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Large Language Models for Control System Code Analysis

Abstract:

Large Language Models (LLMs) are used ubiquitously in many applications ranging from
text summarization, automated theorem proving, code comprehension, and generation.
Instructions (a.k.a prompt) are used to tune the large language models (LLMs) on solving
new downstream tasks and thus enhance the generalization capability. To date, less effort
has been given to using LLMs in software engineering, e.g., NL-to-Code tasks, code
repair, code comprehension, etc. Comprehending code through LLMs is a non-trivial
problem, as structural differences exist between code (program) and natural language.
Moreover, commercial LLMs trained on the text corpus are closed-source, often lacking
transparency and reproducibility. To fill this gap, this thesis proposes a novel method of
tuning instructions (prompt engineering) of the LLLMs for solving the code comprehension
task. We have optimally tuned GPT-3.5 and GPT-4 to comprehend the Matlab code of
control systems engineering. Our handwritten Matlab code simulates the behavior of
various control systems, e.g., feedback control and PID control. We propose and design
three types of prompts: (i) text prompt, (ii) logical prompt, and (iii) numerical prompt to
assist the LLM in comprehending the Matlab code for control systems. We propose a new
metric as an evaluation measure to check the correctness of understanding of LLM while
solving the task. This thesis research findings show while LLMs (GPT 3.5) are good for
solving language tasks, they are not yet mature enough to solve code comprehension of
Matlab scripts that work primarily in numerical and linear algebra domains.

Keywords:
Large Language Models, Prompt Engineering, Natural Language Processing, Control
Systems Engineering, Matlab, Feedback Loop, PID controller

CERCS: P170 Computer science, numerical analysis, systems, control
Suurte keelemudelite kasutamine kontrollsiisteemi koodi analiiiisiks

Lithikokkuvote:

Suured keelemudelid (LLM) leiavad koiksugustes rakendustes laialdaselt kasutust, alates
teksti kokkuvotetest kuni automatiseeritud teoreemide tdestamiseni ja koodi moistmi-
sest kuni koodi genereerimiseni. Juhiseid (viipasid) kasutatakse, et suuri keelemudeleid
(LLM) uute iilesannete lahendamiseks hédlestada ja selle lédbi tildistusvdoimet suurenda-
da. Praeguseni on vihem pingutusi suunatud, et suuri keelemudeleid (LLM) tarkvara
arenduses, nditeks loomulikust keelest koodiks, koodi paranduse, koodist arusaamise
jne iilesanneks, kasutada. Koodi mdismine keelemudelite (LLM) abiga ei ole triviaalne
probleem, sest programmikoodi ja loomulike keele vahel on struktuurilisi erinevusi. Veel
enam, teksti korpuste peal treenitud kaubanduslikud keelemudelid ((LLM) on suletud ldh-
tekoodiga ning neil jdib ldbipaistvusest ja korratavusest vajaka. Et seda liinka tédita pakub
antud t60 keelemudelite (LLM) koodi mdistmiseks kasutamise viipade hédédlestamiseks



vilja uudse meetodi. Me olen viiba abil ChatGPT 3.5 ja ChatGPT 4 hiélestanud kontroll-
siisteemide Matlabi koodi mdistmiseks. Meie kisitsi kirjutatud Matlabi kood simuleerib
erinevate kontrollsiisteemide, nditeks tagasiside kontroll ja PID kontroll, kditumist. Me
pakume vilja ja disainime kolme eri tiiiipi viipasid: (i) tekstiline viip, (ii) loogiline viip
ja (ii1) numbriline viip, et aidata keelemudelil (LLM) kontrollsiisteemide koodist aru
saada. Me pakume keelemudelite (LLM) koodi mdismise digsuse hindamiseks vilja uue
moddiku. See to0 nditab, et kuigi keelemudelid on keeleliste iilesannete lahendamises
viga head, siis ei ole nad kontrollkoodi skriptide, mis téotavad peamiselt numbrilistes ja
lineaar-algebralistes domeenides, mdistmiseks veel piisavalt kiipsed.

Votmesonad:
Suured keelemudelid, Kédsu kavandamine, Loomuliku keele to6tlus, Kontrollsiisteemide
kavandamine, Matlab, Tagasiside ahel, PID kontroller

CERCS: P170 Arvutiteadus, arvutusmeetodid, siisteemid, juhtimine (automaatjuhtimis-
teooria)
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1 Introduction

Control Systems have played a crucial role in the advancement of science and engineer-
ing. Control systems find ubiquitous applications from space vehicle systems, missile
guidance systems to manufacturing and industrial process control. Modern day comput-
ers are the integral part of control system engineering development. Control engineering
is applicable in various fields of engineering and it’s use is so widespread in technology
that not finding a working system control circuitry or provider in it is very unlikely.
Without advances in control system design a lot of fields like space travel, music systems,
industrial production etc would be far from where they are now.

A physical system’s behavior can be interpreted as the output of that system in re-
sponse to some input. Control Systems are used to regulate that response by representing
the physical system mathematically in the frequency or time domain. In the context of
Control Systems a system is defined as a set of interconnected objects where the objects
and attributes have a specific relationship. Any part of a system that we want to control
is called a plant or process. The input is applied to the plant and produces the output
so to get the desired output we need to send the appropriate input (Figure 1 (a)). A
controller is added between the plant and the input when disturbances occur in the system
to compensate for the disturbances (Figure 1 (b)). The controller’s output signal is the
correct input signal for the plant to get the desired output.

(a)

Input Plant

—> or — Output
Process
(b) Disturbance
+

Input n l Plant

— Controller —bo—b or — Output
Process

Figure 1. (a) A plant without a controller and (b) A plant with a controller [Pal22].

1.1 Feedback in Control Systems

An open loop system is defined as the system in which the control action (actuating
signal) is independent of the output or the desired result [Pal22]. Using a simple D.C.
motor speed control system (Figure 2) as an example the speed of rotation w (output
of the system) depends on the voltage V, (input that causes control action). If the load
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increases, then the speed w decreases unless the voltage V, is also increased. And also
in reverse, if the load decreases, then the speed w increases unless the voltage V, is
also decreased. Having to adjust this manually will require constant attention from the
operator.

Vv, W
M

Load

A4

Control action

Figure 2. Block diagram representation of a speed control system [Pal22].

However when a D.C. tachogenerator (a device that generates voltage proportional to
speed) T is connected to the motor and it’s output V7 is compared to the input voltage V,
then the system becomes a feedback or closed loop system(Figure 3). The difference
Vo — Vr (also called Actuating Signal or Error Signal) can be used to increase or decrease
the input voltage in order to maintain a constant speed w without the operator having to
manually adjust.

L
Error detector
Vo+ V=Vp N ®
AN A VR S ™Y
Reference Input — Desired output
Vr T Control action
or actuating
signal
T d
Feedback

Figure 3. Block diagram of a closed loop D.C. motor speed control system [Pal22].

A system can also be designed with positive feedback where the Actuating Signal
becomes V,, + V7. In this case, instead of rejecting load side disturbances and maintaining
a steady speed, it would mean that the system exaggerates the disturbances. If the load
increases, then w decreases. This then decreases V; which in turn decreases w which again
decreases V; until the speed finally becomes zero. If the load is reduced, then w increases
which in turn increases V; which in turn increases w. This cumulative increase in speed
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may reach dangerous levels and damage the system and is called an unstable mode of
operation. In practice only negative feedback is employed (except for selective cases like
oscillators). A closed loop system is defined as a system in which the measured output is
compared with the reference input. The control action depends upon the changes in the
output [Pal22].

1.2 State Space Modelling and Analysis

The transfer function (T.F.) model was used to analyse linear time invariant continuous
time systems, but it is severely limited because it is expressed as a ratio of output to
input variables. This means that the internal system behavior is hidden. The T.F. model
also requires initial conditions to be zero and cannot handle non-liner, time varying and
MIMO (multi-input and multi-output) or large-scale complex systems.

These limitations are remedied by using a state space model where n first order
equations are used in a specific format to represent a differential equation model. This
representation completely describes the behavior of all the physical variables in the
system and is valid for linear, non-linear and time varying systems even when initial
conditions are not zero.

1.2.1 The State of a System and State Equation of Continuous Time System

For a linear continuous time system, the state of a system is defined as the minimum
number of initial conditions that must be specified at any initial time ¢, so that the
complete dynamic behaviour of the system at any time ¢ > ¢, is determined when the
input u(t) is known [Pal22].

This means that the future states of the system are also determined by and change
with the input u(t). These are called state variables since they track the state in time. The
number of state variables varies depending on the physical system: n state variables are
required for a nth order differential equation and define the n dimensional state space. If
there are less than n state variables then the system is not fully represented. If there are
more, then some of the state variables are redundant and can be derived from others.

1.2.2 Vector Matrix Differential Equation of Continuous Time System

State variable equations are expressed in time using compact vector matrix notations.
These equations are called vector matrix differential equations [Pal22] and their standard
form is shown in (Figure 4).

The state equation(1) and the output equation(2) combined describe the system
dynamics. The equations can also be represented as a block diagram (Figure 5).

The dimension of matrices A, B and C' depend on the dimensions of the vectors x, u
and y. In most applications, D = 0 as the direct input u(t) to output y(¢) transmission is



©(t) = Az(t) + Bu(t) (1)
y(t) = Ca(t) + Du(?) (2)

Figure 4. Vector matrix differential equations [Pal22]. Symbol descriptions: @(t) =
State vector (n x 1 dimension); y(t) = Output vector (p x 1 dimension); u(t) = Input
vector (r x 1 dimension); A = State matrix (n x n dimension); B = Input matrix (n X r
dimension); C' = Output matrix (p X n dimension); DD = Direct transmission matrix (p X r
dimension)

+
+ x(7) x(1) (1)
u(?) , B fdr . c + Y

Figure 5. Block diagram of state equations (1) and (2) [Pal22].

not done. It should be observed that only the first derivative of x(¢) appears on the left
side of the equation and no derivative of z(¢) appears on the right side.

The state equations are solved in both time and frequency domains. In the frequency
domain, a Laplace Transform method is used.

1.2.3 Laplace Transform Solution of State Equations [Pal22]

When we take the Laplace transform on both sides of the state equation (1) of the vector
matrix differential equations (Figure 4), we get

sX(s) —x(0) = AX(s) + BU(s)

3
sl — A)X(s) = z(0) + BU(s) )

after pre-multiplying both sides of equation (3) by [sI — A] ™!, we get
X(s) = [sI — A7 [z(0) + BU(s)] @

= ¢(s)[z(0) + BU(s)]

where



¢(s) = [sI — A]™!

5
X(s) = 6(3)2(0) + G(s)BU(s) ©

then we take the inverse Laplace transform and get
w(t) = L7 p(s)2(0)] + L™ [¢(s) BU(s)] (6)

¢(s) defined in equation (5) is the state-transition matrix (STM). In equation (6),
L™[¢(s)x(0)] gives the zero input response and L~ '[¢(s)BU(s)] gives the zero state
response.

1.3 Control System and MATLAB

The main objective in control systems is to regulate the behavior of a physical system in
terms of the input to that system. The behavior of a physical system can be viewed as the
output of that system and can be represented mathematically in the time or frequency
domain. A physical system needs to be converted to a mathematical representation to
implement the concepts of control systems. The opposite is also sometimes necessary.

MATLAB (Matrix Laboratory) is an environment for engineers of all domains to
create algorithms and models to use programming capabilities to compute and analyse
numerical data. It was originally intended to perform operations on vectors and matrices,
but several toolboxes that enable operating on control systems, signal/image processing,
deep learning, robotics and so on have been developed over the years. MATLAB is a
high-level programming language and the platform offers high graphic capability for
visualizing in 2D and 3D.

1.3.1 Frequency Response

Control Systems behavior (system response) is characterized by a quantity called transfer
function. The transfer function is computed either in the time or frequency domain. The
transfer function H (s) in the frequency domain (s = o + iw) is given as the ratio of two
polynomials that shows the behavior of the system at different frequency components
given by [Pal22]:

(7)

where the real part of the Re(s) = o gives the attenuation and the imaginary part
Im(s) = w shows the oscillations, L is the Laplace transform, z(¢) is the input function
and y(t) is output function.
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1.3.2 Liner Time-Invariant System (LTI)

Linear time-invariant systems have two distinctive characteristics: linearity and time
invariance [Hos22]. Linearity here refers to the final output of the control system is the
sum of the effect of individual input applied to it (Figure 6). Time invariance means that
the output is not dependent on the time the input is applied - if the same input is applied
at different timings, the output will still be the same.

X(t) —>{ L — vilt) Xt) —>» L > vyalt)

(a) (b)

Xi(t) + x;(t) == L > vilt) +vyalt)

(c)

Figure 6. Illustration of linearity. Outputs change linearly according to inputs, summing
the inputs x1(¢) and x5 () results in summing the outputs y; (¢) and y»(t) [Hos22].

X(t)=> L == yilt) x(t#1) —» L = y(t+l)

(a) (b)

Figure 7. Illustration of time invariance. If a system produces output y(t) for input x (%)
and the input is shifted to (¢ 4 1) then the output is also shifted to y(¢ + 1) [Hos22].
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2 Code comprehension

Using Large Language Models(LLMs) for code generation is not a new idea and has
recently gained considerable attention but existing models are still not very good at it.
The most promising approaches are based on transformer-based large-scale language
models which have been very successful in the text domain [YLZ"23, CHW24].

These models, such as Codex [CTJ*21] and AlphaCode [LCC*22], generate code
by applying a transformation from natural language descriptions into programming
language and this has worked for Python, Java and C languages. Though the passing
rates are fairly low (Figure 8): Codex gets 24.52% / 3.08% [CTJ"21] and AlphaCode gets
20.36% / 7.75% [LCC*22] on introductory-level/competition-level tasks from APPS
dataset [HBK"21]. One of the main culprits is their lack of awareness of program
semantics. Because of the way the transformers treat the description and code as token
sequences the deep semantic features of programs are lost. This can manifest itself
making the model fixate on some keywords while ignoring the rest of the context.

Model Introductory-level tasks | Competition-level tasks
Codex 24.52% 3.08%
AlphaCode | 20.36% 7.75%

Figure 8. Performance of Codex [CTJ"21] and AlphaCode [LCC*22] in code generation
tasks on the APPS dataset [HBK"21].

This issue applies double fold as this loss of deep semantic features happens when
trying to understand the natural language description aswell. Generating a program
requires understanding the entire task description which usually contains complex logic
and dependencies.

A recent study has discovered that automatically generated code shares common
programming mistakes with human-crafted solutions (which makes sense as these models
are trained on human-crafted code) and that by applying automated program repair(APR)
to model generated code, the results can be improved [FGM*23]. They identified that
the main issues were incomplete code, invoking undefined variables/functions/classes
and using the wrong algorithms. They also found that auto-generated programs contain
certain anti-patterns: variable names indicate wrong algorithms, repeated similar code
blocks and irrelevant helper functions. The main reasons for these issues are limited
search space, inability to produce multi-edit patches and lack of awareness of program
dependencies.

For code comprehension we try to turn the problem around and instead of the input
being the natural language description and the output being the code, we instead use the
code as the input and expect natural language description as the output.
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In the case of MATLAB code in the Control Code domain, this issue of losing deep
semantic features in token sequence transformation could be even worse, because this
language is very succinct - it packs a lot of semantics into very little syntax. Or the
issue could be mitigated instead. The more succinct syntax could help the transformer
understand the meaning better, because it’s not so distributed, so the training examples
"pack a bigger punch". Also the context of Control Code may give the models a narrower
path to traverse (so they don’t get sidetracked by confusing tokens and remain in context)
as the control approaches are quite standardized and follow a similar flow.
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3 Proposed methods

In this work we propose a method to use ChatGPT to explain, analyse and understand
MATLAB code. We use examples of code with varying levels of complexity and prompts
with differing levels of additional relevant information to check how this affects the
performance. We have designed a prompt and error metric which allow us to use
ChatGPT 4’s image input feature to measure code understanding. This is done by using
code examples that create MATLAB plots and have ChatGPT first describe the resulting
plot from the code and compare that result with description of the plot from an image.

3.1 Prompt engineering

The prompt has been engineered based on the Persona Pattern [WFH'23] to make
ChatGPT act as an expert MATLAB coder and analyst. Initially the idea was to use a
minimal prompt as a baseline, but it was hopelessly bad. The prompt has been designed
to give the best response and to be able to understand where it went wrong by using
different reasoning steps to push it into a space where the next tokens will form a coherent
and correct response.

The prompt also has some additional guiding lines that were added during trial and
error and a dynamic section for the explanation which is varied for different experiments.
The base prompt is shown in (Listing 1).

Act as an expert in control theory that has decades of
experience writing control code scripts in MATLAB.

These expert skills include but are not limited to
recognizing and intuiting the shape of the line a piece of
code will produce.

Pay special attention to how the variables can change over
iterations .

The user query will be some MATLAB code. Your task will be to
analyse the code following the reasoning steps and to
describe the resulting plot.

When asked for values, don't explain where these values can
be obtained from, just simulate the code and state the
values as best you can.

{explanation }

The <response to customer> in the final "Response to
user:{ delimiter }" step should strictly follow the provided
format,

where the text enclosed in <> should be replaced with the
described value and contain nothing else:

[plot shape: <shape of the plot>, maximum: <maximum value >,
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minimu: <minimum value >, pivot points: <pivot points >,
direction: <is the graph ascending, descending or mixed>,

x—intercepts: <points where the plot intercepts the x—axis>
y—intercepts: <points where the plot intercepts the y—-axis>]

Step 1:{delimiter} Explain the code line by line.

Step 2:{delimiter} What are the initial and final values on
for the plot axes?

Step 3:{delimiter} What type of control system is this
(Open—loop, closed—-loop, continuous, discrete , linear,
nonlinear , time—-invariant , time-varying , SISO or MIMO)?

Step 4:{delimiter} Emulate the code step by step and
calculate all the value changes

Step S5:{delimiter} Describe in words what the plot looks like
(poles, growth regions, dips etc)

Use the following format:
Step 1:{delimiter} <step
Step 2:{ delimiter} <step
Step 3:{delimiter} <step reasoning >
Step 4:{ delimiter} <step reasoning >
Step 5:{delimiter} <step 5 reasoning>
Response to user:{delimiter} <response to customer>

reasoning >
reasoning >

A W =

Make sure to include {delimiter} to separate every step and
don't forget the final response in the correct format
after the reasoning steps.

Listing 1. Base prompt.

3.2 Experiments

The experiment design is quite simple: ChatGPT is given instructions to play the role of
a developer and describe the plot resulting from the provided MATLAB control code
as the system message and the code itself as the prompt. There are 3 different levels of
code breakdown the check if this helps ChatGPT perform better:

* textual: just the instruction text with no additional explanation (Listing 1);

15



* logical: adding a breakdown of how the state-space model function works and
what it does internally (Listing 2);

* numerical: sames as logical, but additionally the internal variables of the state-
space model are calculated and provided (Listing 3).

The ss() function is a linear system solver. Calling
ss(A,B,C,D,ts) creates the discrete —time state —space model
object of the following form with the sample time ts (in
seconds ) :

x[n+1]=Ax[n]+Bu[n]

y[n]=Cx[n]+Du[n]

Where x, u and y represent the states, inputs and outputs
respectively , while A, B, C and D are the state —space
matrices

Listing 2. State-space model explanation.

For this code, the values after the ss() calls will be:

sysd => A = [[l, O0.1], [0, 1]], B = [0.005, O0.1], C = [1, O],
D=0, ts = 0.1

sysdCL => A = [[0.5, 0.025], [-10, -0.5]], B = [0.5, 10], C =
[T, 0], D=0, ts = 0.1

Listing 3. State-space model values.

3.3 New Metric

The metric equation (8) for measuring the performance of ChatGPT consists of two
equally weighted parts. The first part is the ratio of tokens reused from the prompt
(more reused words means lower value) - this is to penalize the model for just reusing
the prompt itself. The second part calculates the cosine similarity between the ground
truth and the response (in this case, the difference between how the model describes the
plot from a picture vs how it describes the plot from the code). These values are added
together and divided by two to get a value between 0 and 1. The code for calculating the
metric is shown in (Listing 4). Only the part of the response in "<response to customer>"
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is considered for the error calculation, the reasoning steps are there only for instruction
and debugging purposes. The response received from ChatGPT 4 about the plot doesn’t
have the reasoning steps (and they wouldn’t make sense to compare as the reasoning is
completely different from code or a graph) so including them would make the comparison
useless.

E = 0.5 x [reusedtokens] 4+ 0.5 x [cosinesimilarity] (8)

1 def get_metric(prompt, response, truth):
2 return 0.5 = count_reused_tokens (prompt, response) + 0.5
%+ get_cosine_similarity_by_words (response , truth)

Listing 4. Code for calculating the metric in equation (8).

3.3.1 Counting reused tokens

Counting the reused tokens is done fairly simply (Listing 5): first we use the tiktoken
package to tokenize the texts, then we remove duplicate words (convert to sets) and
count the words that were reused. Finally we calculate the ratio and invert it so it is
compatible with cosine similarity (when comparing against ground truth, more similarity
means higher value, but when comparing against the prompt, more similarity means
lower value).

i import tiktoken
def tokenize (text, model="gpt-3.5—turbo"):
4 return

tiktoken .encoding_for_model ("gpt—-3.5—-turbo").encode(text)

¢ def count_reused_tokens(a, b):

7 a_tokenized = set(tokenize(a))

8 b_tokenized_set = set(tokenize (b))
9

10 count = 0

B for token in a_tokenized:
12 if token in b_tokenized_set:
13 count += 1

15 return 1 — count / len(a_tokenized)

17



Listing 5. Code for counting reused tokens.

3.3.2 Ground truth

The ground truth for the MATLAB control codes is obtained by using the image input
capability of ChatGPT 4. The control code snippets are run in MATLAB and ChatGPT
4 Grimoire [CSY"24], which is a specially trained expert coder instance of ChatGPT
4, is asked to describe a screenshot of the resulting plot. We tried to design the prompt
(Listing 6) in such a way that the response from the image and prompt would be as
similar as possible to the one from the code and prompt.

Please describe this graph as accurately as you can. Your
response should strictly follow the provided format, where
the text enclosed in <> should be replaced with the
described value and contain nothing else:

[plot shape: <shape of the plot>, maximum: <maximum value >,
minimu: <minimum value >, pivot points: <pivot points >,

direction: <is the graph ascending, descending or mixed>,
x—intercepts: <points where the plot intercepts the x—axis>

y—intercepts: <points where the plot intercepts the y-axis>]

Listing 6. Prompt for ChatGPT 4 to get the ground truth for plot description.

3.3.3 Cosine similarity

In data analysis, cosine similarity is a measure of similarity between two non-zero vectors
defined in an inner product space. Cosine similarity is the cosine of the angle between the
vectors; that is, it is the dot product of the vectors divided by the product of their lengths.
It follows that the cosine similarity does not depend on the magnitudes of the vectors,
but only on their angle. The cosine similarity always belongs to the interval [-1,1]. For
example, two proportional vectors have a cosine similarity of 1, two orthogonal vectors
have a similarity of 0, and two opposite vectors have a similarity of -1. To calculate the
similarity of the embedding vectors, we use OpenAl’s API to get the word embeddings
for the ground truth and response (Listing 7).
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I import numpy as np
> from numpy.linalg import norm

+ def get_cosine_similarity (A, B):
5 return np.dot(A, B)/(norm(A)#norm(B))

7 def get_cosine_similarity_by_words(a, b):
8 A = get_openai_word_embeddings(a)

9 B = get_openai_word_embeddings (b)

3 return get_cosine_similarity (A, B)

Listing 7. Code for calculating cosine similarity.

3.4 Results

For each prompt and code example combination, the prompts are run 10 times and the
results are averaged.

3.4.1 Code example 1 results (Figure 9)

c _— S

0.80 - -
Textual prompt  Logical prompt Numerical prompt

Prompt type

Figure 9. Results for deadbeat controller code example (Listing 8).
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3.4.2 Code example 2 results (Figure 10)

|-

=]

£ 090 I
]

J_—
g
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Figure 10. Results for code example 2 (Listing 11).

3.4.3 Code example 3 results (Figure 11)
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Figure 11. Results for code example 3 (Listing 14).
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3.4.4 Code example 4 results (Figure 12)
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Figure 12. Results for code example 4 (Listing 17).

3.4.5 Code example 5 results (Figure 13)
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Figure 13. Results for code example 5 (Listing 20).
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3.4.6 Results combined over all code examples

Finally we combine all the code examples together to see if the prompt improvements
had an overall effect on performance and find that it is negligible (Figure 14).

0.95
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Error
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Figure 14. Results combined over all code examples.

3.5 Code examples

Here we list all the control code examples with explanations that were used to assess
ChatGPT’s understanding. The comments in the code are added for reader clarity and
were removed when presented to ChatGPT.

3.5.1 Example 1 of plant controller MATLAB code
Code example (Listing 8 for a deadbeat controller [NMBM98].

i // Deadbeat controller

// Plant Model

T=0.1;
F=[1,T;0,1];g=[T*2/2;T];c=[1,0];
sysd=ss(F,g,c,0,T);

// Pole Placement

polesCL=[0,0];
k=acker (F, g, polesCL)

o //Step Response

o sysdCL=ss (F-g«k,100%g,c,0, 'Ts"',T);
11 step (sysdCL)

[ IS T~ N T S O SO )
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> stepinfo (sysdCL)

Listing 8. Example 1 of plant controller MATLAB code (plot in Figure 15)

And ChatGPT 3.5’s response (Listing 9). Showing this example specifically to
indicate that sometimes the prompt doesn’t work almost at all (notice that the "Response
to user" is mostly just spitting out the values without replacement.

Step 1:####

— "T=0.1": Assigns the value 0.1 to the variable T.

- "F=[1,T;0,1]": Creates a matrix F with values 1, T, 0, and
1.

— "g=[T"2/2;T] : Creates a column vector g with elements
T~2/2 and T.

— “¢=[1,0]": Creates a row vector ¢ with elements 1 and O.

— “sysd=ss(F,g,c,0,T) : Creates a discrete —time state —space
system in MATLAB with the state matrix F, input matrix g,
output matrix c¢, and zero-order—-hold on the input with a
sample time of T.

— “polesCL=[0,0]" : Initializes the desired closed-loop poles.

— “k=acker(F,g,polesCL) ": Calculates the state feedback gain
matrix k using the Ackermann method.

— "sysdCL=ss (F-gxk,100%g,c,0, 'Ts"',T) *: Creates a closed—-loop
discrete —time state —space system with the state matrix
F-g«k, input matrix 100%g, output matrix c, and
zero—order —hold on the input with a sample time of T.

— “step(sysdCL) ": Plots the step response of the closed-loop
system .

— “stepinfo(sysdCL) ": Calculates and displays the step
response characteristics of the closed-loop system.

Step 2:####

Since the code generates a step response plot, the initial
value for the plot axes will be at 0, and the final values
will depend on the response characteristics of the system.

Step 3:####
This is a closed-loop, discrete , linear , time-—invariant,
Single —Input Single -Output (SISO) control system.

Step 4:####

— The state matrix F is [[1, 0.1]; [0, 1]]

— The input matrix g is [0.005, 0.1]

— The output matrix ¢ is [1, O]

— The state feedback gain matrix k is calculated as k = [20,
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1]

— The closed-loop state matrix Fcl is [[0.8, -0.005]; [-20,
0711

— The closed—-loop input matrix gcl is [0.5, 10]

— The step response plot is generated with the closed-loop
system .

Step S:####

The plot shape will be a step response. The system may
exhibit overshoot or settling time based on the poles'
location. The graph will rise initially , potentially
overshoot, and then settle to a final value.

Response to user:####

[plot shape: step response, maximum: <maximum value >,
minimum: <minimum value >, pivot points: <points of
interest >,

direction: mixed, x—intercepts: <points where the plot
intercepts the x—axis>, y—intercepts: <points where the
plot intercepts the y—axis>]

Listing 9. Example ChatGPT 3.5 response to deabdeat controller MATLAB code (Listing
8, Figure 15)

And here is Grimoire’s [CSY 24] response (Listing 10) to the actual plot of the code
in MATLAB (Figure 15).

[plot shape: step, maximum: 1, minimum: O, pivot points:
0.2, 1), (0.4, 0.5), (0.6, 0.5), direction: mixed,
x—intercepts: none, y—intercepts: (0,1)]

Listing 10. ChatGPT 4 response to the plot of deadbeat code example (Figure 15).

3.5.2 Example 2 of plant controller MATLAB code

MATLAB code (Listing 11) for simulating a closed loop control system for 10 seconds
with 0.1 second intervals.

i // Plant parameters (m,b) and time parameter t are set, then
the control input variable (u) is initialised

24



08 ]

Amplitude
f=]
o
T
1

04} .

02} g

G L L L L L L L L L
0 02 04 06 08 1 12 14 16 18 2
Time (seconds)

Figure 15. Plot for deadbeat controller code example (Listing 8).

> m = 1000;

s b = 50;

+ t = 0:0.1:10;

s u = 500xones(size(t));

7 // Plant dynamic matrices are defined

s A = [-b/m];

o B = [1/m];

n C=[1];
D= [0];

i3 // Get the state space model of the plant by running the ss()

function
1 sys = ss(A,B,C,D);

i // Initialize the plant system variable
7 x0 = [0];

v // Set the pole position
0 pl = —1.5;

» // Generate the control gain K using the pole placement
technique
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Figure 16. Plot for code example 2 (Listing 11).

3 K = place (A,B,[pl])

24

»s // Get the state space model of the closed-loop system (i.e.,
plant + controller)

% sys_cl = ss(A-BxK,B,C,D);

27

s // Simulate the closed-loop systems for 10 seconds starting
from the initial state valuation

2 lsim(sys_cl,u,t,x0);

Listing 11. Example 2 of plant controller MATLAB code (plot in Figure 16)

And ChatGPT 3.5’s response (Listing 12). Showing an example of the entire response
with the reasoning steps, even though only the final piece is considered for the metric
calculation.

Step 1:####
— 'm = 1000;": Assigns a value of 1000 to the variable "m",
representing the mass.
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— 'b = 50; : Assigns a value of 50 to the variable b’ ,
representing the damping coefficient.

- "t = 0:0.1:10; " : Creates a time vector from 0 to 10 with a
step size of 0.1.
— "u = 500xo0ones(size(t)); : Creates an input vector “u" with

the same size as 't , filled with 500.

— A = [-b/m]; " : Defines the state matrix "A° for the

state —space system.

‘B = [1/m]; " : Defines the input matrix "B’ for the

state —space system.

— 'C = [1]; " : Defines the output matrix "C for the
state —space system.

— 'D = [0]; " : Defines the feedthrough matrix D" for the
state —space system.

— "sys = ss(A,B,C,D); " : Creates a state —space system ~sys
with the defined matrices.

- x0 = [0]; ": Sets the initial state vector "x0° to O.

- 'pl = —-1.5;": Sets the desired pole location for the
controller.

— 'K = place(A,B,[pl]) ": Calculates the state feedback gain
matrix "K' using pole placement.

— “sys_cl = ss(A-BxK,B,C,D); : Creates a closed-loop
state —space system "sys_cl by incorporating the state
feedback.

— “lsim(sys_cl,u,t,x0); : Simulates the response of the
closed —loop system to the input “u’ over time "t with
initial state “x0°.

Step 2:####
The initial value for the plot axes is 0, and the final value
for the plot axes is 10 for the time vector "t~

Step 3:####
This is a closed—-loop control system with state feedback.

Step 4:####

- A =[-b/m] : A= [-50/1000] = [-0.05]

- 'B=[1/m] : B = [1/1000] = [0.001]

- C=111"

- D= 1[0]"

- 'K = place(A,B,[pl]) ": K= [-0.05 - 0.001«pl] = [-0.05 +
0.001«1.5] = [-0.0485]

Step S:####
The plot shape is a decaying exponential curve starting from
the initial state of O due to the negative pole placement.
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The maximum value is 500, and the minimum value approaches
0. The graph is descending and intersects the x—axis at
approximately 6.9 and the y-axis at O.

Response to user:####

[plot shape: decaying exponential curve, maximum: 500,
minimum: 0, pivot points: N/A, direction: descending,
x—intercepts: 6.9, y—intercepts: O]

Listing 12. Example ChatGPT 3.5 response to code example 2 of plant controller
MATLAB code (Listing 11, Figure 16)

And here is Grimoire’s [CSY 724] response (Listing 13) to the actual plot of the code
in MATLAB (Figure 16).

[plot shape: exponential saturation , maximum: 0.4, minimum:
0, pivot points: (0, 0) to (3, 0.4), direction: ascending
then constant, x—intercepts: none, y—intercepts: (0, 0)]

Listing 13. ChatGPT 4 response to the plot of code example 2 (Figure 16).

3.5.3 Example 3 of plant controller MATLAB code

MATLAB code for a more complex control system with an integrator (Listing 14).

1 // Plant parameters and time parameter t are defined.

: ml = 2500;

+ m2 = 320;

s k1 = 80000;
o k2 = 500000;
7 bl = 350;

s b2 = 15020;

0 A= [0 1 0
0
I —~(b1%b2)/(ml+m2) 0
((b1/ml) #((bl/ml)+(bl/m2)+(b2/m2)))—(k1/ml)  —(bl/ml)
: b2 /m2 0 —((bl/ml)+(bl/m2)+(b2/m2))

1
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k2 /m2 0 —((kl1/ml)+(k1/m2)+(k2/m2))

0];
B = [0 0
1/ml (b1%b2)/(ml*m2)
0 —(b2/m2)
(1/ml) +(1/m2) —(k2/m2) ;
C = 1[0 0 1 0];
D = [0 0];

sys = ss(A,B,C,D);
step(sys=[0;1]%.1,0:0.0001:.005);

// Continuous to discrete conversion of the plant model

T = .0005;
d_sys = c2d(sys,T, 'zoh")

// Adding an integrator to the system in order to drive the
steady —state response to zero

Ai = 1;
Bi = T;
Ci = 1;
Di = T/2;

[As,Bs,Cs,Ds]=ssdata(d_sys);
Aa = [As, zeros(4.,1);
BixCs, Ai];

Ba = [Bs;
0,0];

Ca = [Cs, O0];

Da = Ds;

d_sys_int = ss(Aa,Ba,Ca,Da,T);
[Ad,Bd,Cd,Dd] = ssdata(d_sys_int);

/!l Designing the controller. We use the place command to
compute the gain matrix , K, which will, in feedback, give
us the desired closed-loop poles.

sysl = d_sys_intx[1;0]; //select the first input
[num,den] = tfdata(sysl, 'v');

zZ = roots(num)
pl = z(1);

p2 = z(2);

p3 = z(3);

p4 = .9992;
pS = .5;

K=place (Ad,Bd=[1;0],[pl p2 p3 p4 pS51])
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// Simulating the closed—-loop response

d_sys_cl = ss(Ad-Bd=[1;0]«K,Bd,Cd,Dd,T);
step(—.1xd_sys_cl«[0;1],5);

d_sys_cl = ss(Ad-Bd=[1;0]+«K,Bd,Cd,Dd,T);
step(—.1%xd_sys_cl=[0;1],5);

axis ([0 0.1 -.01 .01])

Listing 14. Example 3 of plant controller MATLAB code (plot in Figure 17).

And ChatGPT 3.5’s full response (Listing 15).

Step 1:####

The code defines system parameters such as masses (ml, m2),
spring constants (kl, k2), damping coefficients (bl, b2),
and creates state —space matrices A, B, C, and D. It then
creates a state —space system (sys) and plots the step
response of the system for an input of 0.1 at time
instances from 0 to 0.005. It discretizes the system using
zero—order hold (zoh) method with a sampling time of
0.0005. It then creates an integral system and calculates
the poles. Next, it calculates the gain matrix K using
pole placement method and creates a closed—-loop system.
Finally , it plots the step response of the closed-loop
system for an input of -0.1 at time instances from O to 5
and sets the axis limits for the plot.

Step 2:####
The initial values for the plot axes are x—axis: 0, y—-axis:
—-0.01 and the final values are x—axis: 0.1, y—axis: 0.01.

Step 3:####
This is a closed —loop discrete —time Single—-Input
Single —Output (SISO) control system.

Step 4:####

— The poles of the discretized system are calculated as z =
[0.9992, 0.5, 0.5].

— The gain matrix K is calculated using the pole placement
method .

— The closed—-loop system is created using the calculated gain

matrix .

The step response of the closed-loop system for an input of

-0.1 is plotted over 5 seconds.

Step S:####
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The plot shape is a step response with multiple steps due to
the closed—-loop control. The plot starts at —-0.01, rises
to a maximum value, then settles at 0.01. The plot has a
mixed direction, initially descending and then ascending.
The pivot points are where the plot changes direction. The
x—intercepts are the points where the plot intercepts the
x—axis, and the y—-intercepts are the points where the plot
intercepts the y-—axis.

Response to user:####

[plot shape: step response, maximum: 0.01, minimum: -0.01,
pivot points: multiple, direction: mixed, X—intercepts:
multiple , y—intercepts: 0]

Listing 15. Example ChatGPT 3.5 response to code example 3 of plant controller
MATLAB code (Listing 14, Figure 17)

-~ Amplitude

-0.01 1 1 1 1 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 01
Time (seconds)

Figure 17. Plot for code example 3 (Listing 14).

And here is Grimoire’s [CSY *24] response (Listing 16) to the actual plot of the code
in MATLAB (Figure 17).
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[plot shape: step function, maximum: 0.004, minimum: -0.0004,
pivot points: (0.002 seconds, 0.004), direction:
ascending , x—intercepts: none, y—intercepts: (0 seconds,
-0.0004) ]

Listing 16. ChatGPT 4 response to the plot of code example 3 (Figure 17).

3.5.4 Example 4 of plant controller MATLAB code

MATLAB code for the most complex control system example (Listing 17). This is used
for comparing two different control schemes (with switching and without) and plots a
different graph depending on which variable is used (plot_vector_1 or plot_vector_2).

// Description of the plant system. Plant parameters are
defined .
lc;
= 3.2284E-6;
= 3.5077E-6;
= 0.0274;
2.75E-6;
= [0 10
0 -b/J K/J
0 -K/L -R/L7J;
= [0 ; 0 ; I/L];

> ART —o0
I

= [0];
lant = ss(A, B, C, D);

B

» C =11 0 0];
D
p

// Setting the sampling period

Ts=0.005;
// State space equation of plant—— discrete time
state_noise = 0;

Z0H = c2d(plant ,Ts, 'zoh");
[Apd, Bpd, Cpd, Dpd] = ssdata (ZOH) ;
[K]=place (Apd,Bpd,[0.2,0.7,0.8]);

/! Setting parameters for the simulation.

control_sampling_time=Ts;
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» simulation_sampling_time=10"(-6);

50 total_running_time =0.5;

51 total_samples=ceil(total_running_time/simulation_sampling_time);

» time_axis_l=zeros(1l,total_samples);
time_axis_2=zeros(1,total_samples);

3+ plot_vector_l=zeros(l,total_samples);

35 plot_vector_2=zeros(1l,total_samples);

37 // Defining the closed-loop plant control system
33 [dim_s ,dim_i]=size(Bpd);

39 Ac=[Apd Bpd;-K zeros(dim_i,dim_i)];

40 Ao=[Apd Bpd;zeros(dim_i,dim_s) eye(dim_i) ];

11 abs(eig(Ac));

4 /] Setting some control execution patterns

4s Plant_1_sequence_2="1010010010101001001001010 ";
4 Plant_1_sequence_1="1011011010101011011001010 ";

4 [/ Initializing system variables and simulation environment

so initial_value =[0.3;0.5;0.1];

si [u length]=size(Plant_1_sequence_1);
s> pointer =0;

53 sequence=Plant_1_sequence_1;

s+ v=initial_value;

ss v_read=v;

s u=0.01;

ss // Simulation of the plant control systems

o for i=1l:total_samples

61 dv=(Axv+B=*(u)+state_noise )*xsimulation_sampling_time ;

) v=v+dv;

63 if(~mod(i,(control_sampling_time/simulation_sampling_time)))
64 u=(-1)*Kx*(v_read);

65 if ((sequence(pointer+1)—-48)==0)

66 v_read=v;

67 end

68 pointer=pointer+1;

69 pointer=mod( pointer ,length);

70 end

71 if(norm(v)>1)
72 sequence=Plant_1_sequence_1;

end
74 time_axis_1(i)=total_running_time=i/total_samples;
75 plot_vector_1(i)=Cxv;

76 end
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73 pointer =0;

v sequence=Plant_1_sequence_2;
o v=initial_value;

g1 v_read=v;

22 u=0.01;

s for i=1:total_samples

84 dv=(Axv+B=*(u)+state_noise )xsimulation_sampling_time ;
85 v=v+dv;

86 if(~mod(i,(control_sampling_time/simulation_sampling_time)))
87 u=(-1)*K=*(v_read);

88 if ((sequence (pointer+1)—-48)==0)

89 v_read=v;

90 end

91 pointer=pointer+1;

92 pointer=mod( pointer ,length);

93 end

94 if(norm(v)>1)

95 sequence=Plant_1_sequence_2;

96 end

97 time_axis_2(i)=total_running_timexi/total_samples;

08 plot_vector_2 (i)=Cxv;

9% end

0 plot(time_axis_1,plot_vector_1),xlabel( 'Time(s) '),
02 ylabel('Voltage '),title('Plant 1: with switching');
103 grid on;

Listing 17. Example 4 of plant controller MATLAB code (plot in Figure 18).

And ChatGPT 3.5’s full response (Listing 18).

Step 1:####

The code initializes several variables related to a control
system , such as the system matrices A, B, C, and D, the
plant model, the sampling time, and the control gains. It
then sets up parameters for simulation time, initializes
arrays for time, plot vectors, and sequences. It also
defines two different sequences for the plant, initializes
the initial state of the system, and sets a state noise
value .

Step 2:####

The initial and final values for the plot axes are not
explicitly defined in the code. However, based on the
simulation setup, the x—axis (time) ranges from 0 to 0.5
seconds , and the y-—axis (voltage) values are determined by
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the system dynamics during the simulation.

Step 3:####

This is a discrete —time closed—-loop control system due to the
discretization of the plant using zero—order hold (ZOH)
and the use of a feedback controller to update the control
input based on the system state.

Step 4:####

The code simulates the system dynamics for two different
plant sequences with switching behavior. It calculates the
state evolution based on the system dynamics equation ,
updates the control input using a state feedback
controller at specific intervals , and switches between
sequences based on a condition related to the system
state 's norm exceeding a threshold.

Step S:####

The plot will show the response of the system (voltage) over
time for Plant 1 with switching behavior. The plot will
exhibit changes in the voltage output based on the two
different plant sequences and the corresponding control
inputs. The plot will have multiple peaks and valleys,
reflecting the dynamic behavior of the system under the
influence of control action and sequence switching.

Response to user:####

[plot shape: oscillatory with peaks and valleys , maximum:
<maximum voltage value>, minimum: <minimum voltage value>,
pivot points: multiple peaks and valleys, direction:
mixed, x—intercepts: points where the plot intercepts the
x—axis, y—intercepts: points where the plot intercepts the
y—axis]

Listing 18. Example ChatGPT 3.5 response to code example 4 of plant controller
MATLAB code (Listing 17, Figure 18)

And here is Grimoire’s [CSY 24] response (Listing 19) to the actual plot of the code
in MATLAB (Figure 18).
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Figure 18. Plot for code example 4 (Listing 17).

[plot shape: exponential decay, maximum: approximately 0.35,
minimum: approximately 0.0, pivot points: (0.05, 0.15),
(0.05, -0.05), direction: descending, x—intercepts:
approximately 0.05, y—-intercepts: approximately 0.35]

Listing 19. ChatGPT 4 response to the plot of code example 4 (Figure 18).

3.5.5 Example 5 of plant controller Python code

Added one control code script in Python (Listing 20) to see how much the programming
language matters.

i import numpy as np
> import matplotlib.pyplot as plt
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initial_loc =[[2],[3]]

a=np.array ([[1,0.13],[0,1]])
b=np.array ([[0.02559],[0.3937]])
c=np.array ([1,0])

d=0

x=np.array (initial_loc)
x_prev=np.array ([[O],[O0]])
y=I[]

x1=[]
x2=[]
u=[]

for t in range(150):
ut=np.dot(np.array ([0.2935,0.4403]) ,x_prev)[0]
u.append (ut)

x_new=np.dot(a,x)+ut=*b
x1.append (x_new [0][0])
x2 .append (x_new [1][0])
y.append (np.dot(c,x_new) [0]+d=xut)

X_prev=x
X=X_new

plt.xlabel("t")

plt.plot(range(150) ,[x2[i]/x1[i] for i in range(150)])
plt.ylabel ('x2/x1")

plt.show ()

Listing 20. Example 5 of plant controller Python code.

And ChatGPT 3.5’s full response (Listing 21).

Step 1:####

The code imports necessary libraries , initializes some
variables , defines matrices a, b, ¢, and d, sets initial
values for x, x_prev, and y, and then iterates over a loop
to calculate and store values in lists x1, x2, and u.
Finally , it plots x2/x1 against time.

Step 2:####

The initial values on the plot axes are set by the
initial_loc wvariable, which is [[2],[3]]. The final values
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will depend on the calculated values in the loop for xlI
and x2.

Step 3:####
This code represents a continuous, time—invariant, linear,
SISO (Single Input Single Output) control system.

Step 4:####

— In each iteration , the code calculates the control input ut
using the previous state x_prev and a predefined vector.

— It then computes the new state x_new based on the current
state x, the control input ut, and matrices a and b.

— The code also calculates the output y based on the state
x_new and matrices ¢ and d.

— The values for x1, x2, and u are stored in lists x1, x2,
and u respectively.

— The state x is updated for the next iteration.

— The code plots x2/x1 against time.

Step S:####

The plot will show the ratio x2/x1 as a function of time. It
will provide insights into the relationship between the
two states x2 and x1 over the duration of the simulation.

Response to user:####

[plot shape: line, maximum: <value >, minimum: <value>, pivot
points: N/A, direction: mixed, x—intercepts: N/A,
y—intercepts: N/A]

Listing 21. Example ChatGPT 3.5 response to code example 5 of plant controller code
(Listing 20, Figure 19)

And here is Grimoire’s [CSY 724] response (Listing 22) to the actual plot of the code
in MATLAB (Figure 19).

[plot shape: Sigmoidal , maximum: 1.450, minimum: 1.250, pivot
points: t = 20, direction: Ascending, x—intercepts: None,
y—intercepts: 1.250]

Listing 22. ChatGPT 4 response to the plot of code example 5 (Figure 19).
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Figure 19. Plot for code example 5 (Listing 20).

4 Inference

While running the experiments, I noticed that ChatGPT 3.5 is pretty good at high
level understanding but quite bad with details, especially when iterations and math are
concerned. This is most likely because it doesn’t know what math is, it only has some
approximations of how numbers are often written in different contexts (a kind of a
language perhaps).

4.1 Understanding the simplest code

After noticing that iterating code really confuses ChatGPT 3.5, we wanted to see how
bad it really is so we ran a few tests. It started with a very simple prompt (Listing 23)
and code snippet (Listing 24) which it managed to get everything correctly (Listing 25).

i The user query is a piece of code that simulates and plots
something .
> Your task is to run the code and return the values for the x
and y axes of the plot.
The final answer should contain only the values of the plot
vectors .
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+ The user query will be delimited with four hashtags,
s i.e. {delimiter }.

7 Step l:{delimiter} Explain the code line by line.

s Step 2:{delimiter} Figure out which variables are used for
the plot.

o Step 3:{delimiter} Emulate the code and display the values of
the variables after the execution.

i1 Use the following format:

» Step l:{delimiter} <step 1 reasoning>

3 Step 2:{delimiter} <step 2 reasoning>

4+ Step 3:{delimiter} <step 3 reasoning>

s Response to user:{delimiter} <response to customer>

7 Make sure to include {delimiter} to separate every step.

Listing 23. Simple code execution prompt.

a =[]
> for i in range(5):
a.append (i)

Listing 24. Simple loop example.

The high level description, the values and the plot - everything perfect.

1 Step 1:####
The code initializes an empty list named "a". It then
iterates over a range of 5 values (0 to 4) using a for

loop. During each iteration , the value of "i" is appended
to the list "a".

+ Step 2:####
s The variable "a" is used for the plot as it stores the values
that will be plotted.

7 Step 3:####

¢ After running the code, the list "a" will contain the values
[05 15 27 37 4]‘
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10 Response to user:####

11 The values for the x—axis would be [0, 1, 2, 3, 4] and the
values for the y-axis would be [0, 1, 2, 3, 4].

Listing 25. Simple loop response.

Then we tried with a slightly more complex example where instead of simply ap-
pending to the list, there is some math involved with the loop index (Listing 26) and still
no problemo (Listing 27).

a = []
for i in range(5):
a.append (2x%i + 17)

Listing 26. Medium loop example.

I #### Step 1:

> The code defines an empty list “a’ . Then, it iterates over a
range of 5 values, starting from O to 4, and appends the
result of "2%xi + 17° to the list “a . Finally, it plots
the values in list “a’

4 #### Step 2:
s The variable “a’ is used for plotting.

7 #### Step 3:
s After executing the code, the values of the variable “a’ are:
o a = [18, 19, 21, 25, 33]

i1 Response to user:#### The values for the x—axis would be [0,
1, 2, 3, 4] and the values for the y—-axis would be [18,
19, 21, 25, 33].

Listing 27. Medium loop response.

However when the math gets even more complicated and multiple variables have to
be tracked in different directions (Listing 28), then problems start to arise.
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s for 1 in range(5):

6 a.append ((2x%1 + b) / c¢)
7 b += 3

8 c —= 2

Listing 28. Hard loop example.

It still understands what the code does on a high level but iterating through it and
executing the math is beyond it’s capabilities (Listing 29). The code actually doesn’t
run: in the fifth iteration of the loop, the value of ¢ will be 0 and a division by zero error
will be thrown. And even if the code would not result in an error, the values are still
wrong. The actual values in the list should be [0.5,1.333...,3.25, 10, NaN] (last element
is NaN because of division by zero).

I #### Step 1:

> Step 1:####

3 — We initialize an empty list “a’

+ — We set b’ to 3.

s — We set "¢’ to 8.

o — We enter a loop that iterates 5 times.

7 — In each iteration , we calculate (271 + b) / ¢ and append it
to list “a’

s — We increment “b° by 3 in each iteration.

o — We decrement ‘¢’ by 2 in each iteration.

w — Finally , we plot the wvalues in list “a’

n Step 2:####
3 The variable used for the plot is “a’, which stores the
calculated values.

15 Step 3:##H#H#
i After emulating the code, the values of “a° for the plot are:
7 [0.625, 1.25, 0.875, 1.625, 2.125]

v Response to user:####
0 The values for the x—axis are [0, 1, 2, 3, 4], and the values
for the y-axis are [0.625, 1.25, 0.875, 1.625, 2.125].

Listing 29. Hard loop response.
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5 Conclusion and Future Work

This thesis proposes a novel prompt engineering method to tune LLMs for solving
the code comprehension task. We tune commercially available GPT 3.5 and GPT-4 to
comprehend the Matlab script that simulates the behavior of control systems. Different
types of control are studied, ranging from simple single-plant control to coupled control
systems. Three types of prompts are designed and used to test the capacity of Matlab
code comprehension. While the simple text prompt works well when the Matlab code
simulates the behavior of a simple plant control system, more sophisticated logical
prompts and numerical prompts are necessary to tune the LLM for comprehending
complex Matlab scripts. Our Matlab code is not well commented and documented.
Moreover, Matlab mainly solves the numerical time-invariant state-space equations under
the hood while simulation the behavior of the control system. This is very different
from the training methods of LLLMs, which are trained in an auto-regressive way on
the text corpus. The large deviations of the text distributions on which the LLMs are
trained and the coefficients matrix in the state-space equations make code comprehension
a hard problem. This thesis proposes a new concept of numerical prompt to address
this problem. This thesis proposes a new metric as an evaluation measure to check the
correctness of understanding of LLMs. The new metric is generalizable and can be used
in tasks beyond code comprehension. Our research findings hint current commercial
LLMs (GPT 3.5 and GPT-4) are good for solving language tasks but are not yet optimal
for solving complex tasks of code comprehension.

In our future work, we will extend our works of numerical prompts for code compre-
hension tasks on stochastic control systems. We will refine our proposed new metric to
other classes of problems.

Also it may be worthwhile to test these method on some open source models where
we could get more insight into what the model is actually doing.
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Appendix

I. Code repository

The code that was used for this thesis, is available in this Colab document:
https://colab.research.google.com/drive/ IHwaxiWp7EbC2dru3KWtfzZPmHBST 1 puzy

46



II. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Sander Sats,
(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Control Code Comprehension with Large Language Models (LLMs),
(title of thesis)

supervised by Kallol Roy.
(supervisor’s name)

2. 1 grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. T am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Sander Sats
15/05/2024

47



	Introduction
	Feedback in Control Systems
	State Space Modelling and Analysis
	The State of a System and State Equation of Continuous Time System
	Vector Matrix Differential Equation of Continuous Time System
	Laplace Transform Solution of State Equations automaticControlSystems

	Control System and MATLAB
	Frequency Response
	Liner Time-Invariant System (LTI)


	Code comprehension
	Proposed methods
	Prompt engineering
	Experiments
	New Metric
	Counting reused tokens
	Ground truth
	Cosine similarity

	Results
	Code example 1 results (Figure 9)
	Code example 2 results (Figure 10)
	Code example 3 results (Figure 11)
	Code example 4 results (Figure 12)
	Code example 5 results (Figure 13)
	Results combined over all code examples

	Code examples
	Example 1 of plant controller MATLAB code
	Example 2 of plant controller MATLAB code
	Example 3 of plant controller MATLAB code
	Example 4 of plant controller MATLAB code
	Example 5 of plant controller Python code


	Inference
	Understanding the simplest code

	Conclusion and Future Work
	References
	Appendix
	I. Code repository
	II. Licence


