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Weakly Supervised Segmentation in Medical Imaging: A Counterfac-
tual Approach

Abstract:
Deep learning is transforming medical imaging and radiology, notably improving pathol-
ogy detection in CT and X-ray images. However, the effectiveness of deep learning
models in segmentation tasks is often complicated by the requirement for large, annotated
datasets. Addressing this challenge, this thesis explores Weakly Supervised Semantic
Segmentation enabled by Explainable AI techniques, particularly through generating
counterfactual explanations. Our innovative approach, termed Counterfactual Inpainting
(COIN), flips classification predictions from abnormal to normal given the input image by
erasing identified pathology regions in medical images. For example, when a classifier la-
bels an image as abnormal, COIN produces minimally modified counterfactual example,
effectively inverting the original prediction. Our method allows for accurate pathology
segmentation without relying on detailed pre-existing masks, using instead much simpler
to obtain image-level labels. We validate the effectiveness of COIN by segmenting both
synthetic targets and real kidney tumors in TotalSegmentator and Tartu University Hospi-
tal CT scan datasets. Our results show that COIN significantly outperforms traditional
methods like ScoreCAM, LayerCAM, and RISE, as well as the baseline counterfactual
approach by Singla et al. These findings confirm that COIN is a promising method for
kidney tumor segmentation in CT images, making a significant advancement in applying
deep learning in healthcare domain that is limited by the scarcity of annotated data. The
developed approach not only strives for high accuracy required in the medical domain
but also reduces reliance on extensive annotated datasets by leveraging semi-automated
labeling techniques.
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Imaging, CT scans, Kidney Tumour.
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Nõrga Juhendatud Segmenteerimine Meditsiinilises Kujutamises:
Kontrafaktuaalne Meetod
Lühikokkuvõte:
Süvaõpe on muutmas meditsiinilise piltdiagnostika valdkonda. Näiteks täiustatakse sü-
vaõppe mudelitega patoloogiate tuvastamist kompuutertomograafia- ja röntgenpiltidelt.
Kahjuks on selliste mudelite treenimine keerukas kuna need eeldavad suurte märgendatud
andmestike olemasolu, mida meditsiinilise piltdiagnostika valdkonnas on raske koguda.
Käesolev lõputöö proovib seda probleemi lahendada läbi nõrgalt juhendatud semanti-
lise segmenteerimise ja seletatava tehisintellekti tehnikate. Magistritöös kirjeldatakse
innovaatilist meetodit nimega kontrafaktuaalne maalimine (Counterfactual Inpainting -
COIN), mille käigus pööratakse klassifitseerimismudeli prognoos meditsiinilisele pildile
anomaalsest normaalseks läbi patoloogilise piirkonna “üle maalimise” (kustutamisele).
Näiteks kui klassifitseerimismudel hindab pildi anomaalseks (ehk patoloogiliseks), siis
COIN loob pildist võimalikult minimaalsete muudatustega kontrafaktuaalse pildi, mis
pööraks ümber klassifitseerija esialgse ennustuse. Sellise meetodiga saab segmenteerida
patoloogiaid vaid pildi tasemel märgenditega, hüljates nii täpsete segmenteerimismaskide
kasutamise, mida on keeruline hankida. COIN mudeli tõhusust hinnati Totalsegmentori
ja Tartu Ülikooli Kliinikumi kompuutertomograafiapiltide andmestikel, kus segmentee-
riti sellega nii tehislike kasvajaid kui ka päris kasvajaid neerudes. Tulemused näitavad
et COIN ületab oluliselt traditsioonilisi seletatava tehisintellekti meetodeid nagu Sco-
reCAM, LayerCAM ja RISE ja ka võrdluseks võetud tavalist kontrafaktuaalmeetodit.
Need leiud kinnitavad, et COIN on paljulubav meetod neerukasvajate segmenteerimiseks
kompuutertomograafia piltidel, tehes olulise edusammu sügavõppe rakendamisel tervis-
hoiuvaldkonnas, mida piirab märgendatud andmete nappus. Väljatöötatud metoodika
mitte ainult ei püüdle meditsiinivaldkonnas nõutava kõrge täpsuse poole, vaid vähendab
ka sõltuvust ulatuslikest annoteeritud andmestikest, kasutades ära poolautomaatseid
märgistamistehnikaid.

Võtmesõnad:
Selgitav tehisintellekt, kontrafaktuaalsed selgitused, GAN-id, semantiline segmenteeri-
mine, meditsiiniline pildistamine, CT-skaneeringud, neerukasvaja.

CERCS: T111 – Pilditehnika; P176 – Tehisintellekt; B110 - Bioinformaatika, meditsii-
niinformaatika, biomatemaatika, biomeetrika
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1 Introduction
The realm of medical imaging is witnessing a transformative era with the integration of
artificial intelligence (AI) [1, 2, 3]. One of the pivotal challenges in this domain is the
development of efficient and reliable methods for effective localization and classification
of various diseases in human organs. Cui et al. highlights that training of modern deep
learning models, particularly the highly accurate ones, requires a substantial amount of
labeled data to function effectively [4]. Labeling medical images accurately requires
highly specialized knowledge, often the domain of trained medical professionals such
as radiologists. Their expertise is essential to ensure that the annotations are correct,
as any error in labeling can lead to inaccurate training of the model and, consequently,
unreliable outcomes. Tajbakhsh et al. discusses that the process of manually reviewing
and labeling medical images is labor-intensive [5], since given the complex nature of
these images, a single image can take a considerable amount of time to annotate correctly.
The survey by Chaddad et al. [6] demonstrates that these problems are further amplified
by the limited access to already labeled medical image datasets due to data protection
laws. Another significant challenge in the application of deep learning models to medical
imaging arises from the diversity of imaging tools and techniques used in collecting
these images. Medical images, such as Computer Tomography (CT) scans and X-rays,
are often captured using various types of equipment and software, each with its own
characteristics and specifications. Guan et al. demonstrates well how this variability can
lead to inconsistencies in the images [7], which is known as data shift phenomenon that
poses a problem for deep learning models. Naturally, the need for methods arises to
automate or simplify the manual data labelling efficiently.

One of the ways to simplify labelling for medical images is to try to extract meaningful
and detailed pixel-level annotations from simpler and more general image labels. This
task is categorized as Weakly Supervised Semantic Segmentation (WSSS) and it is often
tackled with methods known from Explainable AI (XAI) [8, 9, 10, 11]. In computer
vision, XAI methods are typically used to audit the pre-trained models and identify the
image regions most critical for the classification decisions. Saliency maps output using
these methods, can serve as preliminary segmentation masks. However, Ghassemi et al.
[12] highlights that while saliency maps are visually straightforward, they often merge
relevant and irrelevant information. This fusion complicates the task of pinpointing
specific image features crucial for the model’s decisions, thus challenging the creation of
accurate segmentations from the saliency maps.

On the contrary to classical XAI methods, counterfactual explanation approaches
[13, 14, 15] have emerged, aiming for minimal changes in the input to alter the decision
output of a classifier. Originating from the work of Wachter et al. [13], these methods
explore a series of ’what if’ scenarios that help to visualize how slight changes in
the presented data can lead to different predictive outcomes. Although counterfactual
explanations have gained popularity across various tasks beyond computer vision, their
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application from the perspective of WSSS for medical imaging remains unexplored.
Building on these findings, this thesis introduces an innovative approach to tackle

the challenges of medical imaging data labelling, focusing on the use of WSSS and
counterfactual explanations. The goal is to build a comprehensive computer vision
pipeline that can effectively generate weak segmentation labels for existing unlabeled
datasets from as little supervision annotations as possible. The contribution to this
field is anchored in the principles established by the paper "Explaining the black-box
smoothly - Counterfactual Approach" by Singla et al. [15]. While this paper laid the
foundation for using a conditional Generative Adversarial Network model for generating
counterfactual explanations, this thesis takes a step further. In addition to the replicated
results from Singla et al., the methodology is advanced, focusing on enhancing the
quality of the generated counterfactual images. The re-designed counterfactual pipeline
builds a technology to generate accurate segmentation labels from having only a basic
classification model. These advancements are not just theoretical but are backed by
detailed experimentation and validation on the datasets with synthetic and real diseases.
Finally, the developed counterfactual pipeline is tested against classical attribution
methods [16, 17, 18], as well as baseline approach [15], to verify its superiority and
practical purpose.

The thesis consist of the following parts: Section 2 outlines concepts involved in
XAI, WSSS and main approaches used nowadays. Section 3 gives an overview of the
main increments made to the model of Singla et al. to obtain the proposed Counterfactual
Inpainting (COIN) pipeline. Section 4 presents the main experiments and results of the
COIN to prove its effectiveness. Section 5 discusses achieved results and key learnings.
Section 6 highlights conclusions, limitations and potential future works. Section 7
acknowledges the contributions of individuals and organizations that have supported this
research.
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2 Background
In this chapter, the overview of the XAI field is provided, emphasizing its importance
in making AI systems more understandable and trustworthy. Various XAI methods,
such as traditional attribution techniques and advanced trainable models, are explored
and discussed in the context of various domains, including healthcare. Additionally,
counterfactual explanation concepts are introduced. This discussion highlights how XAI
can enhance WSSS and improve effectiveness and practical usage of AI applications.

2.1 Explainable AI
Explainable AI involves methods and techniques that help make the outcomes of AI
systems clear to humans. This area has grown because there’s a need to understand
how complex AI models, especially those using deep learning, make decisions in many
domains like finance, automated transportation, legal systems, healthcare and others. In
finance, XAI is used to enhance transparency services related to credit scoring and algo-
rithmic trading to facilitate regulatory and ethical considerations [19]. In the transporta-
tion domain, explainable methods help in understanding decisions made by autonomous
systems, which is crucial for safety and regulatory compliance [20]. In the legal domain,
XAI is applied to ensure fairness and transparency in automated judicial decision-making
systems [21]. Lastly, XAI assists in diagnostic processes and treatment decisions, where
understanding AI decisions can impact patient outcomes significantly [7].

2.2 Techniques used in XAI
In this chapter, the overview of the most popular methods are given for explaining the
black-box classification models. The key topologies of algorithms in XAI are highlighted,
including class activation mapping, perturbation-based, and counterfactual explanation
models.

2.2.1 Class Activation Mapping

Class Activation Mapping (CAM) techniques [22, 16, 17] generate visual explanations
by mapping the activations within the network to specific regions of the input image.
These methods are founded on the premise that if a small change in a particular feature
significantly affects the output, then this feature holds considerable influence over the
decision. For instance, GradCAM [22] uses the gradient information from the last
convolutional layer to create a heatmap highlighting the most important regions in the
image for predicting a target class. In contrast, ScoreCAM [16] uses class activation
maps derived from the forward activation outputs rather than relying on gradients. This
approach avoids potential issues related to gradient saturation and noisy gradients, leading
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to more stable and reliable visual explanations. LayerCAM [17] extends these capabilities
by integrating both gradient and activation information across multiple layers, allowing
for a more comprehensive exploration of how both deep and shallow features in a network
influence its output.

2.2.2 Perturbation-based techniques

Classical perturbation-based techniques [23, 18, 24] systematically modify input images
to analyze how these changes affect model outputs. The underlying principle is that
if a modification in a specific part of input image changes the model’s output, that
region is crucial to the model’s decision-making process. A notable implementation
of this technique is the Randomized Input Sampling for Explanation (RISE) method.
RISE involves generating thousands of random masks to obscure different parts of
an input image and then observing how each masked version impacts the model’s
prediction. This approach allows RISE to compute importance scores for various image
regions, effectively illustrating the model’s focal points through visual saliency maps.
In contrast, Extremal Perturbation [24], optimizes simple perturbations that are most
impactful on the model’s output. This method focuses on identifying the smallest or most
extreme parts of the image that, when altered, significantly affect the output, offering
a more targeted approach to understanding feature importance. Another aproach in
this area is the Meaningful Perturbation technique [23], which computes the minimal
perturbation needed to change a model’s decision. Unlike RISE, which uses random
masks, Meaningful Perturbation iteratively learns to mask out the least amount of image
area while maximally confusing the model.

2.2.3 Counterfactual Explanations

Counterfactual explanations have their roots in cognitive science [25], psychology [26],
and causality research [27], offering a profound way to dissect and understand AI
decision-making processes. The formal counterfactual optimization function introduced
in by Wachter et al. [13] marks a pivotal development in XAI, establishing a structured
approach to generate these explanations in continuous data settings. Tim Miller’s research
[28] underscores the importance of contrastive explanations in human reasoning, sug-
gesting that counterfactual reasoning is essential for making AI systems comprehensible
and decisions justifiable.

In the context of tabular data, a counterfactual method can describe what attribute
changes need to happen to influence the decision-making process. For instance, in a
home loan application, a counterfactual explanation might highlight what adjustments,
such as increasing annual income or improving credit score, would be necessary for
an application to be approved. The Figure 1 illustrates this process. In the context
of computer vision, this paradigm of models does more than simply flip the decision
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Figure 1. Visualization of an example how a counterfactual method can highlight how a
rejected loan can become accepted given a pre-trained classifier [29].

of a classifier in an adversarial attack style but also ensures that the modifications
to the input images are meaningful and interpretable within a real-world context, as
discussed in studies by Zemni et al. [30] and Jeanneret et al. [31]. Initial models
trained with the use of a conditional Generative Adversarial Network (cGAN) [32] have
shown significant promise in clarifying the decision-making processes of classifiers and
identifying potential biases or failure points.

While classical perturbation-based techniques are effective, they often lack the
flexibility to be fine-tuned for specific datasets or to incorporate training dynamics
that might yield higher quality saliency maps. In contrast, counterfactual explanations
can be seen as a special case of perturbation-based methods that are more data-driven
and adaptable. These techniques are model-agnostic and instance-based, meaning they
can be applied across different models and work with individual data points (e.g a single
image). They are designed to identify the minimal changes needed to an input to alter
the model’s prediction outcome.

Extensive research by Guidotti et al. [33] and Karimi et al. [34] surveys a variety
of counterfactual frameworks, which generally tackle optimization problems or apply
heuristic search strategies to derive explanations. These methods have been particularly
enhanced in the domain of image processing. For example, Akula et al. [35] emphasized
the role of Theory of Mind in explainability, developing techniques to generate counter-
factuals by modifying minimal semantic-level features in images — such as changing
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the stripes on a zebra — to investigate how such alterations influence model predictions.
In medical imaging, counterfactual explanations have been instrumental for diagnostic

applications. For instance, Atad et al. [36] utilized a StyleGAN-based technique to
adjust specific latent directions in chest X-ray images, facilitating an analysis of the
underlying patterns that diagnostic models depend on. This approach was clinically
evaluated with radiologists, demonstrating its practical benefits in medical diagnostics.
Similarly, Singla et al. explored counterfactual explanations for chest X-ray imaging by
training a generative model that can produce images with slight modifications that change
classification outcomes. This model maintains the context of the original images, ensuring
the relevance of the generated counterfactuals. Their work, validated in clinical settings,
confirms that these generated explanations are not only academically interesting but also
practically useful, offering clinicians new insights into the interpretative processes of AI
in healthcare.

2.3 Weakly Supervised Semantic Segmentation
Semantic segmentation is a one of the fundamental task in computer vision, especially
in medical applications. However, obtaining detailed segmentation masks can be pro-
hibitively expensive. As a result, Weakly Supervised Semantic Segmentation (WSSS)
has become popular for its ability to derive these masks from simpler image-level labels.
Recently, many WSSS approaches [37, 38, 39] have adopted CAM methods to generate
saliency maps, which are later used to indicate the most important image regions for
the classifiers decision for each class. Frequently used WSSS workflow consist of the
following steps:

1. Training image classifier for one or multiple classes.

2. Extracting saliency maps with a CAM methods.

3. Refining the saliency maps by postprocessing techniques (e.g morphology opera-
tions).

4. Train a segmentation model to produce the final segmentation labels (optional).

However, CAM methods have several drawbacks for WSSS. A significant issue is
that they tend to highlight only the most distinctive regions of an image rather than
the entire object relevant to the class, which can result in inaccurate segmentations.
Another problem is that the resolution of saliency maps produced by CAMs depends
on the resolution of the activation maps from the classifier model. The deeper layers of
the model, while providing more meaningful semantic information, typically generate
lower-resolution activation maps, leading to poorer resolution in the resulting saliency
maps. Additionally, it has been observed that saliency maps might not change even
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when the model’s predictions are substantially altered by adversarial attacks, as noted by
Ghassemi et al., which is questioning their reliability as explanations.

Given these challenges, a more promising approach to enhance WSSS could be the
adoption of counterfactual explanations instead of relying on CAMs.

2.4 Generative Adversarial Neural Networks
One of the crucial steps to implementing a data-driven WSSS in computer vision is a
choice of an image generation approach. Popular image generation frameworks include
GAN-based and diffusion-based methods.

Generative Adversarial Networks (GANs) are one of the most established image
generation methods originally introduced by Goodfellow et al. [40]. GANs operate by
competing two neural networks against each other: a generator that creates images and a
discriminator that evaluates them. While the discriminator is optimized to distinguish
between real and fake images, the generator learns to create images that resemble real
ones to deceive the discriminator. This adversarial process leads to high-quality image
synthesis.

Compared to diffusion-based image generation [41], which gradually constructs
images by adding noise and refining through reverse processes, GANs typically are more
computationally efficient, since they can generate images in single feedforward pass [42].
While diffusion models are praised for their robustness and diversity in generated images,
GANs often excel in scenarios where fine control over the generated output is crucial
[43, 42, 44], such as in the creation of counterfactual visual explanations where precise
changes are needed. This makes GANs particularly suitable for tasks requiring detailed
manipulation of image attributes, enhancing their applicability in fields like medical
imaging and visual data analysis.

A fundamental aspect of this thesis is the counterfactual explanation pipeline devel-
oped by Singla et al. The authors employ a conditional GAN framework as the image
generation model to audit a pre-trained classifier. The cGAN is a specialized form
of the foundational generative adversarial network, which incorporates classification
labels as additional input. This inclusion facilitates more targeted and controlled image
generation. Within counterfactual explanations, the cGAN is tasked with creating images
that are slightly different from a given input yet lead to a different outcome from the
pre-trained classifier. These modified outputs represent counterfactuals – the closest
variations that could shift the classifier’s decision. By analyzing how minor changes in
these generated images influence the classifier’s responses, insights can be drawn in a
manner analogous to using saliency maps in attribution methods. Therefore, one can
extract weak segmentation labels from the explanation maps.
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2.5 Advancements in GAN-Driven Counterfactual Explanations
Generative Adversarial Networks have become increasingly popular for creating counter-
factual explanations, showing their versatility in different areas. For example, Kenny et
al. [45] used the PIECE method on MNIST data to change specific image features to
produce realistic counterfactuals for CNN classifiers. In the field of autonomous driving,
where clear explanations are essential due to safety concerns, Zemni et al. introduced a
framework tailored for images containing multiple objects, like those typically found
in urban driving scenes. Their approach involves encoding images into a structured
latent space to allow detailed adjustments at the object level, making it ideal for complex
settings. This method was even tested in driving scenarios to show how it can go beyond
simple classification tasks to explain models handling semantic segmentation.

Jeanneret et al. took a different approach by turning adversarial attacks into mean-
ingful changes for images showing facial expressions. They suggested that Denoising
Diffusion Probabilistic Models [41] could be used to adjust these attacks to create useful
and clear changes in images, such as altering a sad expression to a happy one. Bischof et
al. [46] developed a comprehensive framework using image-to-image translation GANs
aimed at enhancing both the interpretability and robustness of image classifiers. They
tested this framework on tasks like detecting cracks in concrete and spotting defects in
fruit, showing that it not only helps in understanding the images better but also makes
models more resistant to adversarial attacks.

Although these examples highlight how effective counterfactual explanations can
be for various applications, their use in WSSS for the medical domain has not been
fully explored. Many current methods depend on having segmentation masks during
GAN training, which might not always be possible. This thesis seeks to fill this gap
by adapting the counterfactual approach for segmentation. It particularly builds on the
techniques developed by Singla et al., modifying them to generate segmentation labels
without relying on existing masks. This adaptation aims to leverage the strengths of
counterfactual explanations to enhance the segmentation process, potentially leading to
better accuracy and understanding in image analysis in healthcare.

3 Methods
In this section, we review the explanation pipeline from the original study by Singla et
al., discuss its limitations, and suggest improvements to boost its performance. These
enhancements include a better architecture, a new perturbation-based generator, added
skip connections, a different loss measure, and removing the need for segmentation masks
to better suit WSSS purposes. Finally, we introduce a new Counterfactual Inpainting
method designed to summarize all the improvements for weak semantic segmentation.
Furthermore, the main metrics, datasets and alternative methods for experimentation are
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discussed.

3.1 Base Counterfactual Explanation Pipeline
In the original study by Singla et al., a counterfactual method for explaining the decisions
of a medical image classifier is proposed. The method consists of two parts, namely a
black-box classifier f and an explanation model E . The pre-trained classifier accepts
an input image X and outputs whether an image X is normal (y = 0) if f(X) < t or
abnormal (y = 1) if f(X) ≥ t, where t is a threshold used to binarize the prediction
output of f . In contrast, the generative model (cGAN) accepts an input image X
and a tweakable parameter δ, such that the counterfactual image Xcf = E (X, δ) flips
the prediction class y. The auxiliary input δ is derived as the inverse of the classifier
prediction. Specifically, if the classifier predicts abnormal for an image X , the generator
aims to inpaint or remove the abnormal region, effectively flipping the classifier’s
prediction. Similarly, if the classifier predicts normal, the generated counterfactual
image should add the abnormal region, flipping the classifier’s prediction.

3.1.1 Image generation architecture

Singla et al. adapts the SNGAN [47] architecture for the generator and discriminator
networks. The original generative model (cGAN) consists of an encoder E(X) = z
and a decoder G(z, δ) = Xcf . The encoder transforms an input image X into a latent
representation z, which is then passed into the decoder along with a condition label δ
to produce a counterfactual image Xcf . Since the parameter δ ∈ [0; 1] is a continuous
variable, the [0; 1] range is discretized into N = 10 equal bins:

{[0; 0.1)c = 0, [0.1; 0.2)c = 1, ..., [0.9, 1]c = 10},

each corresponding to a unique condition vector c. The higher the number of conditions
N , the more granular interface is exposed to audit the classifier’s decisions. However, this
comes with a serious requirement for the amount of data needed to train the explanation
model, since the dataset for training cGAN is expected to be condition-balanced to
achieve stable training. In addition, we outline that such break-down of the conditions
has no practical purpose for the WSSS in the later sections. Therefore, only dual-
conditioning with N = 2 is studied throughout this research.

3.1.2 Loss functions overview

In order to achieve realism among the generated images that influence the classifier deci-
sion, the explanation model is optimized according to the following objective function:

min
E,G

max
D

(λGANLGAN + λfLf + λidtLidt),
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where E, G and D are the Encoder, Decoder and Discriminator of GAN; f is a pre-
trained classifier; LGAN is a data consistency loss term; Lf is a classification model
consistency loss term; Lidt is a domain-aware self-consistency loss term; λGAN , λf , λidt,
λtv are respective hyper-parameters to configure contribution of each term. The overview
of each loss term is provided in the following sections.

3.1.3 Data consistency loss term

The intuition behind the data consistency loss is that generated images should look
similar to the images in the training dataset. For cGAN, the two networks are trained:
a discriminator D(·) and a generator, which consists of the encoder E(·) and decoder
G(·). The function itself computes a standard adversarial loss on the real/fake labels as
follows:

LGAN = EX∼P (X) [log (D(X))] + EX∼P (Xcf )

[
log(1−D(E(G(X))

]
,

where P (X) and P (Xcf ) denote distributions of real and generated images respectively.

3.1.4 Classification model consistency loss term

Classification loss ensures that the explanation model produces counterfactual images
that effectively alter the classifier’s predictions as intended. The general formulation of
the objective function computes the distance measure between the predicted and expected
distributions of probabilities.

Lf = DKL(f(Xcf ) || 1− f(X)),

where DKL is the Kullback-Leibler divergence between observed (predicted) and refer-
ence (ground truth) probability distributions.

3.1.5 Domain-aware self-consistency loss term

The objective function is designed to guide the model in learning to produce coun-
terfactual images that are consistent even when subjected to multiple counterfactual
generations. The function includes two main components that encourage the model to
return an identity (unchanged) image depending on the condition used. The complete
function is formulated as follows:

Lidt = Lrec(X,E (X, f(X))) + Lrec(X,E (E (X, 1− f(X)), f(X)),

where Lrec is the reconstruction loss between input and generated images. The first
component of the function penalizes the model to generate identity image if conditioned
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on the f(X), whereas the second one should generate the identity when doing counterfac-
tual generation two times in a row. For the experiments where we refer that segmentation
masks are used, the Lrec function is defined as the average L1 distance computed between
foreground pixels belonging to each class class:

Lrec(X,X ′) =
∑
j

∑
Sj(X) · |X −X ′|∑

Sj(X)
,

where X and X ′ represent the grayscale input and generated images, and Sj is the seg-
mentation mask for the j-th label. For the binary segmentation scenario, the function will
have two iterations of computation for the background and the main classes respectively.

In the case of the experiment with no masks used, Lrec is defined as L1 distance over
all the pixels of the images:

L1(X,X ′) =
1

HW

∑
|X −X ′|,

where H and W are the height and width of the images X and X ′.

3.2 Model Architecture Designs
In this chapter, the methodology is provided describing the threefold improvements made
to the original counterfactual pipeline [15]. Firstly, perturbation-based image generation
has been introduced to minimize the occurrence of artifacts typically associated with
traditional encoder-decoder image generation methods. Secondly, the incorporation of
skip connections, similar to those used in U-Net [48], enhances the integrity and detail
of the generated images. Lastly, the conditioning process has been simplified, focusing
the model specifically for WSSS. These enhancements collectively refine the pipeline’s
effectiveness and reliability resulting in the unique modeling framework denoted as
Counterfactual Inpainting.

3.2.1 Perturbation-based Image Generation

A core advancement in the methodology over the original counterfactual explanation
pipeline is the implementation of perturbation-based image generation. In conventional
counterfactual generation models, the entire image is typically reconstructed. While
effective in some scenarios, this method often leads to the introduction of artifacts –
unintended alterations in the image that can skew the classification model’s interpretation
and analysis. The concept of perturbation-based image generation is closely related to the
principles underlying adversarial attacks in AI [49] [50]. Both counterfactual explanation
and adversarial attacks explore how minor alterations to an input can lead to significantly
different outputs from a model. In adversarial attacks, these alterations are designed to
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Figure 2. Overview of the perturbation-based counterfactual explanation model. The
decoder generates only a perturbation map fused into the input image to produce a
counterfactual example.

deliberately "fool" the model, whereas in counterfactual explanations, they are used to
understand and explain the model’s decision-making process. The Figure 2 describes a
modified counterfactual generation pipeline.

3.2.2 Skip-connections in the generator

The U-Net architecture [48], originally developed for biomedical image segmentation,
introduced the concept of skip-connections as a way to improve the flow of information
across the network. The Figure 3 describes the idea of fusing intermediate features
between different encoder-decoder layers.

In the context of generating counterfactual explanations, maintaining the integrity
and identity of the original input image is crucial. The encoder-decoder architecture
of the cGAN can sometimes lead to a loss of fine-grained details during the encoding
process because of pooling or other downsampling layers that reduce the spacial reso-
lution of activation maps. By integrating skip-connections, we facilitate more accurate
perturbations, enhance reconstruction quality and preserve the input image details as
much as possible.

3.2.3 Simplified conditioning

Another pivotal advancement of this thesis is the re-designing the counterfactual pipeline
to solve the problems essential for weak segmentation labelling. At the inference stage of
WSSS, our goals are to use the trained generator G to "inpaint" or remove the abnormality
only when the classifier predicts that the image is abnormal to be able to annotate
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Figure 3. High-level overview of the original U-Net architecture [48].

existing anomalies. Therefore, once counterfactual image Xcf is generated, its absolute
difference with original image X provides weak segmentation label. By applying a
dual-conditioning strategy with N = 2 from Singla et al.’s framework, four distinct
combinations (y, c) of the classifier predicted label and the condition used are present
during inference, such as (0; 0), (0; 1), (1; 0) and (1; 1). However, only the combination
(1; 0) correlates with our goals at inference time. The combinations (0; 0) and (1; 1) refer
to generating images without any perturbations (identity), which serves a purpose to only
enforce the model with self consistency during training. The combination (0, 1) refers to
introducing synthetic anomalies to normal images, which also does not meet objectives
of WSSS. With this said, we re-design the strategy to incorporate only single condition
in the generator model. In the next section, we give a complete overview of our final
WSSS pipeline.

3.3 Counterfactual Inpainting
In this chapter, we describe the main difference between the original Singla et al. and
our COIN method in terms of loss functions for training the image generation model.
COIN simplifies the architecture to handle only one condition to inpaint or remove the
abnormal region. We train the model as a simple GAN that produces counterfactual
image Xcf where f(Xcf ) < t. In this case, the flipping happens only in one direction
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when the X is abnormal and Xcf becomes normal, removing the area that affects the
classifier’s prediction. This approach addresses the challenge of needing a condition-
balanced training set for the cGAN by reducing the complexity and data requirements.
The overview of our Counterfactual Inpainting method is depicted in Figure 4.

Figure 4. Overview of the proposed Counterfactual Inpainting pipeline [51]. Given
the input image X and black-box classifier f that produces a classification label, the
image-to-image model (GAN) generates a counterfactual image Xcf with y = 0. If X
is abnormal, it is expected that Xcf no longer contains the abnormal part of the input
image. Computing the absolute difference of the original image X and counterfactual
image Xcf results in a weak tumor segmentation map. While training the pipeline, only
GAN weights are updated. Classifier predictions are used for classifier consistency loss
calculation.

3.3.1 Loss functions overview

We inherit the same loss functions described by Singla et al., and introduce an additional
Total-Variation loss [52] to enforce smoothness in the generated images. The complete
objective function for the Counterfactual Inpainting pipeline is given as follows:

min
E,G

max
D

(λGANLGAN + λfLf + λidtLidt + λtvLtv),

where E, G and D is the Encoder, Decoder and Discriminator of GAN; f is a pre-trained
classifier; LGAN is a data consistency loss term; Lf is a classification model consistency
loss term; Lidt is a domain-aware self-consistency loss term, and Ltv is a Total-variation
loss term; λGAN , λf , λidt, λtv are respective hyper-parameters to configure contribution
of each term.
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3.3.2 Classification model consistency loss term.

Having introduced a new conditioning strategy, our intended classifier probabilities on
the generated images are should be as close to 0 as possible. To optimize this between
predicted and ground truth distributions, we still need a KL divergence, however in our
reformulation for the inpainting pipeline, the condition-aware loss simplifies to:

Lf = DKL(f(E (X)) || 0),

where E is the image generation model.

3.3.3 Domain-aware self-consistency loss term.

Similarly to Singla et al., the main idea behind the objective function is to let the model
learn cyclically consistent counterfactual images when applying a series of counterfactual
generations. We compute one cycle of generations to produce E (X) and E (E (X)). Both
counterfactual images should retain as much details as possible from the input image
perturbing it only if it is abnormal. Additionally, Singla et al. uses segmentation
masks to enforce local consistency over the foreground pixels of different segmentation
labels present in the image. However, we employ simpler supervision, not requiring
segmentation masks, to compute the reconstruction loss over the whole image instead of
local regions. The domain-aware self-consistency loss for our Counterfactual Inpainting
pipeline is given by:

Lidt = L1(X,E (X)) + L1(X,E (E (X)))

3.3.4 Total-Variation loss term.

To further improve the smoothness of the segmentation masks, we adopt a Total-Variation
(TV) loss [52] computed directly from the difference maps. TV loss enforces smoothness
for the generated counterfactuals suppressing the noise and preserving the edges at the
same time. The formula for the objective function is as follows:

Ltv =
1

HW

(
H−1∑
i=1

W∑
j=1

(xi+1,j − xi,j)
2 +

H∑
i=1

W−1∑
j=1

(xi,j+1 − xi,j)
2

)
,

where xi,j is the intensity of a pixel at position (i, j) in the input image X .
TV loss serves as a regularization term and improves consistency in the raw difference

maps enforcing the model to perturb only densely located regions.
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3.4 Singla et al.* method
To set up a baseline for comparison, we wanted to compare our method with that of
Singla et al. However, a direct comparison was difficult because the model’s code was
not available requiring our own implementation. For a fair comparison, we also needed
to modify the loss function to not rely on segmentation masks, since our goal is to detect
these masks for WSSS without directly using them. We adjusted the loss terms and used a
simple L1 loss, calculated by averaging over all pixels in the generated and input images.
This change initially led to poor segmentation performance. Suspecting that the original
cGAN model might have unreported skip connections, we added these connections to
our baseline. In our results, we refer to this enhanced version as the modified Singla et
al*.

3.5 Alternative XAI approaches
In addition to the baseline Singla et al.* approach, we select three classical XAI methods
for comparison with our Counterfactual Inpainting pipeline including ScoreCAM, Layer-
CAM and RISE. All the three methods do not require any model training or thorough
hyperparameters tuning to be applied to an arbitrary image classification model. Score-
CAM and LayerCAM were chosen for their established roles within the class activation
mapping category of XAI methods relying mostly on the intermediate features extracted
from different layers of the model to be explained. As for RISE, the method is chosen
for its close similarity with the counterfactual explanation approaches since it directly
perturbs the input image to generate the final explanation map of which image regions
are the most important.

3.6 Datasets and data preparation
In this chapter, we outline the main datasets data preparation techniques used for experi-
mentation. In particular, we explore both synthetic anomalies and real tumors to test the
developed counterfactual pipeline.

3.6.1 TotalSegmentator

The TotalSegmentator [53] dataset is a large collection of CT images specifically created
for training and evaluating image segmentation algorithms. It includes a variety of
medical scans from different body areas such as the chest, abdomen, pelvis, etc. For
our experimentation, we used the metadata file present in the dataset to persist only the
scans analyzing abdomen area. While the dataset has manually labeled ground truth
masks, many of its annotations are made using pre-trained segmentation models. In our
inspection of the quality of the kidney masks, we found many labelling inconsistencies,
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so we used the latest nnU-Net [54] model to generate more accurate ones. We split the
dataset’s scans randomly divided into training and validation sets with an 80/20% split.

3.6.2 TUH

The Tartu University Hospital (TUH) kidney tumor dataset includes contrast-enhanced
CT scans of 291 kidney tumor cases and 300 control cases. It features pixel-level anno-
tations for three classes: kidney, malignant lesion, and benign lesion. Five radiologists
annotated the dataset, with each scan reviewed by at least two of them. Discrepancies
were resolved through direct discussion among the radiologists. The final labels were
created by merging two sets of annotations. We used image-level labels, which indicate
the presence or absence of a malignant lesion, for classifier training. Pixel-level labels
were reserved for evaluating segmentation quality. The dataset’s scans are randomly split
into training and validation sets at an 80/20% ratio, stratified by the total tumor area in
voxels per scan.

3.6.3 Synthetic anomaly augmentation

Figure 5. Examples of the synthetic anomalies injected randomly inside kidneys.

Given the limitations of real-world medical datasets, which often have few CT
scans for each class, we begin our development with synthetic data to effectively assess
modeling decisions, and later apply our findings to real-world kidney tumors. This thesis
introduces a synthetic anomaly designed specifically for integration into CT scan datasets.
With this approach, we set a solid benchmark dataset that allows us to control the quality,
quantity and diversity of the instances to be segmented. This approach helps simulate a
controlled environment to specifically test and improve the models’ capability.
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The synthetic anomaly is designed as a Gaussian blob with specific characteristics —
fixed sigma and radius — chosen to resemble typical radiological findings like circular
or ellipsoid structures seen in medical images. This makes our test conditions relevant to
real-world scenarios.

We randomly sample a synthetic anomaly inside of one of the kidney kidney slices
within the TotalSegmentator dataset to mimic the unpredictability and variety of real
medical conditions. We also increase the challenge for our models by applying various
transformations to the anomaly, such as random grid distortions, scaling, and rotations, to
see how well the models can adapt to and process these changes. This method prepares
us to then move to analyzing real-world kidney tumors. The examples of anomalous
slices are presented in the Figure 5.

3.7 Evaluation
3.7.1 Realism of generated images

The Fréchet Inception Distance (FID) score [55] is a metric to evaluate how similar
generated images are to real images. It uses a pre-trained neural network to get feature
vectors from both image sets, capturing details like textures and shapes. The similarity
is calculated using a formula that measures the difference between the distribution of
features from real images x and generated images (counterfactual explanations) xc. The
formula is:

FID(x, xδ) = ||µx − µxδ
||22 + Tr(Σx + Σxδ

− 2
(
ΣxΣxδ

) 1
2 ),

where the means and covariance of the activation vectors are denoted as µ’s and Σ’s
respectively. The Tr notation is a function that computes a trace of a matrix, which is a
sum of its diagonal elements. In this work, the features for computing the FID score are
taken from the penultimate layer of an Inception v3 model [56].

3.7.2 Classifier consistency

The Counterfactual Validity (CV) score measures how often counterfactual explanations
change a model’s decision. For instance, if the original image is classified as positive, the
counterfactual explanation should make the model classify it as negative. This change is
counted as successful if the difference in predictions |f(X)− f(Xcf )| exceeds a specific
threshold τ . The formula for the metric is given by:

CV(X,Xcf ) =
1(||f(X)− f(Xcf )|| > τ)

N
,

where input and counterfactual images are denoted as X and Xcf , τ is is the minimum
required probability difference, N is the number of input images, and 1 that sums all
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instances where the difference exceeds τ . Following Singla et al., we use τ = 0.8 is used
in the evaluations.

3.7.3 Segmentation metric

The Intersection Over Union (IoU) score is a common metric used to measure the
accuracy of segmentation models. It effectively quantifies how much the predicted
segmentation overlaps with the actual segmentation, making it an objective and straight-
forward evaluation metric. The formula is given by:

IoU(S, Sc) =
|S ∩ Sc|
|S ∪ Sc|

=
TP

TP + FP + FN
,

where S is a ground truth mask, Sc is a predicted mask and TP , FP , FN represent
predictions including true positives, false positives and false negatives respectively.

4 Experiments & Results
We developed all neural networks using PyTorch [57] and trained them at the University
of Tartu’s High Performance Computing (HPC) cluster on a single Nvidia A100-SXM-
40GB GPU. We selected kidney image slices with at least 32 pixels in the kidney mask
area, resized them to 256x256 using bilinear interpolation, and grouped them into batches
of 16 for training. Our training process involved two stages: training a classifier and an
explanation model. During the explanation model’s training, the classifier’s parameters
were kept unchanged.

For the classifier, we used ResNet18 [58] for synthetic anomalies and EfficientNet-V2
[59] for real tumors. We chose ResNet18 for synthetic data because these anomalies
are less complex, usually clear-cut, and strictly localized to the kidneys. On the other
hand, real tumors vary widely in size, shape, and texture, requiring the more advanced
EfficientNet-V2 architecture. We used the Adam optimizer with parameters α = 0.0002,
β1 = 0 and β2 = 0.9. to optimize our models.

The segmentation masks are generated by taking the absolute difference between the
counterfactual and input images and applying a threshold. The code for our project is
available at:

https://github.com/Dmytro-Shvetsov/counterfactual-search

4.1 Iterative COIN development
In this chapter, we describe our process of iteratively improving the Singla et al. method
to develop our COIN pipeline. The Table 1 summarizes all the milestones (experiments
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Table 1. Metric results for the iterative improvements of the original Singla et al. and our
COIN methods [51]. Scenarios A and H refer to the original Singla et al. and modified
Singla et al.* experiments respectively. The remaining cases B-G demonstrate positive
impact of the proposed architectural changes.

ID & iterative changes us
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mask
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pe
rtu

rba
tio

ns

sk
ip

co
nn

ec
tio

ns

co
nd

itio
ns

FID ↓ CV ↑ IoU ↑

A ✓ 0 2 1.6190 0.992 0.020
B (+ perturbations) ✓ ✓ 0 2 0.5500 0.934 0.086
C (+ skip connection) ✓ ✓ 1 2 0.3254 0.968 0.284
D (+ skip connection) ✓ ✓ 2 2 0.1751 0.933 0.480
E (+ skip connection) ✓ ✓ 3 2 0.0849 0.961 0.463
F (+ skip connection) ✓ ✓ 4 2 0.0253 0.9542 0.509
G (- masks) ✓ 4 2 0.0493 0.996 0.528
H (- perturbations) 4 2 0.0466 0.998 0.445

COIN ✓ 4 1 0.0029 0.997 0.646

A-H) and the results achieved on TotalSegmentator dataset and synthetic anomalies. First,
we equipped the Singla et al.’s method with perturbation-based generator (experiment
B). Next, we test different numbers of skip connections (experiments C-F). Finally, we
removed the dependency on the segmentation masks in model training to make WSSS
applicable (experiment G). The experiments A and H correspond to the original Singla et
al. and modified Singla et al.* methods respectively.

4.1.1 Influence of perturbation-based generator

In this experiment, we used the counterfactual explainer from Singla et al. and tested its
improvement with perturbation-based image generation, focusing on FID and IoU scores.
Perturbation-based approach produces higher quality images by not rebuilding the entire
input image from scratch. Instead, the decoder focuses on making just the necessary
changes to alter the classifier’s decision. We provide a qualitative comparison of images
generated by both methods in the Figure 6.

4.1.2 Influence of skip connections on the generated image quality

In this experiment, we build on Singla et al.’s perturbation-based counterfactual genera-
tion to demonstrate how skip connections in the network help prevent severe distortions
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Figure 6. Examples of images generated with original and perturbation-based Singla et
al.* pipelines [51]. The first and second columns denote input and counterfactual images
respectively. The third column visualizes confusion matrix with colors: green for true
positives, red for false positives, and yellow for false negatives.

in the input images. The encoding process naturally leads to information loss, making
it difficult to recreate counterfactual images with minimal changes. By progressively
adding skip connections between the encoding and decoding layers, we show improve-
ments in FID and IoU scores. Using skip connections (sc), the images are less distorted,
which also lowers the FID score. The Figure 7 visualizes the qualitative comparison of
images generated with and without skip connections.

4.1.3 Perturbation-based Singla et al.* vs COIN

This experiment shows that our proposed Counterfactual Inpainting pipeline performs
better than the base Singla et al.* method. We trained both approaches and assessed their
ability to accurately segment using weak labels derived from the counterfactual images.
The Counterfactual Inpainting offers two main advantages: it doesn’t need segmentation
masks to maintain local consistency, and it achieves higher IoU scores because the model
simply decides whether to inpaint the anomaly to create the segmentation mask. A
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Figure 7. Examples of images generated with and without skip-connections (sc) between
encoder-decoder layers of the perturbation-based Singla et al.* pipeline [51]. The first
and second columns denote input and counterfactual images respectively. The third
column visualizes confusion matrix with colors: green for true positives, red for false
positives, and yellow for false negatives.

qualitative comparison of the counterfactuals produced by both methods is shown in the
Figure 8.

27



Figure 8. Examples of images generated with perturbation based Singla et al.* method
equipped with skip connections and with the proposed Counterfactual Inpainting ap-
proach [51]. The first and second columns denote input and counterfactual images
respectively. The third column visualizes confusion matrix with colors: green for true
positives, red for false positives, and yellow for false negatives.

4.2 WSSS comparison of COIN and other methods
In this chapter, we present the evaluation results of our COIN method against attribu-
tion methods [17, 18, 16] and the modified Singla et al.* counterfactual pipeline. We
normalized the output attention maps from all methods to a range of [0; 1] and applied a
fixed threshold. The parameter sweep is performed over the 0-1 range to select the best
binarization threshold that maximizes the IoU score for each method. In addition, for the
counterfactual methods, we used morphological operations like closing and opening to
reduce noise and keep only the largest connected component in the masks. The results
displayed in the Table 2 show that COIN significantly outperforms the other methods in
IoU scores, achieving up to 60% on synthetic anomalies and 14% on real tumors.

Additionally, the Figure 10 shows visual examples of counterfactuals generated using
our COIN method from the TUH dataset’s validation set. We demonstrate that the COIN
pipeline is effective for medical imaging WSSS applications, as it can learn useful weak
segmentation labels with only classifier supervision.
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Figure 9. Visualization of the attribution and our Counterfactual Inpainting pipeline
methods’ predictions on TotalSegmentator and TUH datasets [51]. For each dataset
and each method, the top row shows overlaid heatmap of the predicted saliency image,
while the bottom row depicts thresholded masks obtained from saliency maps from
each method. The colors in segmentation masks represent ground truth (white), true
positives (green), false positives (red), and false negatives (yellow). Images are zoomed
in for better clarity.

4.3 Ablation experiments for the final architecture
In the ablation study of this research, we examine how each loss term affects image real-
ism (FID), the rate at which classifier predictions flip (CV), and segmentation accuracy
(IoU) in our Counterfactual Inpainting pipeline. We conducted experiments where we
independently removed the effect of each loss term by setting its weight to zero and then
compared the outcomes. The results are shown in the Table 3.

Classifier consistency loss is key for producing effective counterfactual images.
Removing this loss reduces the classifier’s impact on the generator’s outputs, which
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Figure 10. Visualization of counterfactual examples generated with COIN for TUH
validation set [51]. The first and second columns refer to input and counterfactual images
respectively. The third column depicts the absolute difference image providing the
explanation map. Red contour corresponds to ground truth annotation of kidney real
tumor. The model correctly inpaints majority of the tumors resulting in rich difference
map making it convertible into a weak segmentation label.
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Table 2. Metric results for the attribution methods and our Counterfactual Inpainting
pipeline on TUH dataset [51]. Since CAMs and RISE do not create counterfactual
images, FID and CV metrics cannot be computed for these methods.

Datasets Methods FID ↓ CV ↑ IoU ↑

ScoreCAM - - 0.030
LayerCAM - - 0.026

TotalSegmentator RISE - - 0.397
Singla et al.* 0.047 0.998 0.445
COIN 0.003 0.997 0.646

ScoreCAM - - 0.293
LayerCAM - - 0.296

Tartu University Hospital RISE - - 0.294
Singla et al.* 0.203 0.992 0.352
COIN 0.036 0.980 0.432

Table 3. Ablation study results on each loss term contribution based on TotalSegmentator
dataset with synthetic anomalies [51].

Experiment FID ↓ CV ↑ IoU ↑

λidt = 0 0.0024 0.997 0.500
λf = 0 0.0032 0.642 0.424
λtv = 0 0.0178 0.997 0.427

COIN baseline 0.0029 0.997 0.646

lowers the CV score by 35%. The Self-Consistency and TV losses help the model avoid
random changes and concentrate on densely located regions, which forces the model to
learn minimal perturbations and increases the IoU by up to 22%.

5 Discussion
We developed a new Counterfactual Inpainting approach for weakly supervised semantic
segmentation that outperforms existing attribution methods and the baseline Singla et al.*
counterfactual method in segmenting synthetic anomalies on TotalSegmentator dataset
and real tumors on the Tartu University Hospital dataset. For a fair comparison, we
carefully chose the best threshold for all attribution methods. However, CAM methods
did not perform as well because they focus on high-level classification-relevant areas
of the image and often miss the central parts of anomalies. RISE was more effective
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than ScoreCAM and LayerCAM because it creates saliency maps by directly perturbing
the input image with pre-generated masks. We intended to compare our method with
the original approach by Singla et al., but their code was unavailable. We implemented
their method ourselves, adding skip connections to improve it. We suspect the original
method may have omitted some architectural details because it initially performed poorly.
Our modified version of Singla et al.’s approach showed improved segmentation results
after postprocessing but still resulted in images with low fidelity, leading to a high FID
score. Overall, our COIN method produces accurate difference maps, confirming its
suitability for the WSSS task. Moreover, the figure 9 provides a qualitative evaluation of
the counterfactuals generated by our method and others discussed.

5.1 Limitations and Future works.
A major limitation of our Counterfactual Inpainting pipeline is its reliance on the underly-
ing black-box classifier. Training a classifier, though simpler than training a segmentation
model, can become a complex task since it may require a lot of labeled data, significant
computational resources, and meticulous parameter tuning. Any issues with the classifier,
such as training data biases or problems with overfitting or underfitting, can negatively
impact the quality of the counterfactuals that are generated. This may result in poor
segmentation labels that do not accurately represent the data or highlight the relevant
features for analysis.

Another drawback is that our current method only works with 2D data, even though
CT scans are inherently 3D. This limitation can result in a loss of important spatial
information, which is crucial for accurately segmenting and analyzing medical images.
To address this, we plan to develop our pipeline to handle 3D data, which would improve
the accuracy and relevance of the segmentation masks by providing a more detailed view
of the structures in the scans.

Furthermore, while our pipeline currently focuses on tumor data within the medical
field, we aim to broaden its application. Future research will test its effectiveness on
different kinds of data and in various settings, especially where acquiring detailed seg-
mentation masks is harder than obtaining classification labels. This could be particularly
useful in fields where such data is scarce or has intricate structures of the objects to be
segmented, which results in difficulties with data labelling.
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6 Conclusion
In this study, we introduce a new strategy that uses XAI techniques for the weakly
supervised semantic segmentation task in the medical field. We built on a counterfactual
method from Singla et al., enhancing it with a perturbation-based generator, simplifying
the process for either inpainting or removing abnormalities, and removing the need for
segmentation masks. Additionally, we incorporated a new loss term to increase the
quality of the counterfactual images. These improvements led to more accurate segmen-
tation masks and outperformed both attribution methods and the original counterfactual
approach. Our innovative method produces more detailed and nuanced counterfactual
examples, making a significant contribution to the field of weakly supervised learning. By
overcoming the challenges of sparse annotations and utilizing counterfactual reasoning,
our inpainting pipeline provides a strong solution for enhancing semantic segmentation
models without relying on extensive manually labeled datasets.
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Appendix

I. Usage of ChatGPT language model in academic writing
In the course of our research, we employed a natural language processing model, namely
ChatGPT1, to facilitate the academic writing process for this thesis. Specifically, Chat-
GPT was used to validate novel ideas and suggest alternative phrasings for sentences and
paragraphs. Additionally, it was employed to answer our inquiries related to the thesis,
however the responses provided by the model were verified against academic literature.
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