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A Comparative Evaluation of Explainability Techniques for Image
Data

Abstract:
The use of machine learning has increased dramatically in the last decade across many
domains, especially in computer vision, where high-performing convolutional deep
neural networks have reached and even surpassed human performance in many areas. To
answer increasing needs in transparency for these black-box models the community of
eXplainable AI have produced various techniques to explain their predictions. A popular
way to do so for image data is via saliency maps. At the same time, objectively evaluating
the quality of these techniques is not an easy task, due to the multifaceted nature of
interpretability. In this work we perform a thorough comparative evaluation of six popular
saliency map explainability techniques, namely LIME, SHAP, GradCAM, GradCAM++,
IntGrad and SmoothGrad, using five quantitative function-grounded metrics present in
literature, specifically fidelity, stability, identity, separability and time, on three commonly
used benchmarking datasets, and three well-known model architectures, to determine pros
and cons of each of the techniques. Though we find that no single technique dominates
in all metrics, the obtained results show that IntGrad and SmoothGrad performed well
on our fidelity and stability tests, with SHAP also achieving high results in fidelity. All
techniques but LIME and SmoothGrad score highly on identity metric, and all but LIME
- on separability, while GradCAM and GradCAM++ were by far the fastest. We also note
the caveats we identified in the metrics, suggesting that more work is needed to gain a
full picture of the quality of the different XAI techniques.
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Pildiandmete selgitamismeetodite võrdlev hindamine
Lühikokkuvõte: Masinõppe kasutamine on viimasel kümnendil paljudes valdkondades
märkimisväärselt kasvanud, eriti arvutinägemise valdkonnas, kus suure jõudlusega kon-
volutsioonilised süva-neuronivõrgud on saavutanud ja isegi ületanud inimese jõudluse
paljudes valdkondades. Et vastata nende black-box mudelite läbipaistvuse kasvavale
vajadusele, on eXplainable AI kogukond loonud erinevaid tehnikaid nende prognooside
selgitamiseks. Populaarne viis seda teha pildiandmete puhul on kasutada silmapaistvuse
kaardid. Samas ei ole nende meetodite kvaliteedi objektiivne hindamine tõlgendatavuse
mitmetahulisuse tõttu lihtne ülesanne. Käesolevas töös teostame kuue populaarse silma-
paistvuse kaardi selgitamise tehnika, nimelt LIME, SHAP, GradCAM, GradCAM++,
IntGrad ja SmoothGrad, põhjaliku võrdleva hindamise, kasutades kirjanduses esinevaid
viit kvantitatiivset funktsioonipõhist mõõdikut, täpsemalt truudust, stabiilsust, identiteeti,
eraldatavust ja aega, kolme üldkasutatava võrdlusandmestiku ja kolme tuntud mudelite
arhitektuuri põhjal, et määrata kindlaks iga tehnika plussid ja miinused. Kuigi me leiame,
et ükski tehnika ei domineeri kõigis mõõdikutes, näitavad saadud tulemused, et IntGrad
ja SmoothGrad esinesid meie usaldusväärsuse ja stabiilsuse testides hästi, kusjuures
SHAP saavutas ka kõrgeid tulemusi usaldusväärsuse osas. Kõik meetodid peale LIME ja
SmoothGrad said kõrgeid tulemusi identiteedi mõõtkavas ja kõik peale LIME - eralda-
tavuse mõõtkavas, samas kui GradCAM ja GradCAM++ olid kaugelt kõige kiiremad.
Samuti märgime, et meetrikate puhul on ettevaatusabinõusid, mis viitavad sellele, et
erinevate XAI-tehnikate kvaliteedist täieliku pildi saamiseks on vaja teha rohkem tööd.

Võtmesõnad:
Seletatav tehisintellekt, tõlgendatav masinõpe, mõõdikud, hindamine
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1 Introduction
Usage of artificial intelligence (AI) and machine learning (ML) models has increased
dramatically in recent years, especially in computer vision (CV). With the success of
deep learning, AI has approached human performance and even outperformed humans
in some CV challenges (e.g. ImageNet image classification challenge [RDS+15]). ML
models have been adopted in various domains including healthcare [NAL+21], criminal
justice [FBL16, Cho16], education [BH22], autonomous driving [YLCT20] etc.

Many of the deployed models are black-box models, meaning that they are either
too complicated for a human to comprehend (e.g. deep neural networks or DNNs), or
proprietary models. Since their inner workings are opaque, such models can have low
transparency, which poses risks in security, fairness, ethics, and limits trust in them,
despite their impressive performance. The risks that such models pose to society are
recognised not only by the ML community, but also by policy makers. In 2018 the
general data protection regulation (GDPR) was imposed by the European Parliament
forcing industries to “explain” any decision taken when automated decision making takes
place: “a right of explanation for all individuals to obtain meaningful explanations of the
logic involved” [EC]. In 2019, the High-Level Expert Group on AI presented the ethics
guidelines for trustworthy AI [Hig19]. While legal experts may hold differing opinions
on these clauses, there is a consensus that the implementation of such a principle is
urgently needed, presenting a significant and open scientific challenge.

To address these challenges the field of eXplainable Artificial Intelligence (XAI)
has emerged. It aims to shift focus from predictive accuracy as the sole metric of
quality of ML models to the aspects of interpretability and explainability. As the field
grows, so does the number of different techniques to help interpret and explain the
predictions of ML models. They can be used by businesses as part of the decision making
process in human-in-the-loop systems, or by researches during model debugging process.
These techniques are varied and span different model types, data types and explanation
types. For image data an intuitive way to provide an explanation of a prediction is
naturally through visualisation. The most popular branch of visualisation techniques
are the ones that generate saliency maps (SM), which show the importance of different
parts of the image towards the final output of the model. Some of the ways saliency
maps can be generated is by exploiting backpropagation process of neural networks,
as done in Integrated Gradients [STY17] technique; by exposing internal state of the
model, such as in GradCAM [SCD+17] technique; or by perturbing the input image and
measuring the change in the output of the model, as done in Local Interpretable Model-
agnostic Explanations (LIME) [RSG16] technique. An advantage of saliency maps over
other visualisation techniques is that the explanations produced by them can be directly
correlated to and overlaid onto the feature space of the input image, which is intuitive
and simple to understand for a human user. At the same time, thy have drawn criticism
for being unreliable, misleading or insufficient in some cases [AGM+18, Rud19].
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As the number of XAI techniques expands and their adoption increases, so grows
the need to evaluate them in order to allow researchers and businesses to understand
which techniques are more or less appropriate for their use cases. This is made difficult
by the fact that there is no unified agreed-upon definition of interpretability in the XAI
community [Rud19]. While it is considered to be multi-faceted and domain-specific
notion, preventing us from measuring it directly, existing research has identified a
number of properties that make a XAI technique useful, as well as various ways to
measure them [NTP+23]. These properties can be categorised by what aspect of quality
they represent: the quality of the content of the explanation (e.g. correctness w.r.t.
the black-box mode), the presentation aspect of the explanation (e.g. the size of the
explanation), or the way the user interacts with the explanation (e.g. how much does
the user’s prior knowledge matters). Another way to divide evaluation criteria is into
function-grounded metrics, human-grounded metrics and application-grounded metrics
[DVK17]. The latter two usually involve evaluating the quality of the explanations
through humans (non-experts or experts respectively) by collecting their answers through
questionnaires or interviews and performing quantitative analysis afterwards. These are
important, especially for qualitative evaluation, and, since some desirable properties
of XAI techniques can be considered subjective (e.g. those related to presentation or
human-explanation interaction), such experiments may be the only way to measure them.
However, they are labour-intensive and as such are difficult to scale up, standardize
and impossible to fully automate. The former, functionally-grounded metrics, do not
require humans. Instead they evaluate some property of a XAI technique by measuring its
performance on some proxy task. It can be challenging to find a good proxy task, but since
these metrics don’t involve humans, they may arguably be more objective. Additionally,
since they can be automated, they can be more appropriate for benchmarking, non-critical
domains and when speed of development matters.

Even though a multitude of quantitative evaluation methods for measuring different
desirable properties of XAI explanations were developed already, there is no agreed-upon
unified set of metrics [NTP+23]. In the absence of consensus on this topic, there has
been a lack of overall quantitative comparative evaluations of popular and recent XAI
techniques for image data, especially comparing performance on different underlying
black-box ML models. We aim to close this research gap by first identifying a set of
function-grounded metrics that can be used to quantitatively evaluate the quality of such
techniques from different angles, then performing rigorous experiments to compare
different saliency map techniques using the selected metrics across different datasets and
models.

Our main contribution is as follows: we conduct a detailed comparative evaluation
of six recent and popular local interpretability techniques for image data that generate
explanations in form of saliency maps, namely LIME, SHAP, GradCAM, GradCAM++,
IntGrad and SmoothGrad, using five quantitative function-grounded metrics present in
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literature, specifically fidelity, stability, identity, separability, and time, with each of the
metrics measuring different aspect of quality of the explanation, on three commonly
used general-purpose datasets (CIFAR10, SVHN and Imagenette), using models of three
well-known state-of-the-art deep convolutional neural network architectures (VGG16BN,
Resnet50, Densenet121) for each dataset. We analyse the experimental results and iden-
tify strengths and weaknesses of each explainability technique. To ensure transparency
and repeatability we provide access to our source code and the complete results of our
experiments in [Skl24].

The rest of this Thesis is organised as follows. In Section 2 we establish common
terminology, recall existing taxonomy of interpretability techniques, as well as the
different properties of the techniques and the possible ways to measure them. We finish
the section with an overview of some other recent comparative evaluations of XAI
techniques. Section 3 provides an overview of the XAI techniques that were considered
in this Thesis. In Section 4 we describe the evaluation metrics that were used in this
study. Section 5 describes the details of our experimental setup in terms of the datasets,
the models used and the meta-parameters of the techniques. The experimental results are
reported in Section 6 before we conclude in Section 7.
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2 Background and Related Work
In this section we first aim to establish a baseline of understanding about the terminology
used throughout this Thesis. We then recall the established taxonomy of existing XAI
techniques. Next, we review the different desirable properties of explanations produced
by the techniques and some of the ways they can be measured in practice. Lastly, we
look at which some of the recent comparative studies for interpretability techniques.

2.1 Definitions and Terminology
Interpretability is a domain-specific notion that lacks an all-purpose definition [Rud19].
In a large part, this is because different contexts may require different types of explana-
tions and no definition may capture all the possible contexts. In this work we will adopt
the definition of interpretability as the "degree to which a human can understand the
cause of a decision made by an ML model" [Mil19]. While at a glance interpretability
may appear a binary property, recent research argues that it should be considered a
multifaceted one, which can be broken down into a number of smaller characteristics
[NTP+23] which we explore in Section 2.3. Explainability is a related term, which is
often used interchangeably, or sometimes distinguished from interpretability, although
there is no consensus what the distinction actually is [BDMZM21]. In this paper, for
simplicity, we will use them interchangeably.

An explanation can be defined as a presentation of (aspects of) the reasoning, func-
tioning and/or behavior (depending on the type of the explanation) of a machine learning
model in human-understandable terms [NTP+23]. In this definition reasoning refers
to the process on how a model came to a particular decision, functioning refers to the
(internal) workings of the model, and behavior refers to how the model globally operates
(without analysing the internal workings). Inclusive or indicates that a single explanation
can fulfil multiple objectives at once.

2.2 Taxonomy of Explainability Techniques
Here we reference the taxonomy of XAI techniques present in literature such as [BGG+23],
identifying main distinctions by which different techniques can be divided.

The first distinction we can make is between inherently interpretable models and
post-hoc explanation techniques.

• Inherently interpretable models are a class of models which provide a decision in a
form where the reason for that decision is directly accessible from the model struc-
ture. These models are usually constrained in model form, e.g. by feature sparsity,
model simulatability and others. This class usually refers to "simpler" models,
such as decision trees, linear models, and rules-lists, but also includes highly
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sophisticated models, such as neural networks with interpretability mechanisms
(e.g. attention mechanism) baked in during training process.

• Post-hoc explanation aim to provide explanations for black-box model after it has
been trained, and without changing the model. This may, for example, involve
building a separate post-hoc model to explain the output of the original black-box
model.

Post-hoc techniques can be further subdivided into global and local techniques.

• Global techniques aim at explaining the overall logic of a model.

• Local techniques explain the decision of the model in a specific instance.

Another division of the post-hoc methods splits them into model-agnostic and model-
specific.

• Model-Agnostic techniques can be used to provide explanation for any type of
black-box model. This way the explanation is decoupled from the inner structure
of the ML model, allowing us to change the underlying model independently of
the interpretation technique.

• Model-Specific techniques can be used to provide explanation only for a specific
type of black-box models, most commonly Neural Networks.

Furthermore, it is possible to divide post-hoc explainability techniques by type of
explanation provided. Different data types may require different types of explanation.
For image data the subdivision is as follows.

• Saliency Maps techniques provide explanation in form of a map which highlights
the importance of each input pixel.

• Concept Attribution techniques show the importance of a "concept" to the model
output. For example, the importance of the presence of stripes to a prediction of a
zebra. The concept can be provided by a user or derived automatically from the
input.

• Prototype techniques provide a series of images that exemplify the predicted class.

• Counterfactual techniques provide a set of examples that are similar to the input
image, but predicted as a different class; or showcase the minimum modifications
required for the input to be predicted as a different class.

The focus of this Thesis - saliency map techniques - can be even further subdivided
by the mechanism the importance of the pixels is computed. [GM23].
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• Perturbation-based techniques calculate the importance of a pixel by measuring
the output change when perturbing this the input. Usually these methods partition
the input image into super-pixels and measure their importance, instead of doing
this for each pixel.

• Activation-based techniques are based on weighting the feature maps produced at
the last layer of the CNN to explain the predicted class. These methods generate
saliency maps with the resolution of the feature maps at the final layer, which are
then upscaled to the resolution of the input, resulting in very coarse maps.

• Backpropagation-based techniques consist of backpropagating information from
the output of the model to the input image to yield a high-resolution saliency map,
which indicates the impact of each pixel on the decision.

The detailed description of each method used in this Thesis is provided in Section 3.

2.3 Evaluation of Explainability Techniques
Since the emergence of XAI, the number of explainability techniques has been increas-
ing steadily. Naturally, to answer the demand for quality explainability techniques, a
multitude of ways to evaluate them has been developed, and more and more papers that
introduce new techniques include evaluations of their methods [NTP+23].

To systematise evaluation methods, [DVK17] proposes three major categories:

• Function-grounded metrics evaluate the interpretability technique via some proxy
tasks. These metrics do not require humans and as such can be automated. Defin-
ing a good proxy task can be a challenge and depends on the context and the
requirements of the specific explanation task. One example authors provide for
this category is evaluating a technique w.r.t another one, already proven to be of
high quality in human-based studies.

• Application-grounded metrics rely on human experts to validate the explanation,
depending on the context of the task. These are usually employed in critical
domains. An obvious example is employing doctor experts to validate explanations
produced in medical setting.

• Human-grounded evaluation methods evaluate explanation through non-expert
humans. These are most appropriate to evaluate general qualities of the explanation.

Another way to classify evaluation methods is by looking at which desirable traits
of an explanation they measure and how. Authors of [NTP+23] surveyed 361 papers
that introduce, apply or evaluate one or more interpretability methods and structured
the commonly evaluated properties into twelve distinct categories. These properties,
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the authors refer to as Co-12, cover different aspects of explanation quality and can
be quantitatively evaluated independently from each other. The paper summarizes the
methods which have been used to functionally evaluate each of them, although, naturally,
some properties are easier to evaluate, or generalize evaluation for, than others.

The following categories are related to the qualities of content of the explanation
and the functional qualities of the explanation. This is the most commonly evaluated
category with several evaluation approaches existing for each property.

• Correctness (also fidelity [RŠB18], truthfulness [DVK17] or faithfulness [LSL+20])
describes how well the explanation approximates the prediction of the black box
model. High correctness is always desired, otherwise the interpretability technique
becomes counter-productive to explaining the behavior of the underlying black-box
model and becomes misleading instead. The most popular way to evaluate this
property is by single or incremental deletion, which involves deleting or obscuring
input deemed important by the XAI technique and measuring correlation in output
of the original black-box model and the explanations. A variation of this is incre-
mental insertion where features are incrementally added. Another popular way - is
by using a synthetic dataset that follows a particular reasoning and checking if the
produced explanations follow the same reasoning.

• Completeness addresses the extent to which the explanation explains the predictive
model. High completeness is desired, but should be balanced with compactness
and correctness as to not overwhelm the user. Output-completeness, i.e. whether
the explanation holds enough data to explain output of the model, can also be
measured by single or incremental deletion.

• Consistency (also identity in [Hon18]). Describes how deterministic and invariant
to implementation the explanation method is. The idea is to confirm that the
identical inputs have identical explanations, regardless of the underlying black-box
model. One way to do this is by measuring the difference in explanation of the
same images using the same technique on the same or on different black-box
models.

• Continuity (also stability in [Hon18, AMJ18]) describes how continuous and
generalizable the explanation function is. Small variations in the input should
not drastically change the explanation. In essence, similar inputs should have
similar explanations. A popular way to evaluate this in practice is to measure
the difference in explanation after slightly perturbing original input, for instance
adding slight noise.

• Contrastivity denotes whether the explanation is discriminative toward the other
targets or events, or in other words, whether it answers the question of “why this
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prediction was made instead of another prediction?” [CPC19]. This generally
refers to a class of explainability techniques called counterfactual explanations.
This is also related to the separability axiom introduced by Honnager in [Hon18],
which denotes that dissimilar instances should have dissimilar explanations. A
straightforward way to measure this in case of saliency maps is to compare ex-
planations for different targets or logits: different targets should have different
explanations.

• Covariate complexity describes how complex the (interactions of) features in the
explanation are. Features should be comprehensible [CPC19], while non-complex
interactions between features are desired [DVK17]. For image data this can be
measured by calculating overlap between human-interpretable concepts (which
can be manually labeled) and the features in the explanation.

The next three categories are related to presentation aspects of the explanation. These
are much less frequently evaluated and can be difficult to evaluate objectively in some
cases.

• Compactness (selectivity in [CPC19]). Describes the size of the explanation.
Explanations should be sparse, short and not redundant to avoid presenting an
explanation that is too big to understand [CPC19]. This is commonly evaluated by
measuring explanation size or sparsity.

• Composition considers the presentation format and organization of the explanation
[CPC19]. This property is about “how” something is explained as opposed to
“what” is explained. Some formats are generally more comprehensible than others.
This quality is difficult to objectively evaluate in most cases, but for text data
the authors identified the measure of perceptual realism, i.e. how believable a
generated explanation is compared to real text samples.

• Confidence describes whether the probability information is present in the expla-
nation as well as its accuracy. This measure can include both the presence of the
confidence of the original model’s prediction [CPC19], as well as the confidence of
the explainability technique itself [Mil19]. Presence of this information is usually a
design choice for a XAI researcher. It is rarely explicitly evaluated, but the process
of measuring it is comparable to single incremental deletion.

These final three categories are related to the way the user interacts with the explana-
tion. These are most often evaluated with user studies, but there are some quantitative
methods for evaluating these as well.

• Context addresses the degree to which the user’s level of knowledge and expertise
should be taken into the account. It is desirable that the explanations are relevant
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to the user [Mil19] and this property indicates whether the type of stakeholder is
taken into account. One method to evaluate this quality involves designating some
features as “untrustworthy” based on domain knowledge and measuring changes
in explanations after removing those features.

• Coherence describes the degree to which the explanation is consistent with the
user’s prior knowledge, beliefs and general consensus [Mil19]. This is related
to plausibility and it is important not to conflate it with correctness, but evaluate
separately. This is one of the most commonly measured properties. For image data,
“location coherence” is often assessed by comparing a heatmap or localization
explanation to ground-truth object bounding boxes, segmentation masks etc.

• Controllability indicates whether the user can interact with the explanation, correct
or otherwise control it, which can also be interpreted as the social aspect of
the explanations [Mil19]. The presence of user-tunable (hyper-)parameters is
usually a design choice (and not a common one) and is not evaluated often. As an
example authors present a paper that measured accuracy of textual explanations
after iterative user feedback.

According to Nauta et al. [NTP+23], 90% of papers that introduce a new XAI
method perform quantitative evaluation by three or fewer properties. Coherence and
Output-completeness are evaluated most often, followed by Correctness, Compactness
and Covariate complexity.

2.4 Related Studies
In this section we examine some recent comparative studies of explainability techniques
for image data to see which techniques are being evaluated by which metrics, as well as
which models and datasets are used. For each metric evaluated we will reference it with
a property mentioned in Section 2.3.

Bodria et al. [BGG+23] identified and employed a number of metrics to evaluate
various interpretability techniques on image, tabular and text data.

• Fidelity (or correctness) is noted as one of the most popular metrics in literature
for all types of data and techniques. For image data authors evaluate fidelity
using incremental deletion and insertion methods and measuring area under curve
(AUC).

• Another popular metric is stability, which measures the consistency of explanations
for similar records. Authors reference Lipschitz constant [AMJ18] that can be
used to evaluate stability.
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• Accuracy, precision and recall, as well as running time are also measured. These
are commonly used for evaluating quality of both interpretability techniques and
other ML models.

Specifically, authors evaluate fidelity for nine saliency map techniques, including LIME,
IntGrad, SmoothGrad, GradCAM and GradCAM++, across 100 images from each of the
MNIST, CIFAR10 and Imagenet datasets, using custom CNN models for MNIST and
CIFAR10 and VGG16 model for Imagenet. Stability, while mentioned, is evaluated only
for text and tabular data, not images.

Li et al. [LSL+20] selected five metrics to evaluate and compare different saliency
map methods:

• Faithfulness (or correctness) was evaluated by incremental insertion and measuring
iAUC - area under insertion curve.

• Localization (as a measure of coherence) was evaluated via Pointing Game pro-
posed in [ZBL+18] on a dataset with known ground truth, by counting the ratio
of data samples in which the pixel with the highest relevance score lies in the
bounding box. This metric is quite loose, since counting a single pixel as a hit can
only be accurate if the bounding box is small enough compared to the image size.
To amend this authors propose to instead measure the proportion of the overlap
between the salient area and the ground truth to the salient area.

• False-positives, as another aspect of correctness, were measured by performing
checks against a synthetic dataset with known ground truth developed in [YK19].
Two metrics were calculated as proposed in the original paper: Model Contrast
Score (MCS), Input Dependence Rate (IDR).

• Class Sensitivity (as a measure of contrastivity) check was performed by measuring
the difference between explanation for highest and lowest confidence classes in
the dataset. The idea here is that a good explanation method would have dissimilar
explanation for different classes.

• Stability (continuity) was measured by perturbing input and measuring the differ-
ence in the output of the explanation technique.

Authors use these five metrics to evaluate seven SM techniques, including IntGrad and
GradCAM, on images from MS COCO and VOC datasets, using VGG16 and Resnet50
black-box models.

Huber et al. [HLA22] focused on evaluating correctness of different saliency map
techniques using the following metrics:

• Sanity checks for saliency maps, as first proposed in [AGM+18] involving model
parameter randomization check – randomly perturbing the internals of the predic-
tive model and checking whether the explanation changes.
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• Incremental insertion method, measuring area under insertion curve was also used.

The experiments were performed using a deep reinforcement learning black-box model
and datasets from four Atari games.

Cerekci et al. [CAD+24] and Saporta et al. [SGA+22] also employed Pointing Game
[ZBL+18] method to compare coherence of several XAI techniques on medical datasets
(mammograms and chest X-Rays respectively) with expert-marked ground truth. In
the latter the authors also present a modification of this method, measuring the overlap
between the saliency method segmentation and the expert segmentation, along with the
less strict hit rate evaluation which was proposed in the original paper.

To conclude, while there have already been a number of comparative studies eval-
uating the quality of explainability techniques, they primarily focus on fidelity, like in
[BGG+23, HLA22] or coherence, like in [CAD+24, SGA+22]. However, we believe
that this alone is insufficient to measure the overall quality of the technique, since, as
mentioned in Section 2.3, it is a multifaceted notion. Additionally, the practice of stan-
dardizing the measurements on different model architectures across different datasets, i.e.
using each model type on each dataset and vice versa is not widely applied, with only
[LSL+20] performing evaluations in this way. To avoid overlaps with the latter study,
we differentiate our work by selecting different datasets and different techniques for our
experiments, and use different methods to calculate the metrics.

16



3 Reference Explainability Techniques
In this section we provide a short overview of the post-hoc explainability techniques for
image data considered in this Thesis. Examples of the explanations produced using each
metric are presented on Figure 2

3.1 LIME
Local Interpretable Model-agnostic Explanations (LIME) [RSG16] is a local model-
agnostic technique that exploits local surrogate models and can be used to produce
saliency maps when used on image data, but can also be used on tabular and text data,
which is a rare quality. It is a perturbation-based technique, which in case of image data
first segments the input image into superpixels, then perturbs the image by replacing
different superpixels with solid, usually neutral color. The perturbed variations are then
fed to the black-box model and a linear surrogate model is learned on top, which is
weighted by the distance of the perturbed variants to the original image. One of the
biggest drawbacks of this technique is the instability of the explanations it produces.
Since the technique samples perturbed instances around the original image randomly, it
may produce different explanations for the same image. Another significant drawback is
computational power required to produce an explanation, though this can be configured,
albeit with probable loss of fidelity.

When used with images the segmentation algorithm is crucial to the quality of
the resulting explanation. For small resolution images a badly-configured segmenter
may result in superpixels the size of the entire image which results in meaningless
explanations.

3.2 SHAP
SHapley Additive exPlanations [LL17] is a local-agnostic explanation method which
has both model-agnostic and model-specific variations and, like LIME, can be used
on images, text and tabular data. It aims to explain the prediction of an instance by
measuring the contribution of each feature towards the prediction. The method is based
on the concept of Shapley Values from coalitional game theory. SHAP treats features
(or groups of features, e.g. superpixels) of the input as players in a coalition acting
together to change the outcome (the prediction) and tells us how to fairly distribute the
"payout" (the impact towards the prediction) between the players. The Shapley value
explanation can be represented an additive feature attribution method, a linear model.
Formally SHAP specifies explanation as:

g(z′) = ϕ0 +

j=1∑
M

ϕjz
′
j
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where g is the explanation model, z′ ∈ {0, 1}M is the simplified features, M is the
maximum coalition size and ϕj ∈ R is the feature attribution for a feature j, the Shapley
values. To compute such explanation we simulate all combinations of some of the features
playing (being present) and some not (being absent). One can notice here similarity
to LIME, but wheres LIME assumes linearity in local model behaviour (which is not
guaranteed), SHAP guarantees a fair distribution of the "payout" among the features.
This in theory should result in more trustworthy and stable explanations. Like LIME,
SHAP is also quite computationally intensive.

SHAP can produce a number of models that differ in how they approximate the com-
putation of Shapley values. In our experiments we opted to use PartitionExplainer,
which is a model-agnostic estimator. It computes Shapley values recursively based on a
hierarchy of features that defines feature coalitions. Unlike the KernelExplainer the
paper originally came out with that has an exponential runtime, PartitionExplainer
has a quadratic runtime, which makes it more suitable for use on image data.

3.3 IntGrad
Integrted Gradients [STY17] is a local model-specific, data-agnostic explainability tech-
nique. It utilises gradients of a black-box model and as such can only be applied to
differentiable models. Given an input I and a baseline I ′, IntGrad constructs a straight
path from I ′ to I and computes gradients of the points along the path. In case of images,
the points are taken by overlapping I on I ′ and gradually modifying the opacity of I .
Finally, Integrated Gradients are obtained by cumulating the gradients of these points.
Given a baseline I ′, the explanation for an image I for model f is formally defined as:

g(f, I, I ′) = (I − I ′)

∫ a=1

a=0

∂f(I ′ + α(I − I ′))

∂I
dα

The choice of the baseline can drastically affect the resulting explanations. A good
baseline should be neutral, representing an absence of an object of any class. Typically a
constant black or white image is used, though in other cases it can be beneficial to use a
different kind of baseline that better represents a status quo in the image. Using a black
baseline image, can lower the importance of dark pixels in the source image, while using
white baseline can lower the importance of light pixels.

3.4 SmoothGrad
SmoothGrad [STK+17] is a local model-specific, data-agnostic technique. It is not a
standalone technique, but can be used with any Gradient-based explainability method.The
saliency maps produced by Gradient-based techniques such as IntGrad tend to be quite
noisy, especially for pixel-wise explanations. This is due to high fluctuations in the
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derivatives at small scale. SmoothGrad overcomes this by adding Gaussian noise to
the input image and averaging the output of the underlying Gradient-based technique.
Formally, given a saliency method f(x) which produces a saliency map s, its smoothed
version f̂ can be expressed as:

f̂ =
1

n

n∑
1

f(x+N (0, σ2))

where n is the number of samples, and N (0, σ2) is the Gaussian noise.
The amount of noise that has to added depends on the dataset and model architecture,

but the authors suggest setting noise level at 10-20%.

3.5 GradCAM
Gradient-weighted Class Activation Map [SCD+17] is a model-specific local explanation
technique for image data. GradCAM uses the class-specific gradient information flowing
into the target convolutional layer of a CNN model (as opposed to flowing back to input
as in Gradient methods) to assign saliency values to each neuron for a particular decision
and produce a coarse localization map of the important regions in the image. An overview
of the method is presented on Figure 1.

Figure 1. Grad-CAM Overview: Given an image and class of interest, the image is
forward-propagated through the CNN network and the activation maps for the layers of
interest are obtained. The gradients are set to zero for all classes except for the desired
class, then backpropagated to the rectified convolutional feature maps of interest, which
are combined to compute the coarse Grad-CAM heatmap. [SCD+17]

First, for each feature map Ak in the last convolutional layer a gradient with respect
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to a predicted class c, yc is calculated, which can formally be expressed as:

ack =
1

Z

∑
i

∑
j

∂yc

∂Ak
ij

where weight ack is the importance of feature map Ak for calss c. Then a weighted
combination of the resulting tensors is performed, followed by ReLU (Rectified Linear
Unit activation functio) operation which produces the final heatmap:

g(I, f)c = ReLU(
∑
k

ackA
k)

For this technique and its derivatives the choice of the target convolutional layer can
significantly change the result. Typically the final convolutional layer is chosen, since it
contain the most relevant high-level information, but in some cases choosing a higher
layer, or even averaging across several layers may yield better results.

3.6 GradCAM++
GradCAM++ [CSHB18] is an extension of GradCAM solving some of the issues present
in that technique. Since GradCAM aggregates the feature map gradients all with the same
weight, the highlighted areas may not capture the whole object and if multiple instances
of the same object are present, the method does not highlight them all. GradCAM++
overcomes these shortcomings by explicitly assigning different weights αk

c to gradients
of different activation maps when aggregating them:

ack =
∑
i

∑
j

wkc
ij ReLU(

∂yc

∂Ak
ij

)

Additionally, ReLU is applied to each gradient before aggregating, the idea being that
for visualisation purposes the positive gradients are preferred to highlight the importance
of features, rather than negative ones that suppress the neuron activation.
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4 Quantitative Metrics for Assessing Explanations
Here we provide an overview of the qualitative metrics and methods that were used in
this Thesis to evaluate quality of the saliency map explanations generated by the XAI
techniques described in Section 3. All metrics we selected are agnostic to the evaluated
saliency map technique, the dataset and the black-box model. They are also function-
grounded, meaning they can be automated and do not require human involvement,
including for labeling ground truth.

4.1 Fidelity
Fidelity, or correctness, of the explanation refers to how well the explanation approxi-
mates the behaviour of the underlying black-box model, i.e. whether the features (pixels
or superpixels) highlighted by an explanation method are truly important to the ML
model. The most popular way to evaluate this is by modifying the input and measuring
changes in the output of the black-box.

In our experiments we opted to use the deletion method, first proposed in [PDS18],
also referred to in other studies as area under deletion curve, dAUC. In this approach
the pixels are incrementally deleted from the original image in the order of decreasing
importance as indicated in the explanation. After each deletion the modified image is fed
to the black-box and the probability of the originally predicted class is recorded. Once
the whole image has been masked the scores are normalised and plotted as a function of
the proportion of the pixels removed. The dAUC is defined as the area under curve (AUC)
of this graph. The intuition of this method is that removing the features important to the
decision would result in early and drastic decrease in the prediction score, minimising
the AUC.

The biggest advantage of this method is that it requires no additional ground truth
labeling. This means that it can be easily deployed and automated. One disadvantage of
this method is the high number of inferences required, which can potentially result a lot
of computation. For example, for a 224 x 224 resolution image 50176 inferences would
be needed. To alleviate this, in our experiments we have performed the deletions of pixels
in batches equal to the highest dimension of the image. The second disadvantage of this
method is the possibility of data shifts, since removing pixels from the images could
drag the input out of the learned distribution of the black-box model. Further research is
required to tackle this issue.

4.2 Stability
Stability, or continuity, refers to how generalizable the explanation function is, i.e.
whether similar input images have similar explanations. To measure this quality we
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utilised the Lipschitz constant as proposed in [AMJ18]:

Lx = max
∥ ex − ex′ ∥
∥ x− x′ ∥

,∀x′ ∈ Nx

where x is the explained instance, ex the explanation and Nx is a neighborhood of
instances x′ similar to x. In other words, we measure the maximum distance between the
explanations for similar images in a neighborhood, and the explanation for the original
image, bounded by the distance between the similar images and the original image. In
our experiments to construct the neighborhood of similar images, we considered five
images from the evaluated dataset with closest Euclidian distance to the original image.

4.3 Identity
Identity, or consistency, describes how deterministic the interpretability technique is.
One simple way to measure this is by checking whether the technique generates the
same explanations for the same input [Hon18]. In our experiments we calculate this by
generating saliency maps twice for every image in the dataset and checking whether the
distance between two explanations for any particular image is zero. More deterministic
XAI techniques should produce higher proportion of identical explanations, ideally a
100%. Since this is a binary metric, it only makes sense to evaluate as a mean across
many images.

4.4 Separability
Separability, or contrastivity, aims to evaluate how discriminative an explanation towards
other targets that are not the same. To measure this in our experiments, we utilise the
method proposed in [Hon18]: comparing the explanation of each image in a dataset of
unique inputs to explanations produced for all other inputs from the same dataset. More
discriminative techniques should produce higher percentage of distinct explanations.
This metric is also binary and should be averaged across a large number of images.

4.5 Time
Finally we evaluated the the average time it took to produce explanation for each of
the XAI techniques as a measure of computational complexity. Some techniques (espe-
cially perturbation-based) require a lot of compute, which may become a bottleneck in
deployment.
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5 Experimental Setup
In this section we provide details about the datasets, the ML models and the XAI
techniques we used in this experimental study. All experiments were done in Google
Colaboratory [Bis19] using standard Python runtime environment with T4 GPU hardware
accelerator. Our code along with the results in full is available online [Skl24].

5.1 Datasets
We performed our experiments using three popular, RGB, general-purpose, image classi-
fication datasets in this study:

• CIFAR10 (Canadian Institute for Advanced Research) [Kri09], a subset of Tiny
Images dataset [TFF08], composed of 32x32 images belonging to 10 different
classes, such as "airplane", "cat" or "truck".

• Imagenette [HG20], a subset of ImageNet dataset [DDS+09], with images of
10 easily classified classes, e.g. "tench", "gas pump", "parachute". Imagenette
contains images of varying resolution which we resize to 224x224.

• SVHN (Street View House Numbers) [NWC+11], a digit classification benchmark
dataset containing 32x32 images of printed digits (from 0 to 9) cropped from
pictures of house number plates.

For each dataset a total of 1000 images were evaluated, 100 images of each class.
All datasets are available for download through PyTorch machine learning library
[PGM+19].

5.2 Models
For the underlying black-boxes to be explained we used three types of well-known, deep
convolutional neural network models for each dataset:

• VGG16BN [SZ14] is a CNN composed of 16 weighted layers: 13 convolutional
layers and 3 fully-connected layers. The BN variation features batch-normalisation
layers after each convolutional layer. This network is well-known for its simplicity
and efficiency in image classification tasks. It is a relatively large network, having
about 138 million parameters.

• ResNet50 [HZRS16] in a network composed of 50 layers, including 16 residual
blocks, with each block being composed of several convolutional layers with
residual connections. It’s main innovation is the use of skip connections to mitigate
the vanishing gradient problem, allowing the training of very deep neural networks.
ResNet50 has approximately 25.6 million parameters.
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• DenseNet121 [HLVDMW17] is a CNN characterised by its dense block structure,
with each of its layers being connected to every other layer in a feedforward fashion.
Additionally, to help reduce the number of parameters, it uses bottleneck layers.
This achieves the goal without reducing the number of features learned by the
network and DenseNet121 has around 7.5 million parameters.

Pretrained models for CIFAR10 and SVHN datasets were sourced from the detectors
package [Dad23], while for Imagenette we used PyTorch models pretrained on ImageNet.
Models for CIFAR10 have 94% accuracy, for SVHN - 96%, and ImageNet-trained
models we used for Imagenette were 82-88% accurate on that dataset.

5.3 Explainability Techniques
Implementations for explainability techniques were sourced from public repositories:
LIME from the official repository referenced in [RSG16], SHAP from the official repos-
itory referenced in [LL17], GradCAM and GradCAM++ from [Gc21], IntGrad and
SmoothGrad from [KMM+20].

All techniques were used with default settings, the settings recommended in the
original paper, or the official documentation for the implementation. For LIME the
number of samples was kept at 1000, the occlusion colour was kept at "the mean colour
of the input image", and no custom segmenter was provided. For PartitionExplainer in
SHAP the blur type masker was used. For GradCAM and GradCAM++ we used the
following layers as target layers: for VGG16BN model - the second-to-last convolutional
layer (using the final layer didn’t generate any explanation for smaller images), for
Resnet50 and Densenet121 - the respective final convolutional layers. For IntGrad and
SmoothGrad we used constant black image as baseline. For SmoothGrad we set the
amount of noise to be added to 20%, and the number of evaluations with noise was
kept to the default five. For all techniques the explanation was generated for the highest
scoring class. Lastly, for all explanations the negative contributions were not considered
and instead set to zero or disabled, and the remaining importance values were scaled to
between zero to one to ensure comparability between different explanations.
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6 Quantitative Comparison and Results
In this section we present the results of our experiments comparing XAI techniques
referenced in Section 3 using metrics from Section 4 on datasets and pretrained black-
box models described in Section 5. We first go over the results for each of the metrics,
presenting a summary with aggregated scores at the end. For all metric lower score is
better.

In Figure 2 we visualise some examples of typical saliency maps produced by each
of the techniques on sample images from the evaluated datasets.

6.1 Fidelity Results
Following the definition of the dAUC metric in Section 4.1 proposed in [PDS18] we
performed experiments on the pretrained models to evaluate their fidelity w.r.t. the black-
box model. The results, averaged across 1000 images from each dataset are presented in
Table 1.

Table 1. Fidelity results using dAUC metric on images from CIFAR10, SVHN and
Imagenette datasets with VGG16BN, ResNet50 and Densenet121 pretrained models.
The best scores are highlighted in bold.

CIFAR10 SVHN Imagenette

VGG16BN

LIME 0.432 0.489 0.113
SHAP 0.248 0.207 0.067

GradCAM 0.503 0.470 0.084
GradCAM++ 0.504 0.472 0.091

IntGrad 0.195 0.276 0.054
SmoothGrad 0.204 0.288 0.055

Resnet50

LIME 0.520 0.493 0.130
SHAP 0.320 0.249 0.087

GradCAM 0.327 0.242 0.129
GradCAM++ 0.334 0.243 0.131

IntGrad 0.227 0.290 0.069
SmoothGrad 0.223 0.287 0.072

Densenet121

LIME 0.374 0.385 0.116
SHAP 0.227 0.183 0.082

GradCAM 0.269 0.204 0.114
GradCAM++ 0.272 0.203 0.116

IntGrad 0.168 0.194 0.086
SmoothGrad 0.168 0.189 0.090
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Figure 2. Examples of explanations produced by techniques described in Section 3 on
the evaluated datasets described in Section 5.1. The black-box model used is Resnet50.
The first column is the original image from the dataset labeled with class as predicted by
the model.
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Figure 3. Examples of the deletion process for GradCAM and IntGrad on SVHN for
white digits on dark background vs dark digits on white backgound. First column
contains the explanation and the image label predicted by the model. Columns 2-5 show
intermediate states of the deletion process. The final column shows the AUC chart and
the final score for the explanation. The black-box model is Resnet50.
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Figure 4. Examples of the deletion process for LIME and SmoothGrad with Resnet50 on
Imagenet. First column contains the explanation and the image label predicted by the
model. Columns 2-5 show intermediate states of the deletion process. The final column
shows the AUC chart and the final score for the explanation.

From Table 1 we can see that IntGrad outperformed the other methods in most
cases with SmoothGrad offering comparable performance. While the saliency maps
they produced were noisy and sparse, removing the pixels they highlight resulted the
sharpest drop in dAUC across all the models in CIFAR and most models in Imagenette,
while on SVHN the two were overtaken by other methods. SHAP scored best on SVHN
when using VGG16BN or Densenet121 and on Imagenette with Densenet121, but also
performed well on the other two datasets, placing just behind SmoothGrad and IntGrad.
GradCAM and GradCAM++ placed second-to-last in most experiments, with GradCAM
scoring usually slightly higher. They performed particularly poorly with VGG16BN
on CIFAR and SVHN, where their saliency maps highlighted sections of the image
far from the actual object. This could be because VGG16BN is a more shallow model
compared to the Resnet50 and Densenet121 and its final layers and not as discriminative.
Either way, it highlights the dependence on the model structure present in these methods.
Finally, LIME ranked worst in most cases. The explanations it produced were very
coarse, highlighting large portions of the image. In particular, on CIFAR and SVHN, due
to to poor performance of the default segmenter, it often produced explanation of constant
value, which caused the deletion process to delete pixels essentially at random. However,
on Imagenette, where the segmenter worked as intended, it performed much better,
scoring close to the two activation-based techniques on Resnet50 and Densenet121.

Although this metric is a popular method to measure fidelity, in practice we can notice
some problems. Namely, the choice of the occlusion colour is an important one and does
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affect the results. In our experiments we used solid black, but replacing dark colours with
solid black may not drastically affect model confidence. This is especially noticeable
on SVHN dataset, which contains images of digits on contrasting background. If the
explanation focuses on a dark digit on white background - replacing it with black colour
did not affect the model prediction that much. That is, unless the saliency map is very
coarse, which explains relatively high scores for GradCAM and GradCAM++ (assuming
they are at least somewhat localised on the object, like on Resnet50 and Densenet121).
On the other hand, IntGrad and SmoothGrad often highlighted the pixels around the digit.
In case of dark background, replacing them with black colour also did not reduce model
confidence as sharply. Some examples of the phenomenon are provided on Figure 3.

Additionally, we can note how moving from lower resolution images of CIFAR and
SVHN to higher resolution images of Imagenette resulted in sharp drop in all dAUC
scores. This could be because larger images contain more data for model to consider
and that makes it easier to reduce accuracy, or induce an out-of-distribution situation.
Accuracy of the model and the number of classes the model was trained on could also
play a role here. Additional examples for Imagenette are provided on Figure 4

6.2 Stability Results
Following Section 4.2, to evaluate the stability of XAI techniques we used the Lipschitz
constant proposed in [AMJ18]. Specifically, we measured the maximum discrepancy
between the explanation for the original image and the explanations for the five closest
different images from the evaluated dataset, bounded by the difference between the
explained images. The averaged results across 1000 images from each of the three
datasets using each of the three pretrained models are presented in Table 2.

From the results presented in Table 2 we can see a similar distribution to the fidelity
metric. SmoothGrad and IntGrad score best in all cases but one. This can be explained
by the sparsity of the saliency maps they produce. Since they highlight select pixels, and
not large parts of an image like other techniques, the distances between the explanations
are smaller, even if the explanations highlight completely different parts of the image.
SHAP scores third behind the tho gradient-based techniques on CIFAR and Imagenette,
as well as SVHN with VGG16BN. GradCAM and GradCAM++ again score worst when
using VGG16BN on smaller images, but perform only slightly worse than SHAP in other
cases, even outperforming it on SVHN with Resnet50 and Densenet121. Between the
two, GradCAM++ consistently shows slight improvement in stability over GradCAM.
LIME shows the lowest stability among the evaluated techniques on Imagenette, and non-
VGG16BN CIFAR10, but scores surprisingly well on SVHN. Upon closer inspection this
is because, due to the poor performance of the segmenter. Over 80% of the explanations
produced for SVHN ended up being of constant value, so in a lot of cases the distance
between explanations for all of the closest images equaled zero.

Looking at the results we can note that this evaluation method seems to be heavily
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Table 2. Stability results for XAI techniques using the Lipschitz constant. The best
scores are highlighted in bold.

CIFAR10 SVHN Imagenette

VGG16BN

LIME 1.341 1.048 1.445
SHAP 0.797 1.264 0.680

GradCAM 1.568 3.031 0.781
GradCAM++ 1.561 3.012 0.762

IntGrad 0.450 1.061 0.172
SmoothGrad 0.447 1.054 0.164

Resnet50

LIME 1.366 1.821 1.477
SHAP 0.817 1.291 0.668

GradCAM 0.952 1.170 0.901
GradCAM++ 0.872 1.077 0.884

IntGrad 0.469 0.993 0.159
SmoothGrad 0.484 0.959 0.160

Densenet121

LIME 1.626 0.461 1.463
SHAP 0.892 1.346 0.692

GradCAM 0.997 1.231 0.885
GradCAM++ 0.940 1.168 0.866

IntGrad 0.513 1.015 0.184
SmoothGrad 0.491 0.988 0.163

dependent on the sparsity of explanation the XAI technique produces. Techniques
like IntGrad and SmoothGrad that highlight fewer pixels, or highlight them with more
gradient will score higher than techniques like LIME that produce binary saliency maps
highlighting large parts of the image, even though they may highlight roughly the same
area of the image containing the object of interest. Lastly, since in this approach we
generate the neighbourhood of similar images from the set of images that are evaluated,
it may not be reliable for small-scale evaluations.

6.3 Identity Results
As suggested in [Hon18] that we referenced in Section 4.3 we measure the consistency of
the model by generating explanations twice for each image and comparing them to each
other. We do this for a 1000 images in each dataset and the percentage of non-identical
explanations for each technique, dataset and model is provided in Table 3.

From the results in Table 3 we see that SHAP, GradCAM, GradCAM++ and IntGrad
all achieve perfect score on this metric, meaning they are completely deterministic and
always generate the same explanation for the same model when using the same underly-

30



Table 3. Identity results for XAI techniques as percentage of non-identical explanations
for the same image. The best scores are highlighted in bold.

CIFAR10 SVHN Imagenette

VGG16BN

LIME 0.2 0.1 52.1
SHAP 0.0 0.0 0.0

GradCAM 0.0 0.0 0.0
GradCAM++ 0.0 0.0 0.0

IntGrad 0.0 0.0 0.0
SmoothGrad 100.0 100.0 100.0

Resnet50

LIME 0.9 0.4 55.1
SHAP 0.0 0.0 0.0

GradCAM 0.0 0.0 0.0
GradCAM++ 0.0 0.0 0.0

IntGrad 0.0 0.0 0.0
SmoothGrad 100.0 100.0 100.0

Densenet121

LIME 0.3 0.2 54.5
SHAP 0.0 0.0 0.0

GradCAM 0.0 0.0 0.0
GradCAM++ 0.0 0.0 0.0

IntGrad 0.0 0.0 0.0
SmoothGrad 100.0 100.0 100.0

ing black-box. SmoothGrad fails this metric in all cases, meaning no two explanations
it generates are the same. This makes sense, considering it works by averaging expla-
nations for variations of the original image with random noise added. LIME generates
non-identical explanations around 50% of the time on Imagenette, and under 10% for
smaller images. The latter is, again, because the default segmenter generates very large
superpixels, and, as the Imagenette results show, with more appropriately configured
segmenter producing smaller superpixels we can expect this number to be higher. The
inconsistency of the technique, however, is expected, since it uses random sampling to
generate explanations.

Since this metric was initially proposed in the context of tabular data, we feel like it
may not be very descriptive for image data where there are usually a lot more features. A
difference in the value of even one pixel would cause the image to count as non-identical,
while being probably non-perceptible for a human looking at the explanation. At the same
time the difference between the non-identical explanation may vary significantly. For
example, as shown on Figure 5, non-identical SmoothGrad explanations look largely the
same, while non-identical LIME explanations can at times highlight very different parts
of the image. Some possible ideas to improve this measure could be to count explanations
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Figure 5. Example of instabilities in the explanations produced by LIME and SmoothGrad
with Resnet50 on Imagenette. The first row is the original image labeled as classified by
the black-box model, the second and third row are examples of non-duplicate predictions
generated by LIME and SmoothGrad respectively.

32



as non-identical only above a certain threshold in the number of non-identical saliency
values, or some measure of distance; or measure distance between explanations for
identical images instead.

6.4 Separability Results
Applying the second metric from [Hon18], separability, we calculate the percentage of
images with the same explanation as another non-identical image from the evaluated
dataset. The results are presented in Table 4.

Table 4. Separability results for XAI techniques as percentage of images explained
identically to another image. The best scores are highlighted in bold.

CIFAR10 SVHN Imagenette

VGG16BN

LIME 62.6 81.5 0.0
SHAP 0.0 0.0 0.0

GradCAM 0.0 0.0 0.0
GradCAM++ 0.0 0.0 0.0

IntGrad 0.0 0.0 0.0
SmoothGrad 0.0 0.0 0.0

Resnet50

LIME 64.2 78.0 0.0
SHAP 0.0 0.0 0.0

GradCAM 0.0 0.0 0.0
GradCAM++ 0.0 0.0 0.0

IntGrad 0.0 0.0 0.0
SmoothGrad 0.0 0.0 0.0

Densenet121

LIME 68.8 85.6 0.0
SHAP 0.0 0.0 0.0

GradCAM 0.0 0.0 0.0
GradCAM++ 0.0 0.0 0.0

IntGrad 0.0 0.0 0.0
SmoothGrad 0.0 0.0 0.0

From the results in Table 3 we can see that all evaluated techniques but LIME satisfy
this metric on all models and datasets, while LIME satisfies it on Imagenette, but not
on other datasets. On CIFAR and SVHN LIME produced over 60% and over 75%
respectively of identical explanations for non-identical images. This is of course due to
the default segmenter generating very large superpixels when partitioning the images,
which resulted in the majority of the explanations being constant value maps.

Even though the majority of techniques have passed this metric, we believe for image
data this metric can serve as a simple sanity check for pertrubation-based approaches
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like LIME which rely on segmentation algorithms to generate superpixels. A non-zero
score may indicate that the segmenter needs additional configuration.

6.5 Time Results
The final metric we measured was time needed to produce a single explanation, as a
measure of computational complexity. Average values across 2000 images for each
evaluated XAI technique, dataset and model are presented in Table 5.

Table 5. Time results for XAI techniques in seconds. The best scores are highlighted in
bold.

CIFAR10 SVHN Imagenette

VGG16BN

LIME 0.830 0.805 10.053
SHAP 0.441 0.451 4.247

GradCAM 0.007 0.008 0.020
GradCAM++ 0.007 0.007 0.024

IntGrad 0.025 0.025 0.607
SmoothGrad 0.124 0.124 3.032

Resnet50

LIME 1.722 1.969 6.912
SHAP 0.902 1.006 2.612

GradCAM 0.021 0.020 0.026
GradCAM++ 0.024 0.020 0.024

IntGrad 0.135 0.134 0.365
SmoothGrad 0.689 0.678 1.838

Densenet121

LIME 3.687 3.639 7.700
SHAP 2.258 2.474 3.125

GradCAM 0.054 0.058 0.061
GradCAM++ 0.056 0.059 0.055

IntGrad 0.075 0.075 0.335
SmoothGrad 0.309 0.309 1.712

As show in the results in Table 5, the metric largely stays consistent across models and
dataset and is directly proportional to the number of black-box model inferences needed
to produce an explanation. Activation-based techniques GradCAM and GradCAM++
only require one forward pass and performed the best. They are followed by IntGrad
which required 50 inferences in our experiments. SmoothGrad multiplies that number
by the number of noisy images in uses, in our case 5, requiring 250 inferences in total.
SHAP requires 500 evaluations by default, while LIME requires 1000. While these
values are configurable, lowering them is likely to degrade the performance and affect
other metrics and should be approached with care.
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6.6 Results Summary
To summarise our experimental comparison we provide aggregated results for fidelity,
stability, identity, separability and time metrics on all explainability techniques, averaged
across the three datasets and the three black-box models in Table 6.

Table 6. Results summary averaged across all models and datasets. The best scores are
highlighted in bold.

Fidelity Stability Identity Separability Time
LIME 0.339 1.339 14.0 49.0 4.146
SHAP 0.186 0.938 0.0 0.0 1.946
GradCAM 0.260 1.280 0.0 0.0 0.031
GradCAM++ 0.263 1.238 0.0 0.0 0.031
IntGrad 0.173 0.557 0.0 0.0 0.197
SmoothGrad 0.175 0.545 100.0 0.0 0.979

Though LIME clearly achieves lowest score in all metrics, no other technique excels
in all five metrics. IntGrad, SmoothGrad and SHAP show comparable performance
in fidelity with IntGrad pushing slightly ahead of the other two and SHAP lagging
slightly behind. In terms of stability, IntGrad and SmoothGrad display significantly
better performance than the rest of the evaluated techniques, with SmoothGrad taking
the edge. All techniques but LIME and SmoothGrad achieved perfect score in identity,
and all but LIME - in separability. As for time, GradCAM and GradCAM++ are by far
the fastest.

To summarise, we found that no XAI technique could achieve best results in all of the
tested metrics, meaning that the choice of a technique remains a difficult one, requiring
careful and detailed examination from multiple angles according to the desired qualities.
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7 Conclusion and Future Work
In conclusion, over the course of this study we first identified five quantitative function-
grounded metrics that can be used to measure different aspects of quality of saliency
map XAI techniques for image data: fidelity, stability, identity, separability and time.
We then conducted a thorough comparative evaluation of six popular SM interpretability
techniques with regards to those metrics across three general-purpose image classification
datasets and three well-known models. The results show that no single technique
technique could serve as a silver bullet when it comes to explaining black-box model
predictions on image data. In the end of the day, choosing the right technique for the
use case at hand is a matter of prioritising aspects of quality that matter the most in the
particular situation. That said, IntGrad performed quite well on all metrics.

As we can see from the obtained results, the dataset and the underlying black-box
model may affect the performance drastically, particularly for model-specific techniques,
so they should be an important factor in that selecting the right saliency map technique
for the job. Another important factor are the meta-parameters of the XAI technique and
more experiments are needed to evaluate that, most notably for LIME.

Lastly, we noted that some of the metrics seem to have certain caveats, meaning they
probably do not present the full picture. Measuring fidelity using dAUC, we can see that
the choice of the occlusion colour affects the result, and that the scores differ significantly
for larger and smaller images. When measuring stability using the Lipschitz constant,
we can see that it is seemingly biased towards sparser explanations, though this is not
necessarily a bad thing. The definition of identity may be too strict for images where the
number of features is usually very large, creating an opening for misinterpretation, while
a broader metric could be more descriptive. Though we used one method per property of
XAI technique in our evaluations, ideally more metrics should be used to achieve more
precise and robust results.
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