. Figure 1

shows how depth was used in Silent Hill to make an impression that the game took place in

a location covered by thick fog.

6

Figure 1. Depth fog in Silent Hill

An improvement to rendering depth fog is to add height based fog, shown in Figure 2.

Height fog makes the fog look more physically correct than just using depth fog by simu-

lating the gathering of fog particles near the ground. For that, the height fog uses the world

space Y axis coordinate to reduce the fog thickness according to height.

Figure 2. A scene with added height fog (left) and distance fog without height fog (right) 1

The advantage of height and depth fog is that they are cheap to compute and give rather

good-looking results. The disadvantage of these methods is that they have uniform fog den-

sity, which means that they cannot be animated. In addition, the height and depth fog are

calculated only once per pixel thus they cannot be used to represent light passing through

them.

A solution to the animation problem is to use billboards. A billboard is a quad with a 2D

texture placed on it that rotates so that it is always facing towards the camera. By using a

billboard with a semi-transparent fog texture placed in a scene, realistic looking animated

fog can be achieved by scrolling the texture in some axis. The downside to this method is

that whenever another surface intersects with a billboard, it produces a hard edge, which

1 http://iquilezles.org/www/articles/fog/fog.htm

http://iquilezles.org/www/articles/fog/fog.htm

7

breaks the immersion. In Figure 3 the picture on the left has a sharp intersection between

the ground geometry and the billboard. This can be solved by sampling the depth buffer and

adjusting the opacity of the billboard according to how far it is from the object behind it –

this technique is also called soft particles.

Additionally, drawing multiple semi-transparent textures over each other causes a lot of

pixel overdraw, which means that the color and alpha values of a pixel get overwritten many

times. This might also decrease the rendering performance severely.

Figure 3. Without considering the depth of the camera, the fog texture on the left appears

cut off. 2

Even by using soft particles, billboards still cannot represent how light propagates through

a volume. For this reason, a new technique called volumetric fog was created. Volumetric

fog is used in computer graphics to simulate how fog particles interact with light in real life.

2 http://blog.wolfire.com/2010/04/Soft-Particles

http://blog.wolfire.com/2010/04/Soft-Particles

8

 Volumetric Fog Theory

It is not feasible to simulate every fog particle separately. Instead, volumetric fog estimates

the density of fog particles in a relatively small space. The density is then used to calculate

the physical interaction of the fog particles with the incoming light, namely transmission,

absorption, and scattering of the light. This simulation is performed only for the world re-

gions visible to the camera; therefore, the space under observation is the camera view vol-

ume. The camera view volume is split into uniform chunks, where the X and Y dimensions

of a chunk are equal to the size of a pixel and the Z dimension of a chunk is calculated

according to the size of the volume in the Z axis.

Figure 4 shows that light entering a volume can be either out-scattered, in-scattered, ab-

sorbed or transmitted [4].

¶ Out-scattering is the scattering of light back towards the light source.

¶ In-scattering is the scattering of light towards the viewer.

¶ Absorption is the loss of light energy upon interaction with a particle.

¶ Transmittance shows how much light energy is transmitted after all the other pro-

cesses have taken place.

Figure 4. Different ways how light can interact with a particle.

According to Wroński [5], this process can be statistically modeled for each point of the

volume using Equation 1.

ὒ ὒ ὒ ὒ ȟ ρ

9

where Ltransmitted is the transmittance of light, Labsorbed is the absorption and Lscattered is the sum

of in-scattered and out-scattered light.

2.1 Atmospheric Scattering

Since the Earth is surrounded by an atmosphere, the light particles coming from the sun and

entering the eye of the viewer must interact with the atmosphere first. This means that some

of the light gets scattered into the surrounding medium. However, the particles found in the

atmosphere don’t scatter all wavelengths of light equally: shorter wavelengths are scattered

more. Because the colder colors also have shorter wavelengths, they get scattered more and

this is the reason why the sky is blue [6]. Figure 5 shows the color of the atmosphere during

a clear day.

Figure 5. Blue sky due to scattering of light in the atmosphere3

Wroński [5] says that the amount of light participating in the scattering process can be dif-

ferent. For example, there exists Rayleigh scattering. It is the scattering of low wavelength

particles in the atmosphere and is responsible for the blue color of the atmosphere [7]. In

computer graphics, phase functions are used to describe the angular distribution of light

scattered in each direction [8].

ὴʃȟÇ
σz ρ ὧέίʃ

ρφz “
 ς

3 http://airan.ee/est/wp-content/uploads/blue-sky-clouds.jpg

http://airan.ee/est/wp-content/uploads/blue-sky-clouds.jpg

10

Equation 2 defines the function for calculating the Rayleigh phase function, where ʃ repre-

sents the angle between the direction of light and the direction of the viewer and g [−1, 1]

represents anisotropy. Anisotropy describes the directional dependency of the scattered

light, which means that light scatters more in one direction [4].

There also exists Mie scattering, which is the scattering of bigger wavelength particles [4].

Mie scattering is too expensive to compute in real-time and thus a phase function is used to

represent Mie scattering. The most common phase function used to approximate Mie scat-

tering is the Henyey-Greenstein phase function. [8] [9]

Equation 3 defines the function for calculating the value of Henyey-Greenstein phase func-

tion. The parameters are same as used for the Rayleigh phase function.

ὴʃȟÇ
ρ Ὣ

τ“z ρ Ὣ ςz Ὣ ÃzÏÓʃ
 σ

According to Cornette and Shanks [10], the Henyey-Greenstein phase function does not

consider small particles illuminated by unpolarized light. In their paper, the authors propose

of a more physically-based phase function, which has a similar form to the Henyey-Green-

stein phase function. This means the Cornette-Shanks phase function can be easily used as

a replacement for the Henyey-Greenstein phase function. Equation 4 defines the Cornette-

Shanks phase function using the same parameters as the Henyey-Greenstein phase function

and the Rayleigh phase function.

ὴʃȟÇ
σρ Ὣ ᶻρ ὧέίʃ

ςz ς Ὣ ᶻρ Ὣ ςz Ὣz ÃÏÓʃ
 τ

To model the transmittance of incoming light, the Beer-Lambert law is used. [5] The Beer-

Lambert law states that light transmittance is exponential to the distance traveled by light

inside a medium.

Ὕ ὃᴼ" Ὡ᷿ υ

Equation 5 defines the function used to calculate Beer-Lambert law. βe is the sum of scat-

tering and absorption coefficients. The law is used to calculate the transmittance of light

energy at each point of the participating medium.

11

 Algorithm for Rendering Volumetric Fog

The algorithm for rendering volumetric fog consists of 5 steps:

1) sampling the noise,

2) sampling the shadow map,

3) adding lighting,

4) applying blur to the fog,

5) blending and rendering to the screen.

3.1 Noise

In real life, fog does not have uniform density: some areas of the fog volume are denser and

others are sparser. To mimic this characteristic in computer graphics, different noise gener-

ation algorithms are used, also known as noise functions. Noise functions are functions that

return a continuous value in response to an input given to them. Noise functions are detem-

inistic, but they still have some structure to them, making them perfect for representing fog

in computer graphics.

A common way to create procedural textures is to precompute the noise using noise func-

tions and save it to a texture, reducing the overall performance cost. Multiple noise textures

can also be combined to get interesting effects like variable fog densities. Another advantage

of noise functions is that they can be precomputed and stored in the computer’s memory,

reducing the overall performance cost of the algorithm. The noise texture used for the algo-

rithm can be seen in Figure 6.

Figure 6. The noise texture the fog is sampled from4

4 https://www.filterforge.com/filters/231.jpg

https://www.filterforge.com/filters/231.jpg

12

3.2 Sampling the noise

A 2D texture with precomputed noise values in the range of 0 to 1 is used to calculate the

fog density at each point of the volume. The colors of a fog texture can be interpreted in

different ways, but in this thesis, they represent fog density at some point in the fog. A value

of 1 represents complete fogging at that point (transmittance is 0), meaning that nothing can

be seen through it. A value of 0 represents no fogging at that point (transmittance is 1).

Values between 0 and 1 get increasingly denser, meaning that less and less of the geometry

behind the fog can be seen. The value of a sample is also based on height, meaning that fog

farther from the reference level will be less dense. The fog density is then used to calculate

how much light interacts with that particle. This is done by shooting rays through the volume

and accumulating the result along the ray.

3.3 Sampling the shadow map

In this part of the algorithm, the locations of the shadows are calculated. For this, a shadow

map is sampled so that the fog algorithm can decide if a point in the volume is in shadow.

The result is then saved into a texture and used in the next parts of the algorithm. This step

is responsible for the light shafts that represent the edges of shadows.

3.4 Adding l ighting

In this part of the algorithm, the extinction, scattering and transmittance are calculated. The

extinction values are constant for each point in the volume, so it can be represented as a

coefficient multiplied by the fog density. The scattering value is calculated by summing up

the values of the Cornette-Shanks phase function and Rayleigh phase function. The trans-

mittance is calculated by applying Beer’s law to the sample.

3.5 Applying blur to the fog

During light transport, some of the light gets scattered into the surrounding medium in real

life, which creates a hazy effect to the fog. In computer graphics, this phenomenon is simu-

lated by using blur. The blur effect is created by taking the values of surrounding pixels on

the screen and interpolating the color values between them. As a result, a color of a pixel is

now the weighted average of nearby pixels.

3.6 Blending and rendering to the screen

The final step of the algorithm is to blend the fog with the existing scene geometry. It is

done by sampling the surface color and additively blending it with the fog color. The trans-

mittance of the fog is contained in the fog textures alpha value. The lower the transmittance,

the denser the fog is at that point, which means that less of the background geometry is

visible to the camera.

13

 Implementation

The algorithm is implemented in the Unity game engine5. In Unity, a C# script is used for

setting up the necessary context, passing values to the shaders and storing the intermediate

results in textures. Shaders are used to render the fog, add blur and blend it with existing

scene geometry.

4.1 Architecture

Figure 7. The architecture of the program used for rendering volumetric fog.

The architecture of the fog implementation in Unity can be seen in Figure 7. First, the C#

script VolumetricFog.cs takes the parameters and sends them to the shaders. All the shaders

are post-effect shaders, meaning that they change the pixel colors of an already rendered

scene. The fog is rendered using the CalculateFogDensity.shader script. The result is stored

in a texture and used in the ApplyBlur.shader script. This script is run many times to get an

increasingly blurrier fog effect. Finally, the previous result is used in the ApplyFog.shader

script to blend the fog with the scene geometry. After each frame, the render textures used

are temporarily freed so they do not take up memory once they are not needed anymore.

4.2 Raymarching

Integrating the fog volume is done by casting a ray for each pixel of the screen and during

multiple iterations, moving along the ray by a pre-calculated step size. The ray is then ex-

tended until transmittance reaches 0 or a maximum predefined number of steps is reached.

This technique is also known as raymarching. Raymarching is used to accumulate fog den-

sity for each pixel separately.

f loat rayMarch(steps , direction , start Pos){

5 https://unity3d.com/

VolumetricFog.cs

CalculateFogDensity.shader

ApplyBlur.shader

ApplyFog.shader

https://unity3d.com/

14

 // calculate the pixel depth using the uv of the pixel and the depth texture

 depth = calculate_pixel_depth();

 // maps the depth value to range [0,1]

 depth = linearise_depth(depth);

 // get the world space coordinates of the pixel

 endPos = viewPos_to_worldPos(depth);

 rayLength = length(endPos ï startPos);

 // divide the steps evenly along the ray length

 stepS ize = rayLength / steps ;

 result = 0;

 // Start marching from the camera position

 currentPos = startPos ;

 for(i = 0; i < steps ; i++){

 currentResult = 0;

 noise = sample_noise(currentPos);

 currentResult = calculate_shadows_and_lighti ng(current Pos, noise);

 // Add current result to the overall result

 result += currentResult;

 // E xtend the ray by a step in the ray direction

 currentPos += direction * stepSize;

 }

 return result;

}

Figure 8. The pseudocode used for raymarching

Figure 8 shows the pseudocode that is used by the CalculateFogDensity shader to accumu-

late fog density and calculate lighting for each pixel.

4.3 Sampling the shadow map and adding lighting

To sample from the shadow map, it first needs to be created and stored in a texture. Unity

generates the shadow maps automatically for the scene, but storing it to a texture needs to

be done manually. This is done by creating a command buffer and setting it to execute after

the shadow map has been created. A command buffer is a buffer used to hold a list of ren-

dering commands, which can be set to execute at various points during the scene rendering,

light rendering or be executed immediately [11].

15

void AddLightCommandBuffer()

{

 // create a command buffer and give it a global identifier

 _AfterShadowPass = new CommandBuffer {name = "Volumetric Fog ShadowMap"};

 // store the result in the shader texture ñShadowMapò

 _AfterSha dowPass.SetGlobalTexture("ShadowMap",

 new RenderTargetIdentifier(BuiltinRenderTextureType.CurrentActive));

 Light sunLight = SunLight.GetComponent<Light>();

 if (sunLight)

 {

 // Add the command buffer to the light and set it to execute after the

 / / shadow map has been generated by Unity

 sunLight.AddCommandBuffer(LightEvent.AfterShadowMap, _AfterShadowPass);

 }

}

Figure 9. The code to set up a command buffer6

Figure 9 shows the code required to create a command buffer and attach it to a light. First,

a new command buffer is created. After that, a render texture is created with the same pa-

rameters as the one currently being rendered to. This command buffer is then set to execute

after the shadow map has been generated, saving the shadow map to a texture named “Shad-

owMap”.

Unity uses Cascading Shadow Maps (CSMs) [12], which means that different parts of the

camera view frustum have different shadow map resolutions. This technique is useful be-

cause usually the viewer can see details closer to them more clearly, but details farther away

are harder to distinguish. The technique also increases the performance of using shadow

maps because cascades farther away can be calculated with a smaller resolution.

6 https://interplayoflight.wordpress.com/2015/07/03/adventures-in-postprocessing-with-unity/

https://interplayoflight.wordpress.com/2015/07/03/adventures-in-postprocessing-with-unity/

16

Figure 10. A top-down representation of a cascaded shadow map inside the camera view

frustum7 (left) and a cascaded shadow map projected to the ground surface in Unity8

(right).

Figure 10 shows that cascades closer to the camera have more resolution, while the cascades

far away have a noticeably smaller resolution. On the right, the cascades are shown as seen

in Unity, where each color represents a different cascade. The distance of each cascade from

the camera can be adjusted.

fixed4 getCascadeWeights(float depth){

 float4 zNear = float4(depth >= _LightSplitsNear);

 float4 zFar = flo at4(depth < _LightSplitsFar);

 float4 weights = zNear * zFar;

 return weights;

}

Figure 11. The code used to sample cascade weights

According to the depth value of the current pixel, the world space coordinates of the pixel

are calculated. The code in Figure 11 is used to select all the cascades that are between the

cameras near and far plane.

fixed4 getShadowCoord(float4 worldPos, float4 weights){

 float3 shadowCoor d = float3(0,0,0);

 if(weights[0] == 1){

 shadowCoord += mul(unity_WorldToShadow[0], worldPos).xyz;

 }

 if(weights[1] == 1){

 shadowCoord += mul(unity_WorldToShadow[1], worldPos).xyz;

7 https://msdn.microsoft.com/en-us/library/windows/desktop/ee416307(v=vs.85).aspx
8 https://docs.unity3d.com/Manual/DirLightShadows.html

https://msdn.microsoft.com/en-us/library/windows/desktop/ee416307(v=vs.85).aspx
https://docs.unity3d.com/Manual/DirLightShadows.html

17

 }

 if(weights[2] == 1){

 shadowCoord += mul(unity_WorldToS hadow[2], worldPos).xyz;

 }

 if(weights[3] == 1){

 shadowCoord += mul(unity_WorldToShadow[3], worldPos).xyz;

 }

 return float4(shadowCoord,1);

}

Figure 12. The code used to get the correct shadow map coordinates

After that, the world space coordinates and the cascade weights can be used to calculate the

coordinates for sampling the shadow map. Unity allows up to four cascades per shadow map

and provides a matrix, unity_WorldToShadow, where rows are the transformations of each

cascade in light space [13]. By multiplying this matrix with the world space coordinate of

the current pixel, the correct light space coordinates for each cascade are found. The code

for calculating the shadow map coordinate is shown in Figure 12.

float shadowTerm = UNITY_SAMPLE_SHADOW(ShadowMap, shadowCoord);

 Figure 13. The code used to sample the shadow map

Using the found coordinate, the shadow map can be sampled to get the shadow term. The

shadow term indicates whether or not the point on the ray is in shadow (Figure 13).

float3 fColor = lerp(_ShadowColor, litFogColor, shadowTerm + _AmbientFog);

Figure 14. The code used to mix two colors together based on the shadow term

Using the shadow term, the color of the particle at the current ray position is be calculated.

At that point, ambient fog is also added to reduce the contrast between shadowed and non-

shadowed areas (Figure 14).

The lighting for each step in the raymarching loop is calculated in 3 parts: extinction, trans-

mittance and scattering (Figure 15).

¶ The extinction of light depends on the density of the fog at that point. It is multiplied

by the extinction coefficient to allow the user to increase or decrease the extinction

effect.

¶ The transmittance is found by applying the Beer-Lambert law to the extinction value.

It is then multiplied by the extinction value, so areas further from the viewer will

also transmit less light to the viewer.

¶ Scattering at each point of the volume is found by summing the values of the Mie

scattering and the Rayleigh scattering.

float extinction = _ExtinctionCoef * fogDensity;

transmittance *= getBeerLaw(extinction, stepSize);

scattering = getRayleighScattering() + getMieScattering();

Figure 15. The code used to calculate extinction, transmittance and scattering

18

Finally, the color, scattering, step size and transmittance are all multiplied together to get

the result of the current iteration. Once the loop terminates, the final color is outputted,

where the alpha value of a pixel is equal to the transmittance variable value.

Figure 16. The fog after adding lighting

Figure 16 shows the result of this step, where the fog and the light rays shining through the

trees are already present.

4.4 Gaussian blur and bilateral filtering

The blur effect was achieved by implementing a Gaussian blur. Gaussian blur is an image

processing technique used to blur images. The blur effect is achieved by iterating through

all the pixels on an image and for each pixel, averaging the color values of surrounding

pixels based on the Gaussian distribution.

Ὃὼȟώ
ρ

ς“„
Ὡz φ

The contribution of each pixel is calculated using Equation 6, where x and y define the offset

from the origin and „ is the standard deviation of the Gaussian distribution. [14]

19

Figure 17. The fog after adding Gaussian blur.

Figure 17 shows that after applying Gaussian blur, the resulting image is uniformly fuzzy.

This can be fixed by using bilateral filtering. Bilateral filtering is a technique used to pre-

serve the sharpness of edges in an image. It compares the intensity values between neigh-

boring pixels. A greater intensity difference means that the pixel sampled is on the edge of

the geometry and that pixel contributes less to the blur. [15]

Figure 18. The fog after adding bilateral filtering to the blur.

Figure 18 shows that by adding bilateral filtering, the edges of the geometry are sharp while

the rest of the view remains blurred.

20

4.5 Blending the fog with existing scene geometry

// Sample fog texture

float4 fogSample = tex2Dlod(FogRendertargetLinear, float4(input.uv,0,0));

// Sample scene texture

f loat4 colorSample = tex2D(_MainTex, input.uv);

// blend samples together

float4 result = float4(colorSample.rgb * fogSample.a + fogSample,colorSample.a);

return result;

Figure 19. The code used to blend the scene geometry with the fog

Finally, the fog must be blended with the scene geometry. This is done by using additive

alpha blending, shown on Figure 19. First, the fog texture and the color texture are sampled.

After that, the samples are blended together and the result is returned.

Figure 20. The result after blending the fog with scene geometry

Figure 20 shows that colors from existing scene geometry and the skybox have been cor-

rectly blended with the volumetric fog. Colors from the existing scene geometry are con-

tributed to the fog color.

21

 Results

This chapter discusses the results of the volumetric fog implementation. Although this im-

plementation can be optimized further and is more for the proof of concept, benchmark

comparisons with another volumetric fog implementation, Aura9, have also been made. Both

the code and the assets for the application were hosted on GitHub10 and are publicly availa-

ble. Details on how to run the application and a link to the repository are given in Appendix

2.

The program, VolumetricFog.cs, is used to set up the necessary context for the shaders and

to get the shadow map from Unity. All the parameters of the volumetric fog are also sent

from this script to the specific shader that requires them. The parameters can be seen in

Figure 21. More detailed descriptions of each parameter are given in Appendix 1.

Figure 21. Tweakable values of the volumetric fog script.

9 https://www.assetstore.unity3d.com/#!/content/111664
10 https://github.com/

https://www.assetstore.unity3d.com/#!/content/111664
https://github.com/

22

The shader programs were written in ShaderLab language, which is a declarative language

that is used in Unity to describe the shader. The ShaderLab language wraps around the frag-

ment and vertex shaders, which are written in HLSL/Cg shading language [16].

The main scene, “Forest”, was made using Unity’s built-in terrain system [17]. The terrain

system allows to quickly create various landscapes and add custom textures to them. The

foliage for the scene was provided by Nature Starter Kit 2 [18], a free asset package found

from the Unity Asset Store11.

Figure 22. The “Forest” scene built for testing the volumetric fog effect.

Figure 22 shows the layout of the scene. The scene consists of 4 main areas: dense forest,

sparse forest, open grassland and mountains.

5.1 Benchmarks

To evaluate the performance of this implementation, benchmarks were performed. A bench-

mark consists of a camera flying through the scene for 50 seconds. Before the benchmark,

2 seconds of warmup time is given to the computer to let it start rendering and stabilize the

frame rendering time. For each frame, the frame time is measured and later averaged for the

whole run. The standard deviation of each run is also found. A resolution of 1920x1080p is

used for all the benchmarks and the values used for the volumetric fog script are the same

as in Figure 21, unless stated otherwise.

The benchmarks were performed in Unity version 2017.4.1f1. The computer used for run-

ning the benchmark has the following specifications:

11 https://assetstore.unity.com/

https://assetstore.unity.com/

23

¶ CPU: Intel Core i5 4670K, running at 4.1GHz

¶ GPU: Nvidia GeForce GTX 1060 6GB

¶ RAM: 12GB DDR3, running at 1600Mhz

¶ OS: Windows 10 Pro 64-bit

5.1.1 Performance without volumetric fog

Figure 23. Average frame time of the benchmark with the volumetric fog effect turned off.

First, a benchmark was done with the volumetric fog effect turned off. Its purpose is to get

an idea of the rendering cost of the effect. Figure 23 shows that the average frame time of

the benchmark without the effect is almost 5 milliseconds.

5.1.2 Performance comparison on the resolution used

To test how the algorithm scales with different resolutions, the benchmark with the fog ef-

fect enabled was run for 3 times with resolution set to 640x480(480p), 1280x720(720p) and

1920x1080(1080p) pixels, respectively.

0

1

2

3

4

5

6

7

A
ve

ra
g

e
 F

ra
m

e
 T

im
e
 (

m
s)

Base

24

Figure 24. Average frame time of the screen resolution benchmark

Figure 24 shows that increasing the resolution affects the performance of the effect almost

linearly. 1080p has about 44% more pixels to render than 720p and the effect takes about

44% longer to render. The same pixel to millisecond ratio can be seen when comparing 720p

to 480p.

5.1.3 Performance c omparison o n the noise source used

To evaluate the performance of each noise source present in the application, the benchmark

was performed 3 times, each time with a different noise source.

Figure 25. Average frame time of the noise source benchmark.

Figure 25 shows that generating the noise each frame using the Simplex noise function af-

fects performance severely (an average frame time over 64 milliseconds). However, there

is almost no difference between sampling the noise from a 3D or 2D texture (both taking

about 18 milliseconds per frame to render).

0

5

10

15

20

25

A
ve

ra
g

e
 F

ra
m

e
 T

im
e
 (

m
s)

1080p 720p 480p

0

10

20

30

40

50

60

70

80

A
ve

ra
g

e
 F

ra
m

e
 T

im
e
 (

m
s)

2D Texture 3D Texture Simplex Noise Function

25

5.1.4 Performance comparison o n the number of raymarching samples

To compare the performance impact of the number of raymarching samples used, the bench-

mark was run for 3 times using the settings in Figure 21. The volumetric fog effect was

rendered using 64, 128 and 256 raymarching samples, respectively.

Figure 26. Average frame time of the raymarching samples benchmark.

Figure 26 shows that increasing the number of raymarching samples affects the perfor-

mance. Using 256 raymarching steps, the average frame time is about 30 milliseconds. By

reducing the raymarching steps to 128, the cost of rendering is reduced to 18 milliseconds

per frame. Halving the raymarching steps again, to 64 steps, reduces the cost to 12 millisec-

onds per frame.

5.1.5 Performance comparison versus Aura volumetric fog

Finally, the performance of this implementation using the base settings (Figure 21) was

tested against the performance of another volumetric fog implementation, Aura. Although

Aura advertises itself as a volumetric lighting solution, the main effect implemented is vol-

umetric fog. The settings of Aura were kept as close as possible to this implementation and

the same benchmark in the same scene was used to compare Aura to this implementation.

0

5

10

15

20

25

30

35

40

A
ve

ra
g

e
 F

ra
m

e
 T

im
e
 (

m
s)

256 steps 128 steps 64 steps

26

Figure 27. Comparison of the base volumetric fog implementation and Aura.

Figure 27 shows that the performance of Aura exceeds the reference implementation’s per-

formance greatly (almost 7x faster than the reference implementation) while delivering bet-

ter visual results.

5.2 Visual results

This section showcases the visual results of the created application. The colors used were

chosen artistically to mimic the atmosphere during the sunrise. The shadow color has a

colder tone and the fog color has a warmer tone.

Figure 28. Volumetric fog as seen from above

Figure 28 shows the scene with the camera positioned higher from the fog and pointed to-

wards the ground. The figure also shows that trees far away from the camera are drowned

in the fog.

0

10

20

30

40

50

60

70

A
ve

ra
g

e
 F

ra
m

e
 T

im
e
 (

m
s)

Aura volumetric fog Base volumetric fog

27

Figure 29. Volumetric fog as seen from the ground

Figure 29 shows the scene with the camera positioned on the ground, looking towards the

sun. Crepuscular rays can also be seen, which are created by the sunlight that is shining

through the trees.

Figure 30. Fog in shadowed areas.

Figure 30 shows the scene with the camera positioned on the ground, looking at the shadows

cast by the trees. Almost all the fog that can be seen is ambient, since no sunlight is shining

through the fog directly.

5.3 Future improvements

This chapter discusses the changes that could be done in the future to improve the perfor-

mance and the visual quality of the current implementation of the volumetric fog.

5.3.1 Interleaved sampling

In the current implementation, marching a ray for each pixel on the screen uses a high num-

ber of steps. This increases the visual quality of the result, but severely decreases the per-

formance. To reduce the number of rays that are marched each frame, interleaved sampling

could be used. Interleaved sampling is the sampling of textures using an offset from the

center [19]. It works by dividing the screen into evenly sized grids, each grid consisting of

28

a set number of neighboring pixels. Since the color values of volumetric lighting and sur-

faces affected by lighting are similar between neighboring pixels [20], the color result of a

pixel can be used for neighboring pixels in the same grid as well.

5.3.2 Blending the effect with the skybox

Figure 31. The fog effect can only be seen on opaque geometry.

Currently, the fog effect is only rendered on top of opaque geometry. This shortcoming is

even more visible when increasing the density of the fog such that the existing scene geom-

etry blends into the fog (Figure 31). The volumetric fog effect does not render on top of the

skybox because in Unity, the skybox is rendered after all opaque geometry12. One solution

to this is to set the skybox color manually to match the fog color. Another solution to this

would be to use a 3rd party asset, KinoFog13. KinoFog fades the color of each pixel to the

color of the skybox depending on depth. By setting the skybox color according to the color

of the fog near a point in the skybox, it is possible to blend the fog with the skybox.

12 https://docs.unity3d.com/Manual/class-Skybox.html
13 https://github.com/keijiro/KinoFog

https://docs.unity3d.com/Manual/class-Skybox.html
https://github.com/keijiro/KinoFog

29

 Summary

Since today’s graphics cards have gained a lot of computational power, they can now be

used to render real-time realistic effects in computer graphics applications. One such effect

is fog, which has been historically used to mask the low render distance. Nowadays, fog is

mainly used to create a sense of an atmosphere. To meet this requirement, the fog must

interact with light and the surrounding environment realistically. This is achieved by using

a technique known as volumetric fog rendering.

In this thesis, a brief history of fog in computer graphics was described. It was also observed

how the fog behaves in real life and how its physical behavior could be simulated in com-

puter graphics. After that, an algorithm for rendering real-time volumetric fog was provided

and a proof of concept application was created in the Unity game engine. To measure the

performance of the implementation, benchmarks of the demo application were made. Alt-

hough the current implementation was not as fast as other implementations, namely Aura14,

all the goals of this thesis were met successfully.

Finally, some improvements were suggested to lessen the impact of the effect on perfor-

mance and to further improve the visual quality of the implementation. These serve as a

good starting point for others to further develop the application and to improve the algorithm

in the future.

14 https://www.assetstore.unity3d.com/#!/content/111664

https://www.assetstore.unity3d.com/#!/content/111664

30

 References

[1] M. M. Deza and E. Deza, in Encyclopedia of Distances, 2009, p. 513.

[2] "Silent Hill (video game)," [Online]. Available:

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco

/wiki/Silent_Hill_(video_game).html. [Accessed May 2018].

[3] A. Hodgetts, "Team Silent and Combating Technical Limitations," 20 December

2017. [Online]. Available: https://airentertainment.biz/2017/12/20/team-silent-and-

combating-technical-limitations. [Accessed May 2018].

[4] J.-C. Prunier, "Volume Rendering for Artists," 2017. [Online]. Available:

https://www.scratchapixel.com/lessons/advanced-rendering/volume-rendering-for-

artists.

[5] B. Wroński, "Volumetric Fog and Lightning," in GPU Pro 6: Advanced Rendering

Techniques, 2015, pp. 217-242.

[6] "Scattering of light," [Online]. Available:

http://www.atmo.arizona.edu/students/courselinks/spring08/atmo336s1/courses/fall

13/atmo170a1s3/1S1P_stuff/scattering_of_light/scattering_of_light.html. [Accessed

18 April 2018].

[7] J.-C. Prunier, "Simulating the Colors of the Sky," [Online]. Available:

https://www.scratchapixel.com/lessons/procedural-generation-virtual-

worlds/simulating-sky. [Accessed May 2018].

[8] N. Vos, "Volumetric Light Effects in Killzone: Shadow Fall," in GPU Pro 5, 2014,

pp. 127-146.

[9] A. Schneider, "Real-Time Volumetric Cloudscapes," in GPU Pro 7: Advanced

Rendering Techniques, 2016, pp. 97-127.

[10] J. G. Shanks and W. M. Cornette, "Physically reasonable analytic expression for the

single-scattering phase function," Applied Optics, vol. 31, no. 16, pp. 3152-3160,

1992.

[11] Unity Technologies, "Unity 2018.1 Documentation : Command buffer," Unity

Technologies, 2018. [Online]. Available:

https://docs.unity3d.com/ScriptReference/Rendering.CommandBuffer.html.

[Accessed 13 May 2018].

[12] Unity Technologies, "Unity 2017.3 Documentation : Directional light shadows,"

[Online]. Available: https://docs.unity3d.com/Manual/DirLightShadows.html.

[Accessed 11 April 2018].

[13] K. Anagnostou, "Interplay of light : Adventures in postprocessing with Unity," 3

July 2015. [Online]. Available:

https://interplayoflight.wordpress.com/2015/07/03/adventures-in-postprocessing-

with-unity. [Accessed March 2018].

31

[14] sonic0002, "Gaussian Blur Algorithm," 24 November 2012. [Online]. Available:

https://www.pixelstech.net/article/1353768112-Gaussian-Blur-Algorithm.

[Accessed 09 May 2018].

[15] S. Paris and F. Durand, "A Gentle Introduction to Bilateral Filtering and its

Applications," 2007. [Online]. Available:

https://www.cis.rit.edu/~cnspci/references/dip/filtering/paris2007.pdf. [Accessed 08

May 2018].

[16] Unity Technologies, "Unity 2018.1 Documentation : ShaderLab Syntax," [Online].

Available: https://docs.unity3d.com/Manual/SL-Shader.html . [Accessed May

2018].

[17] Unity Technologies, "Unity 2018.1 Documentation : Terrain Engine," [Online].

Available: https://docs.unity3d.com/Manual/script-Terrain.html . [Accessed May

2018].

[18] Shapes, "Unity Asset Store," [Online]. Available:

https://assetstore.unity.com/packages/3d/environments/nature-starter-kit-2-52977.

[Accessed May 2018].

[19] A. Keller and W. Heidrich, "Interleaved sampling," 2001. [Online]. Available:

http://www.cs.ubc.ca/labs/imager/tr/2001/keller2001a/keller.2001a.pdf. [Accessed

06 May 2018].

[20] B. Tóth and T. Umenhoffer, "Real-time Volumetric Lighting in Participating

Media," 2009. [Online]. Available: http://sirkan.iit.bme.hu/~szirmay/lightshaft.pdf.

[Accessed 07 May 2018].

32

Appendix

I. Parameter descriptions of the VolumetricFog.cs script

Parameter name Description

Calculate Fog Shader The shader that calculates the fog density and

color at each point of the volume.

Apply Blur Shader The shader that applies blur to the texture pro-

duced by the calculate fog shader.

Apply Fog Shader The shader that blends the fog together with the

background geometry.

Sunlight

The game object of the directional light caster

in the scene.

Fog Texture 2D The texture that the noise is sampled from. This

is also used for creating the 3D fog texture.

Limit Fog In Size Toggles the size limiting of volumetric fog in

the scene.

Fog World Position The center coordinates of volumetric fog in the

scene.

Fog Size The size of volumetric fog in each axis calcu-

lated from the Fog World Position.

Render Texture Res Division Determines the size of the render texture in

comparison to the screen size.

Ray March Steps The maximum number of steps that the algo-

rithm uses to render the volumetric fog effect.

Use Rayleigh Scattering Toggles the usage of Rayleigh scattering in the

shaders on and off.

Rayleigh Scattering Coef The coefficient of the Rayleigh scattering term.

Mie Scattering Coef The coefficient of the Mie scattering term.

Mie Scattering Approximation Determines the function that is used to approx-

imate Mie scattering. Possible values are

Henyey-Greenstein, Cornette-Shanks and Off.

Fog Density Coef The coefficient that gets added to the fog value

at each point in the volume.

33

Extinction Coef The coefficient that determines how much light

gets extinct at each point in the volume.

Anisotropy Determines in which direction the light is

mainly scattered. A value of -1 means that all

the light is scattered back towards the light

source and a value of 1 means that all the light

is scattered towards the viewer.

Height Density Coef Determines the rate of fog density falloff if

height fog is enabled.

Base Height Density Determines the density of volumetric fog in the

bottom of the volume.

Blur Iterations Determines how many times the blurring takes

place.

Blur Depth Falloff Determines the range around the viewer where

no blur is added.

Blur Offsets Determines the pixel offsets of each neighbor-

ing pixel when blurring the image.

Blur Weights Determines the contribution of color from each

neighboring pixel.

Fog In Shadow Color The color of volumetric fog directly in shadow.

Fog In Light Color The color of volumetric fog directly in light.

Ambient Fog The amount of fog added to the shadowed areas

of volumetric fog.

Light Intensity Determines the intensity of the directional light

caster.

Noise Source Determines where the noise used in fog is sam-

pled from. Possible values are Texture2D, Tex-

ture3D and Simplex Noise Function.

Add Scene Color Toggles the blending of fog with the back-

ground on and off.

Blur Enabled Toggles blur on and off.

Shadows Enabled Toggles shadows on and off.

Height Fog Enabled Toggles height based fog on and off.

34

II. Description of the application

Attached to this thesis is the demo application built to showcase the volumetric fog effect.

To run the application, the executable (VolumetricFog.exe) should be executed. When run-

ning the program, it will first prompt to select the settings. After the desired settings are

chosen, the play button must be pressed to start the application. The default controls for

moving the camera are defined in Table 1.

Control name Description

Mouse Look around

W Move forward

S Move backward

A Strafe left

D Strafe right

Shift Hold down while moving to move faster

Table 1. The controls of the application

The application is also hosted on GitHub15. Descriptions on how to download and run the

source code in Unity are explained in the readme of the repository.

15 https://github.com/SiiMeR/unity-volumetric-fog

https://github.com/SiiMeR/unity-volumetric-fog

35

III. License

Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele kättesaadavaks

tegemiseks

Mina, Siim Raudsepp,

1. annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose

Volumetric Fog Rendering,

mille juhendaja on Jaanus Jaggo,

1.1. reprodutseerimiseks säilitamise ja üldsusele kättesaadavaks tegemise eesmärgil,

sealhulgas digitaalarhiivi DSpace-is lisamise eesmärgil kuni autoriõiguse kehtivuse

tähtaja lõppemiseni;

1.2. üldsusele kättesaadavaks tegemiseks Tartu Ülikooli veebikeskkonna kaudu,

sealhulgas digitaalarhiivi DSpace´i kaudu kuni autoriõiguse kehtivuse tähtaja

lõppemiseni.

2. olen teadlik, et punktis 1 nimetatud õigused jäävad alles ka autorile.

3. kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega

isikuandmete kaitse seadusest tulenevaid õigusi.

Tartus, 14.05.2018

