
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Edgar Selihov

CloudTraceBucket: Cloud Trace
Visualization and Management Platform

Bachelor’s Thesis (9 ECTS)

Supervisor: Chinmaya Kumar Dehury, Ph.D.

Tartu 2022

CloudTraceBucket: Cloud Trace Visualization and Management Plat-
form

Abstract
Lately, the amount of data generated by cloud technologies has been growing exponen-
tially. To cope with this amount of data, various web tools and applications have been
developed by software engineers, scientists and researchers for statistics and analysis of
cloud traces. The problem is that cloud researchers should use a variety of web resources
to find the traces of the cloud data they need. In addition, the data must be manually
processed before it can be visualized. The goal of the thesis is to collect publicly available
cloud traces (e.g virtual machine’s behavior, serverless platforms, server workloads) and
create a web application that allows cloud researchers to easily upload, download and
visualize data based on user-selected query filters. The creation of this web application
would enable researchers to analyze cloud tracking data and consolidate all the data into
one place. The thesis mainly describes the cloud providers, their cloud traces along with
the development and architecture of the web application.

Keywords:
Web development, back-end development, front-end development, cloud traces, Kotlin,
Postgres, Spring Boot, REST, JavaScript, DB, Hibernate

CERCS: P170 Computer science, numerical analysis, systems, control

CloudTraceBucket: Pilve Jälgede Visualiseerimis- ja Haldusplatvorm

Lühikokkuvõte
Viimasel ajal on eksponentsiaalselt kasvanud pilvetehnoloogiate poolt genereeritud and-
mete hulk. Selle andmemahuga toimetulekuks on tarkvaraarendajad ja teadlased loonud
erinevaid veebitööriistu ja rakendusi, et pilvejälgi analüüsida ning teha nende põhjal
statistikat. Probleem on selles, et pilveuurijad peavad kasutama erinevaid veebiressursse,
et leida pilveandmetest vajalikke jälgi. Lisaks peab andmeid enne visualiseerimist käsitsi
töötlema. Lõputöö eesmärk on koguda avalikult kättesaadavad pilvejäljed (nt virtuaalma-
sinate käitumine, serverita platvormid, serverite töökoormused) ning luua veebirakendus,
mis võimaldab pilveuurijatel pilvejälgi lihtsalt üles laadida, alla laadida ja visualiseerida
andmed vastavalt kasutaja valitud filtritele. Selle veebirakenduse loomine võimaldab
teadlastel analüüsida pilvejälgi ja koondada kõik andmed ühte kohta. Lõputöö kirjeldab
peamiselt pilvepakkujaid, nende pakutavaid pilvejälgi, veebirakenduse arendamist ja
arhitektuuri.

Võtmesõnad:
Veebiarendus, back-end arendus, front-end arendus, pilvejäljed, Kotlin, Postgres, Spring

2

Boot, REST, JavaScript, DB, Hibernate

CERCS:P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaat - juhti-
misteooria)

3

Contents
1 Introduction 6

1.1 Cloud Computing . 6
1.2 Cloud trace Data . 6
1.3 Motivation and thesis contributions . 7
1.4 Thesis outline . 7

2 Background 8
2.1 Technologies . 8

2.1.1 Kotlin . 8
2.1.2 JavaScript . 8
2.1.3 PostgreSQL . 10
2.1.4 MiniO Storage . 10

2.2 Frameworks . 10
2.2.1 Vue.js . 10
2.2.2 Spring Boot . 11
2.2.3 Express.js . 11

2.3 Cloud Trace Providers . 12
2.3.1 Microsoft Azure . 12
2.3.2 Alibaba . 12
2.3.3 TU Delft Bitbrains . 12
2.3.4 Google Cluster Data . 13

3 Related works 14
3.1 Kaggle . 14
3.2 Workflow Trace Archive . 14
3.3 DataDOI . 14
3.4 Yahoo Webscope Program . 14
3.5 Comparison with CloudTraceBucket 15

4 CloudTraceBucket architecture overview 16
4.1 The dataset flow in CloudTracebucket 16
4.2 Handling of misconfigured datasets . 17

4.2.1 File validation rules . 17
4.2.2 Handling of misconfigured files 17

5 CloudTraceBucket in depth 19
5.1 Database tables . 19

5.1.1 Generalized tables . 19
5.1.2 Intermediate tables . 19

4

5.2 Storage API . 21
5.3 Data Collector . 22
5.4 Bucket API . 23
5.5 CloudTraceBucket User Interface . 24

5.5.1 User interface pages . 24
5.6 Upload Trace Files overview . 24
5.7 Download Trace Files page overview 25

6 Future work 30

7 Conclusion 30

References 31

Appendix 33
I. Glossary . 33
II. Repository . 34
III. Access to CloudTraceBucket . 35
IV. Licence . 36

5

1 Introduction
Cloud technologies are developing rapidly every day. Their impact on the end-user and
industry cannot be underestimated as they are an integral part of modern life. Thanks to
cloud technologies, companies can optimize their costs and expand their applications
without having to purchase physical hardware. Researchers can process data in quantities
that were previously only available in highly funded data centres. At the same time,
ordinary Internet users can access their programs, file storage and all knowledge of the
world with a few clicks.

1.1 Cloud Computing
In recent years, commercial organizations, banks and software companies have become
highly interested in cloud computing. A huge amount of data measured in petabytes is
generated from a variety of sources, from smart home appliances to weather stations,
social networks, streaming services. As a result, companies are slowly migrating their
products to cloud servers because cloud servers can handle such a large amount of data.
Cloud computing is the provision of resources to an end user via an Internet. A resource
can be anything related to calculations and computers such as software, hardware, server
network infrastructure, or large network servers [1]. Cloud computing offers several
benefits, such as dynamic scalability (the ability to increase workload on demand),
flexibility (when a server must allocate more resources to computing), and a "pay as
you use" feature. The largest providers of cloud computing and trace data are Google,
Yahoo, Alibaba and Amazon. While cloud computing seems promising and attractive, it
also comes with some limitations. Not all trace data can be published because it may
contain confidential customer information or internal statistics for cloud servers (such as
IP addresses or organizational policies). Therefore, cloud data must be filtered out of
confidential data before it can be published [2].

1.2 Cloud trace Data
All cloud servers produce so-called cloud trace data. Cloud trace data is data that contain
information about the resource usage of virtual machines, HTTP requests from servers,
job executions and time performed by the server, and tasks performed within jobs. Trace
data can be presented in a variety of formats, such as CSV1, JSON2, EXCEL3 or SQLite4.
Before cloud data is published, it is anonymized using various obfuscation techniques.

1https://csvloader.com/csv-guide/what-is-csv
2https://developers.squarespace.com/what-is-json
3https://excelx.com/what-is-excel
4https://www.sqlite.org/about.html

6

For example, Google used random hashing for free-text fields, resource sizes have been
linearly transformed (scaled), and some other specific values have been mapped to
predefined values [3]. After the data is prepared, providers will publish the cloud trace
data for research to their public resources.

1.3 Motivation and thesis contributions
The main motivating factor of the thesis is the lack of such a solution among the
existing tools, which could allow the researcher to effortlessly process and analyze cloud
trace data. Similar solutions are either private and used in small communities, or too
complicated to work with.

The main contributions of the thesis are to gather and analyze public cloud trace data,
to group analysed cloud trace data by common fields and create generalised tables, to
plan and create the CloudTraceBucket architecture with microservices, and to develop
a stable, working web application. CloudTraceBucket (CTB) is a web platform, which
allows researchers to process and analyze cloud trace files by uploading, downloading
and visualizing cloud trace data in a web browser. It is a universal platform, aimed
primarily to simplify data processing.

1.4 Thesis outline
This thesis is structured as follows. Section 2 provides an introduction to technologies
and frameworks, briefly describes cloud trace providers and their trace files that helped
to develop CloudTraceBucket. Section 3 describes the related works and compares
them with CloudTraceBucket. Section 4 describes the high-level architecture of the
CloudTraceBucket, describing a complete dataset flow in the CloudTraceBucket system.
Section 5 describes responsibilities of each service, and how they work. Section 6
summarizes the thesis and discusses the possible improvements.

7

2 Background
This section gives information about the web application built in the thesis and introduces
microservices and technologies used in the implementation. The section will cover each
microservice responsibility and tools used for its development.

2.1 Technologies
Before starting any development, it is vital to indicate what technologies will be used
to create the application because correctly chosen technology will contribute to a quick
and efficient implementation of the functionality required for the application, as well as
avoid difficulties in further development. It is important to consider technologies that are
not outdated and maintained by the developers’ community to avoid unexpected bugs
and security holes.

2.1.1 Kotlin

Kotlin5 is a general purpose, free, open source, statically typed, object-oriented (OOP)
programming language initially designed for Java Virtual Machine (JVM) and Android6.
It was chosen because of its concise, less verbose syntax comparing to Java7. Additionally,
it is interoperable with Java, which means that Kotlin can work with it and use its libraries.
Kotlin was developed by JetBrains in 2010 (Figure 1).

Comparison of Kotlin with other programming languages for performance is difficult
because the definition of performance can have several meanings. For example, perfor-
mance means not only the task execution speed but also stability, scalability, security and
user experience [4]. In addition, performance comparisons become more sophisticated
as each programming language has been developed for different purposes. But Kotlin
can be compared to Java as both run on the JVM.

Java compilation time is 15-20% faster than Kotlin. However, if the Kotlin project is
built incrementally, Kotlin shows compilation performance similar to Java [5].

2.1.2 JavaScript

JavaScript8 is a dynamically typed programming language used both on client- and server-
sides. It is lightweight, concise and it allows to make dynamic, interactive webpages and
web servers. JavaScript was first introduced in 1995 (Figure 2).

5https://kotlinlang.org/
6https://www.android.com/
7https://www.java.com
8https://developer.mozilla.org/en-US/docs/Web/JavaScript

8

Figure 1. Kotlin Fibonacci series example.

Figure 2. JavaScript Square Root of a Number example.

9

2.1.3 PostgreSQL

PostgreSQL9 is an open-source, object-relational database system. It is usually used as a
primary database for web applications, mobile and analytics applications. PostgreSQL
development started in 1986 and was first released in 1996 by the Berkeley Computer
Science Department, University of California (Figure 3).

Figure 3. PostgresSQL table creation example.

2.1.4 MiniO Storage

MiniO10 is an open source, distributed storage server, design for Private Cloud infrastruc-
ture providing S3 storage functionality. It allows with minimum effort to set up and store
files such as photos, videos, log files, and backups. it is used primarily to save original
cloud trace files uploaded from CloudTraceBucket system.

2.2 Frameworks
A framework is a ready-made structure based on which a developer can add his code.
The framework defines the structure and rules and provides the necessary set of tools for
creating projects [6]. Most often frameworks are used in web development.

2.2.1 Vue.js

Vue.js11 is a JavaScript open source, framework used for building user interfaces and
single-page applications. Vue.js simple to learn, has a decent documentation, customiz-
able, supported by a big community.

9https://www.postgresql.org/
10https://min.io/
11https://vuejs.org/

10

2.2.2 Spring Boot

Spring Boot12 is one of the most popular, an open source, enterprise-level Java-based
framework used for creating standalone, microservice applications that run without
relying on an external web server and run on the Java Virtual Machine.

2.2.3 Express.js

Express.js13 is a lightweight, JavaScript framework is used for designing and build
web applications with minimum effort. It allows to create single-page, multi-page and
server-side solutions.

12https://spring.io/projects/spring-boot
13https://expressjs.com/

11

2.3 Cloud Trace Providers
Thanks to cloud trace providers, it has become possible to look at the internal structure
of providers’ systems. It provided valuable information needed for the development of
CloudTraceBucket.

All cloud data traces used during the development are publicly available. Most
common of the are from Alibaba, Google, TU Delft University, Microsoft Azure.

2.3.1 Microsoft Azure

Microsoft Azure provides cloud traces of its virtual machines [7] and Azure Functions
[8]. Virtual machine traces include virtual machine requests with set priority level,
the lifetime for each requested virtual machine and normalized resources allocated for
each virtual machine. Azure Functions traces contain how many times per minute each
function is invoked, how functions are grouped into applications, how applications are
grouped by the owner, the distribution of execution times per function and memory
usage per application. The traces can be downloaded from Microsoft Azure GitHub14

repository.

2.3.2 Alibaba

Alibaba provides cloud traces of its FaaSNet [9] system15.The traces introduce 24-hour-
production-level functions invocation logs from two Alibaba datacenters. The traces
describe cold start latency such as containers initialization. Traces are available from the
Alibaba GitHub16 repository.

2.3.3 TU Delft Bitbrains

TU Delft University provides cloud traces from Bitbrains distributed datacenter [10].
The dataset contains the performance metrics of 1750 virtual machines and is divided
into two traces: fastStorage and Rnd. FastStorage traces include 1250 virtual machines,
and Rnd traces include 500 virtual machines. Both traces describe CPU, RAM, hard
drive and network performance metrics. Traces are available for downloading from TU
Delft University17 homepage.

14https://github.com/Azure/AzurePublicDataset
15https://www.usenix.org/conference/atc21/presentation/wang-ao
16https://github.com/mason-leap-lab/FaaSNet
17http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

12

2.3.4 Google Cluster Data

Google provides cloud traces from Borg cluster manager [11] and there is collected
cloud traces of about 12.5 thousand machines per cluster. Traces include information
about machine jobs, tasks, and system events. Traces are available from Google GitHub
repository 18.

18https://github.com/google/cluster-data

13

3 Related works
This section will give a brief overview of some dataset resources created for researchers
and how it is related to CloudTraceBucket.

3.1 Kaggle
One of the biggest dataset providers is Kaggle19. Kaggle is an online community platform
for data science and machine learning researchers. It allows to find, publish datasets and
use different data research tools. The Kaggle aims to train and challenge data scientists
to solve data science, machine learning and other analytics problems.

3.2 Workflow Trace Archive
The Workflow Trace Archive20 is a dataset repository, which provides anonymized
workload traces from cluster and cloud environments. The aim of the Workflow Trace
Archive is to create an open-source workload dataset repository, where datasets can be
easily downloaded and standardize open-source datasets to a common format.

3.3 DataDOI
DataDOI21 is an institutional research data repository hosted by the University of Tartu
Library. It gathers research data from different fields such as medicine, chemistry, history,
computer science and many more. The aim of the DataDOI is the long-term preservation
of research data from various areas, to ensure that research data is findable, accessible,
interoperable and reusable [12].

3.4 Yahoo Webscope Program
The Yahoo Webscope Program22 is a library for scientific datasets available for non-
commercial use by academics and scientists. It includes datasets from computing systems,
languages, advertising and market and many more. To access the Yahoo Webscope data
students or research employees must verify their communion with the university or
employer accordingly.

19https://www.kaggle.com
20https://wta.atlarge-research.com
21https://datadoi.ee
22https://webscope.sandbox.yahoo.com

14

3.5 Comparison with CloudTraceBucket
When it comes to comparison with CloudTraceBucket (CTB), the main limitation of
existing resources is file uploading. Most resources have an overly complicated process
of uploading trace files. For example, in order to upload trace files to the Workflow Trace
Archive, the researcher must clone multiple repositories with script files and run these
scripts according to the Workflow Trace Archive guidelines. The file uploading into
DataDOI has seven intermediate steps before file uploading can be completed. For CTB
the researcher should only fill out the form and upload a file.
Even though the existing resources look alike, the CTB’s intention is primarily to
visualize the cloud trace data to the researcher based on pre-defined query filters. Also,
CTB offers to researchers a single-window repository for cloud-only related traces from
real production environments. Not to mention, CTB allows researchers to download
cloud trace files as soon as files are uploaded to the system.

15

4 CloudTraceBucket architecture overview
This section gives an overview of the CloudTraceBucket system as a whole, describing
the complete processing flow of datasets.

The main idea behind CloudTraceBucket was to develop a generic CSV parser able
of handling most of the cloud trace files available without worrying about a manual
configuration of file headers for the parser because usually, CSV parsers must know the
headers of the file beforehand.

CloudTraceBucket consists of multiple services and sticks to the microservice archi-
tecture paradigm. Unlike a monolith, where all functionality is developed in a single
application, in a microservice architecture, the application divided into small modules,
where each module is responsible only for certain tasks (Figure 4). It makes the applica-
tion highly maintainable, testable, and independently deployable.

4.1 The dataset flow in CloudTracebucket
Before the file is uploaded, the researcher must fill in a form on the upload page specifying
some cloud trace file details (Figure 11), such as cloud trace file provider, file’s delimiter
and trace type (the trace type is required for a data-collector service to know what
generalized table is a target table). As soon as the form is filled, validated, and the file
is uploaded, a request with the form and the file is sent to Storage API (Section 5.2).
Storage API validates the request to contain CSV file and the form values are not missing.
Once validation is done, the file is saved into the MiniO storage server (Section 2.1.4)
and the file’s metadata is persisted in a database. If the file is new and was not previously
uploaded into the CloudTraceBucket system, Storage API creates a new dynamic table
from the uploaded CSV file with all its content inserted. Otherwise, Storage API finds
the existing table and inserts the uploaded file’s content into it.

Once the table is created, Storage API sends a new request to a data-collector service.
The request consists of a unique identifier (UUID), the information about a dynamic
table and the insert time when the last record was added to the dynamic table. The
data-collector service receives the request from Storage API and it starts to process data
from the dynamic table. First, it gets information about the dynamic table and finds the
last inserted rows in it based on the insert time from the request. Second, it searches for
similar columns from the dynamic table and target table (the dynamic table defined from
the trace type of the file). When similar columns are found, the data from the dynamic
table is converted to data types of the target table columns and converted data is inserted
into the target table. After the data-collector service is finished, it sends a response of
success to Storage API, and Storage API sends the same response to the researcher.

When the researcher wants to download a cloud trace file (Figure 12), Storage API
returns a list of all available files. Once the file is selected, it is downloaded directly from
the MiniO Storage server.

16

When the researcher decides to visualise the data from uploaded data with filters,
a request is sent to the Bucket API service (Section 5.4). The Bucket API generates a
database query based on the filters set in the request by the user and returns found data
accordingly.

4.2 Handling of misconfigured datasets
Quite often happens that data in files come corrupted or misconfigured. Storage API tries
to prevent such cases. This subsection will describe Storage API validation rules and
handling of misconfigured files.

4.2.1 File validation rules

Storage API has pre-defined validation rules for every file being uploaded:

• is empty - validates if the file is empty

• limit size - validates that the file’s size did not exceed 150 megabytes

• format - validates that the incoming file is in a valid CSV format

• headers - validates that headers are present on the first row of the file

4.2.2 Handling of misconfigured files

Sometimes CSV file headers contain numeric values, empty column names or special
characters. These misconfigurations do not allow to create dynamic tables from CSV
because of PostgresSQL limitations.

In Storage API, the file’s headers are represented as a list. For empty column names,
Storage API replaces missing values with col_idx, where idx is an index of the element
in the headers list. As a result, the column name will look like col_0.

For special characters in headers, Storage API applies a regex rule [^a-zA-Z0-9],
removes extra spaces at the beginning and the end of the header name. And if the header
name consists of multiple words, space characters between words are replaced with an
underscore character (_).

If the header name consists only of numeric values (e.g 0.1) then Storage API returns
an exception to the user with a message: File headers have one or more column
names consisting of numbers only.

17

Figure 4. CloudTraceBucket Architecture.

18

5 CloudTraceBucket in depth
This section describes technical aspects of each microservice and its responsibility in the
CloudTraceBucket system.

5.1 Database tables
CloudTraceBucket dynamically creates tables from CSV files, but there will be high-
lighted the most important tables (Figure 5). The main tables are separated into two
groups: intermediate and generalized tables.

5.1.1 Generalized tables

Generalized tables are a result of manual analysis of publicly available cloud traces. The
cloud traces provided by Alibaba, TU Delft and Microsoft Azure were grouped by cloud
trace type. After the cloud trace groups were formed, cloud trace files were inspected for
columns, which have a common column name. All uploaded trace files’ data eventually
will be inserted into generalized tables:

• serverless_platform – a cloud-native development pattern that allows to de-
velop and run applications without setting up development servers locally [13]. It
holds information about allocated memory, function invocation count, and the time
when the function was invoked

• cloud_storage – a cloud computing model that stores and provides access to data
or applications online through a cloud provider (e.g. Amazon, Google, Alibaba)
and providers manage storage as a service [14]. It holds information about cloud
storage read/write operations, what blob type the data is and how many bytes were
requested

• cloud_cluster – a group of nodes hosted on virtual machines that are connected
to a virtual private cloud network [15]. It holds information about nodes of virtual
machines, CPU number, disk space, memory requested, what event type is (create,
remove)

5.1.2 Intermediate tables

Intermediate tables are required to properly process uploaded files. They give context to
the data collector service about what data and what generalized table it should be inserted
into.

• existing_headers – stores information about dynamically created tables, which
is needed for the prevention of creating duplicate tables

19

• file_meta – holds the meta-information of uploaded files

• column_pointers – holds the data collector’s algorithm results of finding similar
columns between dynamic and generalized tables

• data_collector_logs – contains inserted rows count of data collector after file
processing

Figure 5. CloudTraceBucket database main tables.

20

5.2 Storage API
Storage API is a RESTful web service. It is responsible for uploading trace files to file
storage, downloading trace files from file storage, creating dynamic tables from uploaded
trace files and triggering a data collector service to process newly inserted records from
uploaded trace files.

Storage API allows uploading of CSV files only. When the trace file is uploaded by
the user, first the file is saved to MiniO storage server. After the file has been uploaded,
Storage API takes headers from the file, and checks from the database if a table with
such headers exists. If there is no table with such headers, Storage API creates a new
table, where the file’s headers are presented as table columns. Then the data from the file
is inserted into a newly created table. If a table with columns as headers in the database
exists, Storage API gets the table name and inserts data from the file into the existing
table. When the table was created and data was inserted, Storage API sends a request to
the data collector service to process newly inserted data from uploaded trace files. When
the user wants to download a file, Storage API validates that the file exists in file storage
and returns the file to the user (Figure 6).

Figure 6. Storage API workflow.

21

5.3 Data Collector
Data Collector is a RESTful service, responsible for collecting cloud trace data from
dynamically created tables by Storage API and inserting the data into generalized tables
(Figure 7). Before the data collector inserts the data into the generalized table, it compares
column names of the dynamic table to column names of the generalized table using the
Jaro-Wrinker string similarity algorithm [16]. Jaro-Wrinker algorithm returns a distance
from 0 to 1. If the distance is 1, two strings are identical. If the distance is 0, two strings
are different. For example, the distance between "hello world" and "hlelo world"
will be ∼0.98, while for "cup" and "mug" the distance will be ∼0.55. In case of the data
collector, two strings are considered similar if the distance >= 0.9. For optimization
purposes, the data collector saves column similarities into the database to reuse them if
needed.

When the column similarity check is complete, the data collector inserts data into
generalized tables informing the Storage API of a successful insertion.

Figure 7. Data Collector workflow.

22

5.4 Bucket API
Bucket API is a RESTful service, dedicated to getting the cloud trace data from gener-
alized tables based on user-defined filters (Figure 8). Filters will be described for each
cloud trace type separately.

serverless_platform can be filtered by:

• provider

• allocated memory

cloud_storage can be filtered by:

• provider

• blob type

• blob bytes

• read operation

• write operation

cloud_cluster can be filtered by:

• provider

• plan CPU

• plan disk

• event type

Figure 8. Bucket API workflow.

23

5.5 CloudTraceBucket User Interface
To interact with CloudTraceBucket there was developed a user interface. The user
interface is written using the Vue.js framework.

5.5.1 User interface pages

CloudTraceBucket user interface has four pages:

• Home – an introductory, main page of the website where the visitor can start from
(Figure 9)

• About – an informative page describing the definition of the CloudTraceBucket
with some additional information (Figure 10)

• Upload Trace Files – a page for uploading cloud trace files into CloudTraceBucket
system (Figure 11)

• Download Trace Files – a page for downloading uploaded cloud trace files from
CloudTraceBucket system (Figure 12)

5.6 Upload Trace Files overview
The "Upload Trace Files" page is designed for uploading trace data files. Before a file is
uploaded, a form must be filled in. The form consists of four fields: provider, trace type,
file delimiter and trace file upload button. Below will be a description of each field.

• provider - a mandatory field that specifies who is the provider of the cloud trace
file. The field accepts text as an input. There are no limitations what text is written,
but the field cannot be empty

• trace type - a mandatory field that specifies the trace type of the cloud trace
file. The field is a drop-down list with three values: SERVERLESS_PLATFORM,
CLOUD_STORAGE and CLOUD_CLUSTER (Subsection 5.1). At this moment, only three
trace types are introduced, because they were described in initial requirements of
the thesis. In order to add new trace types to the system, a developer should make
code changes in Storage API, Data Collector, Bucket API, user interface and the
database

• file delimiter - a mandatory field that specifies the cloud trace file delimiter. By file
delimiter, it is possible to separate columns in CSV files. This form field is also
a drop-down list and has five values: COMMA_SEPARATED, SEMICOLON_SEPARATED,
TAB_SEPARATED, PIPE_SEPARATED and SPACE_SEPARATED. The form does not set

24

a default delimiter in case it is not selected, otherwise, the user will be not able to
proceed with file uploading. If an incorrect file delimiter is specified it may result
in abnormal file processing, for instance, a dynamic table would be created with
the wrong number of columns in it

• trace file - a mandatory upload file button. It accepts only files with CSV file
extension and maximum allowed size for the file is 150 megabytes

Once all fields in the form are filled in, the "Upload" button will become clickable.

5.7 Download Trace Files page overview
The "Download Trace Files" page allows users to download processed cloud trace files
from file storage. All available files are listed in a table with next columns: file name,
file format, file size, trace type and upload time:

• File Name - displays names of uploaded files. Can be sorted in ascending and
descending orders

• File format - displays the format of uploaded files

• Provider - displays provider name of uploaded files. Can be sorted in ascending
and descending orders

• File size - displays the size of files in bytes. Can be sorted in ascending and
descending orders

• Trace type - displays the trace type of uploaded files. Can be sorted in ascending
and descending orders

• Upload Time - displays when the file was uploaded to file storage. Can be sorted
in ascending and descending orders

In the table file names are active links. When user clicks on a file name, it is directly
downloaded from file storage.

25

Figure 9. CloudTraceBucket homepage.

26

Figure 10. CloudTraceBucket "About" page.

27

Figure 11. CloudTraceBucket "Upload Trace Files" page.

28

Figure 12. CloudTraceBucket "Download Trace Files" page.

29

6 Future work
As for future work, there is still much room for improvement. First of all, the cloud trace
data visualisation is not implemented yet. As all cloud trace providers have different
cloud trace files, so there is needed a data visualization tool capable of processing raw
data regardless of the file’s content. One of such plugins is Grafana23, but it needs to be
investigated more deeply.

Second, API integration can also be added for third-party applications so that other
developers could integrate CloudTraceBucket into their solutions.

Third, for better performance and resource management the headers similarity check
should be done before the file is saved to MiniO storage server. Otherwise, if the file is
structurally valid, but it does not have any similar columns with generalised tables the
file is still saved and takes extra space in the storage server, even though the file has no
practical use.

Another point is that CloudTraceBucket is only deployed to Tartu University network.
In the future, the application is expected to be deployed to a public network so that it
could be accessible for everyone.

Finally, new generalised tables can be added. At this moment, CloudTraceBucket
supports only three types of cloud traces, but there exist many more of them.

7 Conclusion
This section sums up the thesis and describes possible improvements to the CloudTrace-
Bucket system.

This thesis develops a CloudTraceBucket platform for cloud researchers to manage
cloud trace data. The thesis introduces cloud computing with cloud trace data, describes
the technologies used for development, discusses related works, reviews CloudTrace-
Bucket architecture, and describes each microservice in the CloudTraceBucket system in
detail.

The results of the thesis are developed multiple independent microservices, working
together as a whole system, capable of processing cloud trace data files from different
cloud trace providers. Not to mention a lot of new valuable knowledge is acquired about
the cloud data processing resources, cloud technologies, and cloud trace data.

23https://grafana.com

30

References
[1] Jake Frankenfield. Cloud Computing. July 2020. URL: https://www.investopedia.

com/terms/c/cloud-computing.asp. Accessed 07.12.2021.

[2] Mansaf Alam, Kashish Ara Shakil, and Shuchi Sethi. “Analysis and clustering
of workload in google cluster trace based on resource usage”. In: 2016 IEEE Intl
conference on computational science and engineering (CSE) and IEEE Intl con-
ference on embedded and ubiquitous computing (EUC) and 15th Intl symposium
on distributed computing and applications for business engineering (DCABES).
IEEE. 2016, pp. 740–747. Accessed 07.12.2021.

[3] Charles Reiss, John Wilkes, and Joseph L Hellerstein. “Google cluster-usage traces:
format+ schema”. In: Google Inc., White Paper 1 (2011). Accessed 08.12.2021.

[4] Magda Miu. High performance with idiomatic Kotlin. Feb. 2022. URL: https:
//magdamiu.medium.com/high-performance-with-idiomatic-kotlin-
d52e099d0df0. Accessed 03.05.2022.

[5] Anshul Bansal. Java vs. Kotlin. Nov. 2021. URL: https://www.baeldung.com/
kotlin/java-vs-kotlin. Accessed 03.05.2022.

[6] What Is a Framework? Sept. 2021. URL: https://www.codecademy.com/
resources/blog/what-is-a-framework. Accessed 04.05.2022.

[7] Ori Hadary et al. “Protean:{VM} allocation service at scale”. In: 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). 2020,
pp. 845–861. Accessed 29.04.2022.

[8] Mohammad Shahrad et al. “Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider”. In: 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20). 2020, pp. 205–218. Accessed 29.04.2022.

[9] Ao Wang et al. “FaaSNet: Scalable and Fast Provisioning of Custom Serverless
Container Runtimes at Alibaba Cloud Function Compute”. In: 2021 USENIX
Annual Technical Conference (USENIX ATC 21). USENIX Association, July
2021, pp. 443–457. ISBN: 978-1-939133-23-6. URL: https://www.usenix.org/
conference/atc21/presentation/wang-ao. Accessed 29.04.2022.

[10] Siqi Shen, Vincent Van Beek, and Alexandru Iosup. “Statistical characterization of
business-critical workloads hosted in cloud datacenters”. In: 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE. 2015,
pp. 465–474. Accessed 29.04.2022.

[11] Abhishek Verma et al. “Large-scale cluster management at Google with Borg”.
In: Proceedings of the European Conference on Computer Systems (EuroSys).
Bordeaux, France, 2015. Accessed 29.04.2022.

31

https://www.investopedia.com/terms/c/cloud-computing.asp
https://www.investopedia.com/terms/c/cloud-computing.asp
https://magdamiu.medium.com/high-performance-with-idiomatic-kotlin-d52e099d0df0
https://magdamiu.medium.com/high-performance-with-idiomatic-kotlin-d52e099d0df0
https://magdamiu.medium.com/high-performance-with-idiomatic-kotlin-d52e099d0df0
https://www.baeldung.com/kotlin/java-vs-kotlin
https://www.baeldung.com/kotlin/java-vs-kotlin
https://www.codecademy.com/resources/blog/what-is-a-framework
https://www.codecademy.com/resources/blog/what-is-a-framework
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://www.usenix.org/conference/atc21/presentation/wang-ao

[12] Laurens Versluis et al. “The Workflow Trace Archive: Open-Access Data From
Public and Private Computing Infrastructures”. In: IEEE Trans. Parallel Dis-
tributed Syst. 31.9 (2020), pp. 2170–2184. DOI: 10.1109/TPDS.2020.2984821.
URL: https://doi.org/10.1109/TPDS.2020.2984821. Accessed 01.05.2022.

[13] What is serverless? Oct. 2017. URL: https://www.redhat.com/en/topics/
cloud-native-apps/what-is-serverless. Accessed 06.05.2022.

[14] What is Cloud Storage? URL: https://aws.amazon.com/what-is-cloud-
storage. Accessed 06.05.2022.

[15] Aaron Nordhoff. What is a Cluster? An Overview of Clustering in the Cloud.
July 2020. URL: https://www.capitalone.com/tech/cloud/what-is-a-
cluster/. Accessed 06.05.2022.

[16] Jaro and Jaro-Winkler similarity. Feb. 2022. URL: https://www.geeksforgeeks.
org/jaro-and-jaro-winkler-similarity/. Accessed 05.03.2022.

32

https://doi.org/10.1109/TPDS.2020.2984821
https://doi.org/10.1109/TPDS.2020.2984821
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless
https://aws.amazon.com/what-is-cloud-storage
https://aws.amazon.com/what-is-cloud-storage
https://www.capitalone.com/tech/cloud/what-is-a-cluster/
https://www.capitalone.com/tech/cloud/what-is-a-cluster/
https://www.geeksforgeeks.org/jaro-and-jaro-winkler-similarity/
https://www.geeksforgeeks.org/jaro-and-jaro-winkler-similarity/

Appendix

I. Glossary
1. Cloud technologies - IT-technologies, which allow to store and process information

on remote servers24

2. HTTP (Hypertext Transfer Protocol) - a core format for structuring web requests
for proper communication between a client and a server25

3. Hashing - a technique of transforming a given key into another value using mathe-
matical algorithms26

4. OOP (Object-oriented programming) - a programming paradigm that uses classes
and objects. it helps to structure a software program into reusable, simple and
maintainable pieces of code, which are used for object instance creation27

5. JVM (Java Virtual Machine) - a runtime engine of Java Platform which compiles
Java code into a bytecode allowing to run a compiled program on any machine that
has a native JVM support28

6. S3 Storage - an object storage service that stores objects in buckets where the
object is a file and the bucket is a container for objects29

7. Trace type - a categorisation of the system where the trace data comes from

8. Blob - a file-like object that represents an immutable raw data. It can be in a format
of a text or binary data30

9. REST (REpresentational State Transfer) - an architectural approach for establishing
web-based standards that make it easier for computer systems to connect with one
another31

10. API (Application Programming Interface) - a intermediate software that allows
two applications to communicate with each other

24https://dynamixsolutions.com/what-is-cloud-technology-and-how-does-it-work
25https://www.cloudflare.com/en-gb/learning/ddos/glossary/hypertext-transfer-protocol-http
26https://www.educative.io/edpresso/what-is-hashing
27https://www.educative.io/blog/object-oriented-programming
28https://www.pcmag.com/encyclopedia/term/java-virtual-machine
29https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
30https://developer.mozilla.org/en-US/docs/Web/API/Blob
31https://www.codecademy.com/article/what-is-rest

33

II. Repository
This Appendix contains a link to GitHub repository of CloudTraceBucket.

Source code of CloudTraceBucket can be accessed from here: https://github.
com/chinmaya-dehury/CloudTraces

34

https://github.com/chinmaya-dehury/CloudTraces
https://github.com/chinmaya-dehury/CloudTraces

III. Access to CloudTraceBucket
To access CloudTraceBucket the user needs to be connected to UT network either directly
via eduroam or OpenVPN32. After the user successfully connected, CloudTraceBucket
can be accessed via http://172.17.91.248:8080 .

32https://wiki.ut.ee/pages/viewpage.action?pageId=17105590

35

http://172.17.91.248:8080

IV. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Edgar Selihov,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

CloudTraceBucket: Cloud Trace Visualization and Management Platform,

supervised by Chinmaya Kumar Dehury.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Edgar Selihov
29/04/2022

36

	Introduction
	Cloud Computing
	Cloud trace Data
	Motivation and thesis contributions
	Thesis outline

	Background
	Technologies
	Kotlin
	JavaScript
	PostgreSQL
	MiniO Storage

	Frameworks
	Vue.js
	Spring Boot
	Express.js

	Cloud Trace Providers
	Microsoft Azure
	Alibaba
	TU Delft Bitbrains
	Google Cluster Data

	Related works
	Kaggle
	Workflow Trace Archive
	DataDOI
	Yahoo Webscope Program
	Comparison with CloudTraceBucket

	CloudTraceBucket architecture overview
	The dataset flow in CloudTracebucket
	Handling of misconfigured datasets
	File validation rules
	Handling of misconfigured files

	CloudTraceBucket in depth
	Database tables
	Generalized tables
	Intermediate tables

	Storage API
	Data Collector
	Bucket API
	CloudTraceBucket User Interface
	User interface pages

	Upload Trace Files overview
	Download Trace Files page overview

	Future work
	Conclusion
	References
	Appendix
	I. Glossary
	II. Repository
	III. Access to CloudTraceBucket
	IV. Licence

