
UNIVERSITY OF TARTU
Institute of Computer Science

Computer Science Curriculum

Alicia Sudlerd

UE5 Flair's Integration –

UI, Shaders, and Image Algorithms for NPR

Master’s Thesis (30 ECTS)

Supervisors:

Ulrich Norbisrath, PhD

Santiago Montesdeoca, PhD

Tartu 2024

UE5 Flair's Integration – UI, Shaders, and Image

Algorithms for NPR

Abstract:

This thesis presents an initial implementation and setup of the Flair plugin for Unreal Engine 5.

The goal is to bring the same easy-to-use features from Autodesk Maya. This work is made for

3D artists and Unreal Engine Developers, helping them use the plugin smoothly and effectively

across both major digital graphics tools.

Keywords:

Non-Photorealistic Rendering(NPR), Slate widgets, User Experiences, Shaders, Computer

Graphics, Synthesis, GPU Pipeline, Post-processing

CERCS: : P170 Computer science, numerical analysis, systems, control

UE5 Flairi integratsioon – kasutajaliides, varjutajad ja

pildi algoritmid NPR jaoks

Lühikokkuvõte:

See lõputöö tutvustab Flairi pistikprogrammi esialgset rakendamist ja seadistamist Unreal

Engine 5 jaoks. Eesmärk on tuua samad kasutajasõbralikud funktsioonid Autodesk Mayast.

Töö on mõeldud 3D-kunstnikele ja Unreal Engine'i arendajatele, aidates neil pistikprogrammi

sujuvalt ja efektiivselt kasutada mõlemas suurimas digitaalgraafika tööriistas.

Võtmesõnad:

Mittefotorealistlik renderdamine (NPR), Slate vidinad, Kasutajakogemused, Varjutajad,

Arvutigraafika, Süntees, GPU torustik, Järeltöötlus

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteooria)

1

Table of Contents

1. Introduction...5
1.1 Non-Photorealistic Rendering (NPR).. 5
1.2 Flair..7
1.2 Flair in Autodesk Maya... 7
1.4 Integration to Unreal Engine 5 (UE5)..8
1.5 Thesis structure.. 8

2. Existing NPR, Maya, UE5 Plugins, and Documentation... 10
2.1 Level of Control in Maya for NPR... 10

2.1.1 Global Control: Style Presets...10
Flair Graph.. 11

2.1.2 Mid-Level Control: Material Presets... 12
2.1.3 Mapped Control... 13
2.1.4 Proxy Control...13

2.2 Shelf: UI’s Plugin Analysis...14
2.2.1 Global...14
2.2.2 Mid...14
2.2.3 Mapped.. 14

2.3 User-Centric Control with Flair's Control Hierarchy... 15
2.4 Flair’s Plugin Architecture in Maya... 15

2.4.1 Model (Data Layer)... 16
2.4.2 View (GUI Layer)..16
2.4.3 Controller (Logic Layer)..16
2.4.4 Interaction with Autodesk Maya..17
2.4.5 Database (JSON Files)...17

2.5 Shader and Pipeline Integrations Across Platforms..17
2.5.1 Shader Adaptation..17
2.5.2 Parameter Mapping..18
2.5.3 Cross-Platform Consistency.. 18

2.6 Conceptualizing the UI for Flair in UE5.. 18
2.6.1 Layout.. 19
2.6.2 Docking Options.. 19
2.6.3 User Interaction..19

3. User Research and Design.. 22
3.1 User Experience (UX) Research...22

3.1.1 Observations.. 23
3.1.2 Interviews with the Supervisor.. 23
3.1.3 Community Engagement... 24
3.1.4 Review of Existing Research...24
3.1.5 Use of Flair in Maya.. 24

2

3.2 Key Findings...25
3.2.1 Ease of Use.. 25
3.2.2 Expertise and Enjoyment... 25
3.2.3 Artist-Friendly... 25

3.3 User Journey... 25
3.3.1 The User Journey of Flair in Maya..27

1. NPR Project Setup.. 27
2. Choose Styles..27
3. Customize Styles...27
4. Choose Material Presets..27
5. Customize Material Presets.. 27

3.3.2 The User Journey of NPR creation in UE5..29
3.4 Persona and User Story...29

3.4.1 Persona — Sonia..30
3.4.2 User Story.. 31

3.5 Improving UE5's NPR Creation Process.. 31
3.5.1 Simplify and Automate Post-Processing Volume Setup..31
3.5.2 Offer Preset Accessibility.. 31
3.5.3 Maintain User-Friendly Adjustment Features... 31

3.6 Design and First Mock-up.. 32
4. Image Processing Integrations and Algorithms...35

4.1 What is Post-Processing in NPR?...35
4.2 GLSL Shader for Flair in Maya..35
4.3 HLSL Shader for Flair in UE5..38

4.3.1 Custom Material Expressions.. 38
4.3.2 Utilizing Integration...40

4.4 Image Precessing Algorithms: Gaussian Blurs...40
4.4.1 Flair GLSL Snippet for Gaussian Blurs...41
4.4.2 UE5 HLSL Snippet for Gaussian Blurs...42

4.5 Shader and Image Processing Comparison...43
4.5.1 Parameter Handling... 43
4.5.2 Shader Logic.. 43

5. Implementation... 44
5.1. Technology Stack...44
5.2 Plugin Architecture... 46
5.3 The Shelf with Slate Widget... 46
5.4 QT GUI Integration with UE5.. 47

5.4.1 Style Presets...49
5.4.2 Global Settings...49
5.4.3 Material Presets..49
5.4.4 Material Attributes...50

3

5.5.1 Material Parameter Collection as Parameter Configuration.................................. 52
5.5.2 Material Asset.. 52
5.5.3 Material Instance..52

6. Results and Evaluation..53
6.1 Testing Objective and Methodology...53
6.2 Participant Recruitment.. 53
6.3 Testing Location... 54
6.4 Testing Procedure... 54

6.4.1 Phase 1 - Initial Q&A.. 54
6.4.2 Phase 2 - Task Performance...55

Tasks List:... 56
Task Completion Success:.. 58
Complex Tasks and User Levels:..58

6.4.3 Phase 3 - Q&A - User Feedback..59
Post-Testing Questions:.. 59

6.5. Discussion..59
6.5.1 Interactive User Observations..59
6.5.2 Areas for Improvement..60

6.6 Issues and Improvements Priority...60
7. Conclusion.. 62
8. Acknowledgments.. 63
9. References...64
10. Appendices..67

I – Glossary...67
II – Plugin Guide...67

Requirements:... 67
III – Usage of AI Tools... 68

Thesis Writing Assistance:... 68
For Programming..68
Impact on Thesis...69

IV – Source Code..70
V – Accompanying Files.. 70
V – License... 71

4

1. Introduction

The evolution of digital art and computer graphics has advanced the landscape of visual

storytelling and design, bringing tools and creativity to artists' fingertips. Artists can now

express their visions more dynamically by transitioning from paper or 2D art sketches to 3D

models which often face a challenge from the complexities of mimicking hand-drawn art in a

3D space. This is where Non-Photorealistic Rendering (NPR)1 comes into play.

1.1 Non-Photorealistic Rendering (NPR)

Non-Photorealistic Rendering (ie NPR, stylized rendering, artistic rendering, or expressive

graphics) is a set of techniques within computer graphics that contain a range of algorithms to

render arts and visual effects that diverge from the traditional photorealistic rendering (PR)2.

NPR simulates art styles such as painting, drawing, and cartoony looks in 3D environments.

The techniques are also suitable for artists to portray artistic expressions, such as ideas or

emotions, directly within a 3D environment while still maintaining the looks of 2D art styles.

NPR is actually used in many digital creations, starting from movies to video games, 3D

modeling tools, or even in Japanese anime. Nonetheless, it's not as common as photorealistic

rendering (PR) in 3D graphics.

Figure 1.1. Zelda: Breath of the Wild (2017)3 Figure 1.2. Run Totti Run (2022)4

4 Run Totti Run using Watercolor Style https://artineering.io/blog/spotlight/run-totti-run
3 NPR in Zelda https://www.gamepro.de/artikel/zelda-breath-of-the-wild-spielwelt-verlassen,3359507.html
2 What is Photorealistic Rendering? https://it-s.com/what-is-photorealistic-rendering/
1 NPR and the Science of Art https://www.dgp.toronto.edu/~hertzman/ScienceOfArt/

5

https://artineering.io/blog/spotlight/run-totti-run
https://www.gamepro.de/artikel/zelda-breath-of-the-wild-spielwelt-verlassen,3359507.html
https://it-s.com/what-is-photorealistic-rendering/
https://www.dgp.toronto.edu/~hertzman/ScienceOfArt/

With the abundance of digital media content, standing out becomes challenging. Digital

media consumers are actively looking for unique aesthetic visual experiences. NPR offers 3D

artists a way to characterize their work with distinctive styles, letting artists explore fresh and

creative paths through 3D computer graphic tools.

There are numerous tools related to NPR: PPixel from Polygon Pictures, as well as

Blender NPR (BNPR) which involved many contributors in the Blender community. These

tools enable 3D artists to configure the rendering style. Flair by Artineering provides a tool and

a stand-alone engine that provides extensive stylized presets for digital media artists.

Figure 1.3. PPixel by Polygon Pictures5

Figure 1.4. Modeling + Blender NPR shading anime school girl character - Blender 3.06

6 Blender NPR shading anime school girl https://www.youtube.com/watch?v=3h8iC5e2A8k

5 https://www.awn.com/news/polygon-pictures-announces-ppixel-non-photorealistic-rendering-software

6

https://www.youtube.com/watch?v=3h8iC5e2A8k
https://www.awn.com/news/polygon-pictures-announces-ppixel-non-photorealistic-rendering-software

1.2 Flair

Flair7 is a real-time engine developed by Artineering exclusively for NPR. Its node graph

interface enables 3D artists to visualize and modify image processing pipelines. While Flair

isn't a native node-based engine, Flair Graph provides a user-friendly node-based interface for

configuring image processing pipelines to achieve various styles. Additionally, Flair is

designed to integrate with third-party engines.

Figure 1.5. Flair Graph

1.2 Flair in Autodesk Maya

The stand-alone Flair shader plugin is integrated exclusively with Autodesk Maya8. The

plugin has real-time rendering capabilities and seamless Maya integration. Flair also comes

with a set of stylized presets. Additionally, artists can create custom style presets using the

Flair engine, empowering them to explore and customize styles and shaders.

8 What is Autodesk Maya? https://en.wikipedia.org/wiki/Autodesk_Maya
7 Flair: Node-Based Engine https://80.lv/articles/flair-an-overview-of-a-node-based-engine-for-stylized-3d-art/

7

https://en.wikipedia.org/wiki/Autodesk_Maya
https://80.lv/articles/flair-an-overview-of-a-node-based-engine-for-stylized-3d-art/

Figure 1.6. Flair in Maya Figure 1.7. Flair Style Presets

1.4 Integration to Unreal Engine 59 (UE5)

While Unreal Engine is well-known for its photorealistic(PR) style; it doesn't offer

extensive NPR tools. There are limited NPR plugins available on the marketplace, making it

challenging to access such functionality. Often, technical artists and developers have to create

and use their own NPR solutions and workarounds, which is inconvenient. Artineering sees

this as an opportunity to expand Flair’s market into UE5 users, especially 3D artists. Thus, the

goal of this thesis is to fill in this gap and make NPR more accessible.

This thesis explores the integration of Flair's existing features, currently exclusive to

Maya, into UE5. Integrating Flair into UE5 will give artists and developers direct access to

Flair’s NPR techniques, so that they can create and use stylized content without the necessity

of knowing Maya and other complexities in the production pipeline. This will simplify the

production process and expand creative possibilities within the 3D graphics realm.

1.5 Thesis structure

Chapter 2 provides a review of existing literature in the field of Non-Photorealistic

Rendering (NPR). By examining previous works, we gain insights into the insights and

limitations of existing NPR tools, gaining a solid foundation for the tool’s creation.

9 What Is Unreal Engine? https://www.bairesdev.com/blog/what-is-unreal-engine/

8

https://www.bairesdev.com/blog/what-is-unreal-engine/

Chapter 3 is the design phase, which includes identifying problems in the user journey in

UE5 and NPR shader creation, as well as identifying the target audience and creating personas.

The chapter concludes with the mockup of the plugin.

Chapter 4 is a combination of research and implementation, focusing on shader and image

processing algorithms for both Maya and UE5. This chapter explores the usability and prepares

for the actual implementation of the plugin described in the following chapter.

Chapter 5 elaborates the integration and technical setup of the plugin, explaining how all

components of the technology stack come together to form a functional plugin for NPR. This

chapter visualizes the plugin’s architecture and elaborates on their dedicated sections;

including Slate Widget implementation, shader code, data collection, python api and GUI

framework. It covers up to the testing version.

Chapter 6 is dedicated to testing and evaluating the plugin. This chapter will document the

testing process, feedback collection, and the subsequent improvement to be made based on

testing outcomes.

9

2. Existing NPR, Maya, UE5 Plugins, and Documentation

The research and analysis presented in this chapter lay the groundwork for Flair in Unreal

Engine 5. It includes a [1] comprehensive review of individual studies and existing works such

as the design thinking behind the user interface and the overall stylization pipeline provided by

Artineering [2]. Understanding these aspects helps us envision areas that need improvements

and maintain existing effective design elements to keep in development.

2.1 Level of Control in Maya for NPR

Non-Photorealistic Rendering (NPR) tools in software like Maya were primarily built

around effects and post-processing algorithms. These tools were designed to automatically

generate stylized outputs without expecting customization from the user. [2] This often resulted

in a rigid workflow, limiting artists' ability to interact and personalize the rendering outcomes.

To bridge this gap, Flair introduces art-direct tools for artists to adjust their styles at various

levels of control in real-time.

Flair in Maya has a shelf that organizes as a set of art-directed tools to prioritize different

levels of controls from making NPR rendering for globally, some specific area, or in a

particular 3d mesh. The design of the control has solid proof of usability from current users.

2.1.1 Global Control: Style Presets10

Style presets give users the highest level of control by applying an NPR style over the

rendering scene – such as watercolor, charcoal, or toon – with predefined control parameters

which can be controlled from the Attribute Editor.

The users can also create their own style through the Flair Graph, typically indicated by

the prefix "_g". These customized shader graphs can then be saved and loaded from the Preset

panel under a specified name for use in other projects.

10 Shader Styles Documentation https://docs.artineering.io/flair/styles/

10

https://docs.artineering.io/flair/styles/

Figure 2.1. Style Presets in Maya

Flair Graph

Flair Graph, a core feature inside the engine of Flair, is a node-based graphics engine used

to manage shader code, and image processing. Users can loading any style preset prepended

with "g_". Then, click “Show Flair Graph” in Maya’s Attribute Editor to open the Flair Graph

user interface. The users can write their own custom style using GLSL within Flair and it will

be displayed in real time in Maya.

Figure 2.2. Attribute Editor’s “Show Flair Graph”

11

Figure 2.3. Flair Graph

2.1.2 Mid-Level Control: Material Presets

Material Presets serve as the mid-level of control, where artists can save or load

predefined material parameters. Artists also have the flexibility to control these parameters

individually outside of the preset. This level has a more detailed approach than global presets

by allowing modifications to the shader code and parameters for each material, thereby

creating and customizing a versatile material preset.

Figure 2.4. Material Presets in Maya

12

2.1.3 Mapped Control

Mapped Control represents a more particular level of control, where specific effects can be

applied locally to objects or parts of objects. Artists can apply detailed adjustments and

stylization effects directly within the 3D space, providing the finest detailed control.

Figure 2.5. Mapped Control for local outline adjustment

2.1.4 Proxy Control

Proxy Control, usually cooperating with Mapped Control, allows for manipulating

invisible 3D elements that only influence the render with localized stylization effects alongside

the other levels. This approach offers broad control over stylization parameters, enabling artists

to affect the entire scene or specific areas within the 3D space.

13

2.2 Shelf: UI’s Plugin Analysis

The Flair shelf in Maya is designed to facilitate artists to engage with NPR tools without

prior technical experience. Levels of control were made using the user-centric approach11,

which is sequenced from global to local controls. This hierarchy mirrors the workflow of

artists, allowing for both broad and precise adjustments to stylization effects.

Figure 2.6. Flair Shelf

2.2.1 Global

At the highest level of control, Artists can define styles across the entire scene, setting a

foundational tone or mood with just a few clicks. This level of control is essential for setting up

the art-direction and keeping consistency across all elements within the scene.

Tools in Global: Style Presets and Globals

2.2.2 Mid

For mid-level control, artists can tune the appearance of specific objects' materials. This

level gives more pricise manipulation, allowing artists to distinguish and highlight elements

according to their design preferences without overwhelming them with too much details.

Tools in Mid: Bulk Attribute, Material Presets and Material Attributes

2.2.3 Mapped

At the lowest level, mapped offer local control. Artists can apply stylization effects to

specific areas or objects within the scene. This control level provides the most detailing and

refinement to ensure that each element satisfies the artist’s vision.

Tools in Mapped: Bulk, NFX, and VFX

11 The User-Centric Approach: https://www.oreilly.com/library/view/user-centered-design/9781449359812/

14

https://www.oreilly.com/library/view/user-centered-design/9781449359812/

2.3 User-Centric Control with Flair's Control Hierarchy

With the levels of control on the shelf, users can simply navigate through the toolset,

focusing more on their creative expression and less on navigating complex software features.

This design not only supports the usability of Flair but also encourages exploration and

creativity within the world of NPR.

The user-centric approach in Flair's design simplifies the learning curve for new users

while offering advanced users the flexibility to craft sophisticated visual styles. Flair enables a

wider range of artists to participate in the creative process without requiring deep technical

knowledge of shader programming or rendering algorithms. This inclusiveness supplies a

collaborative and smooth working environment where technical artists and traditional artists

can easily share and refine ideas.

For smooth integration, a thorough understanding of Flair’s architecture is needed. This

understanding lays the foundation for the subsequent exploration into the varieties of tools,

shaders, and pipeline integrations.

2.4 Flair’s Plugin Architecture in Maya

Flair is implemented using the Model-View-Controller (MVC) pattern with Python Qt for

the GUI and Maya’s API for system interactions. Each Flair tool—such as Style Presets,

Material Presets, Bulk, and NoiseFX—operates under its own MVC framework, which

manages user interactions and its services within Maya. This design pattern distributes

responsibilities across each tool and increases the system's modularity and scalability. The

diagram below demonstrates a user interaction for each tool in Flair to visualize how each tool

utilizes its own MVC framework for operation with Flair in Maya:

15

Figure 2.7. Flair MVC Architecture and User Interaction

2.4.1 Model (Data Layer)

The Model is the data management layer, interacting with the Flair local database to store

and retrieve NPR styles and material presets. It encapsulates Flair’s core data logic, facilitating

the translation of artistic value adjustments into customizable parameters that Maya can

process and apply to scenes or objects.

2.4.2 View (GUI Layer)

Flair’s View layer, implemented in most tools using PySide—a Qt wrapper for

Python—provides a graphical user interface (GUI) that displays Flair’s dialogs, such as the

Style Presets and Global Settings. This GUI allows users to visually navigate through presets

and set predefined parameters easily. The View serves as the intermediary between the user and

the controller, ensuring a smooth and responsive user experience.

2.4.3 Controller (Logic Layer)

The Controller handles Flair's business logic, acting as a middle-man that translates user

inputs from GUI into actions. It processes commands, communicating with the Model (data

layer) to modify and apply data as needed. The Controller's responsibilities include invoking

save(), load() and delete() operations on Style Presets and Material Presets’ views,

which facilitate the application of NPR in Maya.

16

2.4.4 Interaction with Autodesk Maya

The Controller interacts with Maya, while the Model reads and applies settings received

from the database. The Controller also triggers actions that modify Maya's rendering settings,

such as setting all parameters defined in the preset.

2.4.5 Database (JSON Files)

The Flair database system stores NPR styles and material presets in JSON dictionaries.

Each JSON file is a standalone record the Model can read and write. This setup enables quick

access and update of presets. This format offers a human-readable and easily editable structure

for storing complex configurations. Here's an example of how Flair's data is structured,

displaying various attributes and settings that control the rendering:

{

"host": "Maya",

"version": 20231017,

... (additional configuration data) ...

"_renderScale": 1,

"_colorDepth": 1,

... (other attributes) ...

"gradient": 2.5,

"smoothness": 3.0

}

2.5 Shader and Pipeline Integrations Across Platforms.

Flair’s NPR shaders are written in GLSL (OpenGL Shading Language) for stylized

effects. The user-adjustable variables, which allow for customization of these effects, can be

stored as JSON dictionaries, so that users can fine-tune their visuals with their preferences.

To integrate these effects into Maya, Flair uses hard-coded C++ pipelines, or the Flair

graph, which interprets a custom shader graph that interprets GLSL and Maya's native

rendering environment. This graph reads the parameters from the host application and maps the

parameters to the GLSL shader. The integration includes:

2.5.1 Shader Adaptation

Flair reads (AOVs) generated by its custom materials and does image processing on them

using GLSL shaders. After multiple operations the final stylized image is produced and shown

back on viewport.

17

2.5.2 Parameter Mapping

The JSON preset files, which contain adjustable shader parameters, are parsed by the

preset tools and set onto the respective node's attributes within Maya. These attributes, then,

dynamically set the shader uniform values within Flair to change the respective effects.

2.5.3 Cross-Platform Consistency

Flair is designed for cross-platform compatibility across 3D applications and rendering

engines if there is support for integrating them. This flexibility enables Flair’s NPR effects to

maintain functionality regardless of the platform.

After the breakdown of architecture and the UI design within Maya's environment, Flair's

NPR shaders using GLSL, and data within JSON files, we now have information ready to

move on to see the opportunities in UE5.

2.6 Conceptualizing the UI for Flair in UE5

Designing UI in UE5 involves a meticulous process. The goal is to maintain a smooth and

engaging experience that supports the unique workflows of NPR artists. Firstly, an analysis of

the existing UI elements and tools within UE5 is conducted. I examined the layout, docking

options, and user interaction within the UE5 workspace.

Figure 2.8. UE5 Workspace

18

2.6.1 Layout

UE5 has highly customizable docking options. Almost every element can be moved,

grouped, docked, or floated based on the user’s preference. Extra viewports can be added and

configured for different views and tasks12.

Figure 2.9. UE5 Extra Viewports

2.6.2 Docking Options

Although Maya, built on the Qt framework, supports flexible docking of panels and

windows, Flair’s current implementation is static. UE5 also highly supports a dynamic docking

system for customization directly by the user. For instance, the Blueprint Editor can be docked

on a secondary monitor or as a tab adjacent to the Material Editor, offering flexible visual

adjustments and scripting without losing workflow context.

2.6.3 User Interaction

UE5 is designed for users to drag and drop objects from the content browser directly into

the viewport for general usage. In addition, the engine supports switching between modes

within the same viewport, facilitated by toolbars and menus.

12 Multiple Viewports
https://forums.unrealengine.com/t/can-we-display-more-than-one-camera-viewport-within-a-viewport/648497

19

https://forums.unrealengine.com/t/can-we-display-more-than-one-camera-viewport-within-a-viewport/648497

Figure 2.10. Shader Code in UE5

A designer, in terms of environmental or level creation, usually spends most of the time in

their Material Blueprints, Outliners, and Detail panels. The user typically inspects the viewport

for the rendering results. Users might opt for an external IDE to write HLSL code for custom

shader development, as the native UE5 does not support an HLSL editor13.

Having examined the overview of the UE5 workspace, now it’s time to compare and

contrast the previously mentioned points with Autodesk Maya. A side-by-side comparison will

visualize the difference and guide the adaptation of the Flair GUI for UE5 users.

Feature UE5 Autodesk Maya

Layout ● Highly customizable interface

● Central main viewport with
detachable views for each task

● Supports extensive real-time
interaction

● Customizable, but more rigid
layout

● Central main viewport with
fixed surrounding panels

● Less focus on real-time
feedback

13 Custom HLSL Gaussian Blur Function
https://discourse.techart.online/t/i-cannot-use-texturesample-with-custom-hlsl-gaussian-blur-function/13935

20

https://discourse.techart.online/t/i-cannot-use-texturesample-with-custom-hlsl-gaussian-blur-function/13935

Feature UE5 Autodesk Maya

Docking
Options

● Flexible: multiple panels can be
docked inside the main window or as
separate windows

● Limited: certain panels
docked, some floating windows

User
Interaction

● Mode switching by Tab within
the viewport using toolbars and menus

● Drag-and-drop assets from the
content browser to the viewport

● Flexibility and adaptability for
game development workflows

● Marking menus and hotbox
commands for quick tool access

● Apply assets using keyboard
modifiers such as Shift or Ctrl
combined with mouse actions

● Focused on efficiency in
linear content workflows

Up to this point, we have laid an initial research for the upcoming Flair in UE5, which

includes an initial implementation of some NPR shaders and preset levels of control found in

Flair for Maya, as well as the GUI and architecture. After the evaluation of the workspaces in

both Maya and UE5, the next step is user research and persona creation to understand what

UE5 users expect from Flair.

21

3. User Research and Design

This chapter covers the comprehensive design and research process for integrating Flair

into UE5. We start with an identification of the target user groups, then explore how Flair was

adapted from Maya to meet the requirements of UE5 users, including technical artists, 3D

artists and possibly developers. Our user experience research and key findings lead us through

the development of user journey maps, which help pinpoint specific challenges. The persona

and user story are then created to visualize features to be kept or improved in the plugin within

UE5 later on with a persona-driven design strategy.

In digital product design, it's crucial to start with thorough research and clear goals to

understand the product’s main purposes, its users, their needs, and how it will be used. [18] In

our case, the target groups are UE5 technical artists and 3D artists who are a tech-savvy user

and work daily with digital 3D tools. Our goal is to integrate and design a plugin that's not only

functional but also visually appealing and easy to use, helping users to achieve their goals

efficiently.

Flair was initially designed for 3D artists working with Autodesk Maya for animations and

artistic renderings who are accustomed to Maya's interface. Integrating Flair directly into Maya

as an additional shelf makes it straightforward and user-friendly for 3D artists.

However, the transition to UE5 will have a broader user base. Not only should Flair be

made familiar to 3D artists and animators, but also to product designers and game developers

who may not have used Maya before. This requires the design that resonates with this diverse

audience, ensuring Flair in UE5’s experience is as smooth as it is in Maya.

3.1 User Experience (UX) Research

After identifying the target group, it’s time to enter the UE’s world by exploring tutorials

and engaging with the dev communities. Understanding the workflows, preferences, and

challenges people face with current NPR tools narrows the way down to meet user needs. The

research approach involves a few methods to gather qualitative insight:

3.1.1 Observations

I observe how UE5 developers and artists use current NPR workflows and share their

insights into existing tools' usability, pipelines, and limitations. Their techniques point out the

22

current state of tool usability and its complexity. For example, I analyzed a tutorial on Unreal

Engine's developer community [14] where artists construct NPR effects from scratch. These

processes often involve complex blueprint designs or advanced HLSL programming that

includes mathematical operations like convolution.

Additionally, I reviewed an article on 80.lv [7] that showcased the creation of a fantasy

NPR environment in UE5, revealing a blueprint-intensive process. It also illustrated the

lighting setups and the integration of low-poly meshes to achieve the desired artistic effect.

These resources are crucial for identifying the areas where our plugin can simplify the NPR

process for artists.

Figure 3.1. Material Blueprints

3.1.2 Interviews with the Supervisor

I conducted detailed discussions with my supervisor, Santiago Montesdeoca from

Artineering, who developed the original Flair and its plugin for Autodesk Maya. Santiago

provides valuable views from 3D artists, helping me to understand their specific needs and

expectations for an NPR plugin. His assistance includes the reason behind the Flair shelf’s

design from his direct experience with the challenges artists faced when there were no presets

or material adjustments available. Previously, artists had to manually write shader code or

create complex shader node graphs for each individual material, a process that lacked the

simplification provided by the plugin.

23

3.1.3 Community Engagement

I actively participate in group chats and share knowledge on Discord to interact with a

broad range of UE5 users. This engagement provides diverse viewpoints that enrich our

understanding and response to user needs.

3.1.4 Review of Existing Research

As mentioned in Chapter 2, I analyzed several research papers to understand the context of

NPR and pipeline architecture better. These papers and online articles also help me become

familiar with relevant NPR terminology.

3.1.5 Use of Flair in Maya

Personally, I started using Flair on a simple project in Maya, where I applied Flair presets

and materials into the scene. After familiarizing myself with the workflow, I continued testing

on a more complex scene, "Steamboat Willie14". These experiences gave me a firsthand

experience for designing the plugin fot UE5.

Figure 3.2. Steamboat Willie Provided by Artineering

3.2 Key Findings

This section outlines additional thoughts which were not covered in Chapter 2, by using

personal intuition and hypotheses developed during the research process:

14 Steamboat Willie https://artineering.io/software/flair/demo-scenes

24

https://artineering.io/software/flair/demo-scenes

3.2.1 Ease of Use

Flair is designed to be user-friendly right from the start; its shelf organizes different levels

of control. Users can quickly understand and handle the tools according to their needs.

3.2.2 Expertise and Enjoyment

Typically, experienced developers and individuals with a strong background in

mathematics tend to enjoy NPR creation. They engage deeply in technical aspects of shader

creation and algorithms.

Flair offers GLSL scripting within its engine, allowing users to customize their own style

presets for further use. This provides a handy tool for those who are proficient in coding.

3.2.3 Artist-Friendly

In contrast, artists with basic knowledge of shader writing may find their way to exploit

advanced NPR features limited. The Flair plugin addresses this challenge by bridging the gap

between complex coding requirements and artistic creativity.

For users who prefer not to write their own shaders, Flair offers a variety of presets to

choose from. These presets can be easily adjusted by tweaking values or even painting

parameters onto objects, allowing non-coders to create unique, stylized NPR shaders. The

customized presets can be saved just as those created from GLSL in 3.2.2.

Following the collection of these findings, we will proceed to create user journey maps.

These maps will illustrate how users interact with the platform to achieve their objectives.

3.3 User Journey

A user journey maps the interaction between a user and the application, giving an

overview of the experiences and actions. The journey is organized into two major components:

actions and tasks in chronological order. Each task presents a logical sequence designed to

guide the user through the application’s feature. Emojis are placed at the end of each task as the

user’s potential emotional response.

25

Figure 3.3. The User Journey of Flair in Maya

26

3.3.1 The User Journey of Flair in Maya

The user journey of Flair in Maya, shown in Figure 3.3, contains five actions in total:

1. NPR Project Setup

The journey begins when the user opens the project and activates the plugin. These tasks

are straightforward and might be only slightly confusing, with no significant emotional

spikes, thus it's marked without an excitement emoji.

2. Choose Styles

The user selects a style preset and may adjust the setup options with flairGlobals or Flair

Globals. Many users are likely to be excited as they see the default rendering transform into

NPR. Thus, there is a big smile emoji at the end of the task.

3. Customize Styles

When the user wants to save new style presets and adjust specific values within the

preset. The positive feeling comes from manipulating parameters in FlairGlobal and

observing real-time changes in the viewport.

4. Choose Material Presets

For applying styles to specific meshes, the user opens a material preset and clicks on a

mesh in the viewport to apply the material. Since this action focuses on local objects, the

excitement level might not surpass that of action 2, as the NPR is already visible globally.

5. Customize Material Presets

This action is similar to action (3) but involves adjusting parameters in Flair Shader

material attributes instead of FlairGlobal. The user can customize material presets, including

the loading and saving of new presets and detailed adjustments to the material attributes.

This user journey is already implemented in Flair for Maya. While this process may seem

straightforward and perhaps common for any application, we would like to draw the readers'

attention to the user journey of manually creating an NPR pipeline in UE5.

27

Figure 3.4. The User Journey of NPR creation in UE5

28

3.3.2 The User Journey of NPR creation in UE5

The user Journey of NPR creation in UE5, illustrated in Figure 3.4, contains four main

actions. This structure shares similarities with the journey of Flair in Maya (Figure 3.3),

particularly in actions (3) and (4), which focus on assigning materials and post-processing.

These steps are as user-friendly and straightforward in UE5 as they are in Maya.

In contrast, the journey includes a distinctive and challenging action (1.1) that often

presents difficulties for users. In this step, setting up the project for NPR can be daunting,

frequently leading users to look up UE5’s extensive, and unclear code documentation. This

action is represented by neutral and anxious emojis, reflecting potential user frustration.

According to these summaries of both journeys, a persona and user story are created to

point out characteristics, needs, and goals of a larger group of users. It also helps visualize the

end-user and product decisions according to the user needs.

3.4 Persona and User Story

In the development process, personas and user stories are primary tools to guide the

design and functionality of a product.

Personas are characters created based on research to represent different user types who

might use a product in similar ways.

User Stories, on the other hand, describe features from the perspective of the user,

focusing on their needs and the reasons behind these needs. This narrative form helps us

prioritize features from user expectations and satisfaction.

To illustrate, we have designed a persona that includes an embedded user story,

reflecting the combined insights and expectations from our target user group:

29

Figure 3.5. Persona

3.4.1 Persona — Sonia

Sonia, a 27-year-old technical artist for games, specializing in environment setup and

shader creation using UE4 and transitioning to UE5. Representing our user base, she is

looking for tools that help with her creative workflow. Her current working process faces

these several pain points:

(1) Lack of Flexibility: UE5 has limited customization for NPR.

(2) Time Consumption: Setting up and customizing NPR is repetitive and time-consuming.

(3) Complex Documentation: UE5 documentation is hard to navigate as an artist.

(4)Workflow Interruptions: Switching between softwares for NPR tasks is distracting.

30

3.4.2 User Story

"As a technical artist, I want to automate the setup and customization of NPR in UE5 so

that I can focus more on creative aspects without facing much repetitive setups."

The following sections will discuss proposed improvements of these challenges for

Sonia and others like her in their daily tasks.

3.5 Improving UE5's NPR Creation Process

These improvements are designed to reduce NPR pipeline overhead, giving users more

flexibility for advanced customization. By addressing these areas, we will make the NPR

setup more intuitive and accessible, thus broadening its appeal and usability across a range of

users from general 3D artists to possibly UE5 developers.

3.5.1 Simplify and Automate Post-Processing Volume Setup

Users could apply NPR effects without manual setup overhead once Flair automates the

creation and configuration of post-processing volumes for NPR. If users don’t find the default

settings satisfying, they can adjust these settings to fit their needs.

3.5.2 Offer Preset Accessibility

To address pain points in step (1.1), having a library of ready-to-use presets would

significantly reduce the technical anxiety during early stages. It will be beneficial for

non-technical users like 3D artists by providing existing presets, users would be able to select

and apply any material or style preset without the need to create them from scratch. Thus,

they can mainly focus on creative aspects over the technical setups. Furthermore, offering a

selection of HLSL shaders and Blueprints as examples would help users understand and learn

to customize their materials more.

3.5.3 Maintain User-Friendly Adjustment Features

Keep simplicity and functionality of steps (3) and (4), where users adjust values and

customize their projects as they are already straightforward and have a satisfying experience.

These proposed improvements also address pain points and user goals. We can better

support the persona developed to guide the design process. The user story, which

31

encapsulates these personas, serves as a foundational element in our strategy, ensuring that

the enhancements align with user needs and expectations.

Now we have a persona and user story presenting what the user needs, we move on to

create a mockup in the next section.

3.6 Design and First Mock-up

The mockup designs present four potential workspaces within UE5. This approach

doesn’t cost much time compared to the interactive prototype one. In addition, we can

visualize the end product early on. At this stage, the project is small and flexible, making it

fast to produce varied mock-ups to ensure everyone at Artineering is aligned.

Considering that Unreal Engine supports responsive and adjustable dockable panels, the

UE5’s Flair shelf is designed to be both responsive and customizable. Users can organize

their workspace according to personal preference—whether it resembles the existing Flair

shelf, is free-floating, vertically oriented like a sidebar, or organized as a rectangular panel.

Figure 3.6. UE5 Flair - Horizontal Layout

This mockup 3.6 displays the Flair shelf in a horizontal layout. The shelf is positioned at

the top of the workspace for easy access to Flair’s features. This setup mimics the shelf in

Maya, suits the users who are accustomed to the original layout.

32

Figure 3.7. UE5 Flair - Floating Freeform

The shelf can be detached and floats freely over the workspace. This mockup 3.7

illustrates the freeform version of the Flair shelf, where it is undocked and floats over the

workspace. This design is ideal for users who require a dynamic setup, allowing them to

position the shelf wherever in the workspace without being bound to a fixed location.

Figure 3.8. UE5 Flair - Vertical Sidebar

In Figure 3.8, the shelf is adapted to a vertical sidebar arrangement, similar to toolbars in

applications like Photoshop or Illustrator. The icons are adjusted responsively to fit the

vertical orientation. This layout benefits users who prefer to maximize the size of the

viewport without overlapping the main working area.

33

Figure 3.9. UE5 Flair - Box Form

Lastly, the box form in Figure 3.9 depicts a compact panel, docked alongside the Details

panel on the right side of the workspace. The box form is organized by arranging icons in a

grid-like layout. This suits users who view the shelf to be a core feature of UE5 along with

the Details panel and Outliners. The design extends the responsive adaptability based on user

preference and immersion of the plugin within the game engine, tailored to user preferences.

Finally, after achieving clear visual of these designs, we are nearly ready to begin the

actual application development. We plan to utilize the core C++ library from UE5’s Slate

Widget to make the shelf functional according to the design. More detailed information on

our integration with UE5 will be discussed in the dedicated chapter, which will be in the

integration phase at Chapter 5.

34

4. Image Processing Integrations and Algorithms

Image processing plays a major role in Non-Photorealistic Rendering (NPR) to achieve

aesthetic stylized effects. The process involves the writing and fine-tuning of shaders during

the post-processing phase to achieve the desired look. This chapter will discuss the shader

pipeline of the original Flair and the research on the post-processing and material pipeline for

the upcoming Flair plugin for Unreal Engine 5.

4.1 What is Post-Processing in NPR?

Post-processing refers to techniques applied after the initial rendering process to further

refine the visual output. This phase is where the NPR truly comes to life, utilizing algorithms,

such as blurs, edge detections, and image enhancements, to manipulate the rendered image

toward the desired aesthetic. It is simply adding a layer on the top as a filter.

Most 3D graphic programs usually offer post-processing effects for users to play with

the values from the given presets. When the users want to further customize the rendering,

they have to do so through the shader graph and write their own shader code, such as GLSL

(for OpenGL) or HLSL (for DirectX). Flair also offers a unique engine for users to customize

the image processing according to the user’s preferences.

Figure 4.1. Maya Flair - Global Settings

4.2 GLSL Shader for Flair in Maya

As previously discussed in Section 2.5, most Flair’s shaders are written in GLSL. These

shaders are designed to allow parameter adjustments within a third-party application, in this

35

case, Maya. The construction of a Flair Graph shader15 is divided into two main parts: the

Interface Definition and the Shader Code.

The Interface Definition is defined using TOML syntax 16within a comment

block (/* interface */). This definition specifies how the shader be manipulated within

the Parameters panel within the Flair Graph, as seen in Figure 4.2. This setup allows for

the definition of the shader's inputs, outputs, and uniforms that users can interact with in the

parameter panel. For instance, as shown in Figure 4.2, a parameter named Radius is defined

in the interface section. To make Radius visible in the parameters panel, we have to declare

the variable inside the Shader Code.

Figure 4.2. Flair GLSL and the Parameters Panel

The Shader Code is where the logic of the shader is written, defining how it processes

inputs to produce outputs. After the pre-defined parameter in the interface part, for visibility

in the panel, the declaration inside the logic part must match the definition in the interface. In

this example, it has to be `uniform int Radius`.

16 TOML: Tom's Obvious Minimal Language: https://toml.io/en/
15 Shader Anatomy: https://docs.artineering.io/flair/graph/shader-node/shader-anatomy/

36

https://toml.io/en/
https://docs.artineering.io/flair/graph/shader-node/shader-anatomy/

Once Radius appears in the parameters panel of the shader graph in Flair. Users can

adjust this Radius by assigning the value in the input box or using a slider. This value is then

used in the rendering in Maya.

To show the parameter directly in Maya's interface, users can define a global variable

within the Flair Graph so that it automatically appears in Maya's Attribute Editor. The newly

defined global within the Flair Graph can then be used as an Expression for the desired

shader parameter. That way, the Global within the Maya interface can directly control the

uniform passed to the Flair shader.

Figure 4.3. Flair Parameters - Expressions

Figure 4.4. Maya Flair - Global Settings

37

4.3 HLSL Shader for Flair in UE5

In Unreal Engine, users can create materials by utilizing the components available in the

material editor, often referred to as visual scripting. Additionally, these materials can include

the custom shaders written in HLSL (High-Level Shading Language). Using shaders enables

users to write iterations and complex algorithms within a single component. These HLSL

shaders must be written within a material component known as Custom Material Expressions.

4.3.1 Custom Material Expressions

Custom Material Expressions, shown in Figure 4.5, is an expression or a component that

allow the use of custom shaders within the Material Editor.17 This component enables the

creation of HLSL in the material editor, by writing and applying specific HLSL (High-Level

Shading Language) code snippets to materials. This component is useful for creating writing

shaders that are highly customized, which can’t be achieve with standard material editor

components.

Figure 4.5. Material Editor - Custom Material Expressions

17 Custom Material Expressions:
https://docs.unrealengine.com/5.0/en-US/custom-material-expressions-in-unreal-engine/#:~:text=The%20Custo
m%20Material%20Expression%20enables,menu%20in%20the%20Material%20Graph.

38

https://docs.unrealengine.com/5.0/en-US/custom-material-expressions-in-unreal-engine/#:~:text=The%20Custom%20Material%20Expression%20enables,menu%20in%20the%20Material%20Graph
https://docs.unrealengine.com/5.0/en-US/custom-material-expressions-in-unreal-engine/#:~:text=The%20Custom%20Material%20Expression%20enables,menu%20in%20the%20Material%20Graph

Figure 4.6. Custom Material Expressions - Details

39

4.3.2 Utilizing Integration

As shown in Figure 4.6, users can write stylized effects using HLSL. Within the

Details panel (1) of the Material Editor (4), users can insert shader codes (2) into the

property named Code, functioning similarly to the Shader Code of Flair in Maya (see

Figure 4.2).

Once the HLSL code is written, the next step is to create the input variables in the

Input property (3). After defining these inputs, users then cuztomize other corresponding

components in the Material Editor as needed. Lastly, connect the custom material (6) to the

Result Node (7) to see the rendering result.

Additionally, it is necessary to create components corresponding to the collection of

inputs (3) and convert them to parameters (5) and link them to the Custom Material

Expressions component (6). This conversion enables these paremeters to be dynamically

adjusted outside the editor (4), whether in the Material Instance or via any third-party API.

Furthermore both Material Editor and Material Instance provide global settings for all

parameters which are declared in the editor. This allows users to fine-tune the value without

going to each parameter and adjust the value one-by-one.

Figure 4.7 Material Editor -Global Figure 4.8 Material Instance- Global

4.4 Image Precessing Algorithms: Gaussian Blurs

In this section, we introduce image processing algorithms that will be implemented and

tested within UE5. We want to demonstrate and discuss how Gaussian Blurs are adapted

using UE5 HLSL and Flair GLSL. These research serve as primal NPR algorithms

implementation of the Flair plugin in UE5.

40

Gaussian blur is considered to be a core technique in NPR as it helps smooth out noises

and details in images. It facilitates users to achieve NPR effects. This approach is ideal for

emphasizing the visual impact of the art, emphasizing mood and expression.

Additionally, the algorithm can be used to implement effects similar to watercolor

paintings. It transforms realistic images into more artistic representations by focusing on

general shapes and colors, rather than fine details.

In the following section, we present code snippets for implementing Gaussian blur in

both GLSL (used primarily in Maya) and HLSL (used in UE5) writing in the same style to

demonstrate how the algorithm is applied within each shader language.

4.4.1 Flair GLSL Snippet for Gaussian Blurs

/* interface

[[uniforms]]

name = "Radius"

type = "int"

–-other variables are declared here

*/

// GLSL shader

uniform sampler2D Input;

uniform int Radius;

out vec4 Output;

/*

Gaussian Weight and helper functions.

*/

// Main shader function applying Gaussian blur

void main() {

vec4 texAccum = vec4(0.0); // Accumulator for the color values

float totalWeight = 0.0; // Total weight for normalization

for (int x = -Radius; x <= Radius; x++) {

for (int y = -Radius; y <= Radius; y++) {

vec2 uv = gl_FragCoord.xy + vec2(x, y); // Offset UV by

radius

float weight = gaussianWeight2D(Radius, vec2(x, y)); //

Calculate Gaussian weight

texAccum += texture(Input, uv) * weight; // Weighted sum of

texture colors

totalWeight += weight; // Sum of weights for normalization

}

}

Output = texAccum / totalWeight; // Normalized blurred output

}

41

In Flair GLSL, shaders are structured with an interface definition, specifies the shader's

inputs, outputs, and uniforms, making these parameters adjustable within both Flair Graph

and Maya's flairGlobals. For example, the Radius parameter is declared in the interface

section as uniform to be interact as an expression. The main shader function uses

gl_FragCoord.xy to access the current pixel coordinates and applies the Gaussian blur by

iterating over a kernel defined by the Radius. The UV coordinates are offset by the radius,

and Gaussian weights are calculated for each offset.

4.4.2 UE5 HLSL Snippet for Gaussian Blurs

float2 uv = GetDefaultSceneTextureUV(Parameters, PPI_PostProcessInput0);

float4 resTexel = GetSceneTextureViewSize(PPI_PostProcessInput0);

FlairBlurs Blurstr;

#define PI 3.14159265358979323846

float4 accum = float4(0, 0, 0, 0);

float samples = 0;

float weight =0;

float2 offsetUV = float2(0,0);

float2 adjustedUV = float2(0,0);

float2 textureSize = resTexel.zw;

struct FlairBlurs

{

/* a struct that contains Gaussian Weight and helper functions.*/

};

for (int x = -Radius; x <= Radius; ++x){

for (int y = -Radius; y <= Radius; ++y) {

offsetUV = uv + resTexel.zw * float2(x, y);

//adjustedUV = ClampSceneTextureUV(offsetUV,

PPI_PostProcessInput0);

adjustedUV = Blurstr.AdjustUV(offsetUV, resTexel.xy);

weight = Blurstr.GaussianWeight2D(Radius, adjustedUV);

//weight = Blurstr.GaussianWeight1D(Radius, x);

accum += SceneTextureLookup(adjustedUV , PPI_PostProcessInput0,

true) * weight;

samples += weight;

}

}

return accum/samples;

42

In UE5 HLSL, shaders can be written through custom expressions. Users write HLSL

code within the Material Editor and define input variables directly in the Details panel. The

HLSL snippet does not require an interface definition like GLSL; instead, it uses UE5's

built-in functions to get default scene texture UVs and texture sizes. The Gaussian weights

and UV adjustments are encapsulated in a struct (FlairBlurs), and the main logic iterates over

a kernel defined by the Radius, similar to GLSL. The computed weights are used to

accumulate the texture samples, and the final blurred output is normalized by the total weight.

4.5 Shader and Image Processing Comparison

In this section, we compare the implementation and integration of Gaussian blur in

GLSL for Maya and HLSL for Unreal Engine 5 (UE5). By examining the differences in how

these shaders are constructed in each environment, it can benefit the implementation of the

Flair plugin, collecting insights from these comparisons.

4.5.1 Parameter Handling

Both languages use uniforms to handle parameters that can be adjusted outside the

editor. In GLSL, parameters are declared in the Interface Definition to be used

within Flair Graph and Maya. In HLSL, parameters are defined in the Inputs property of

the custom material expressions. These parameters can then be connected by other UE5

components, making them accessible for dynamic adjustments.

4.5.2 Shader Logic

● GLSL accesses pixel coordinates using gl_FragCoord.xy.

● HLSL gets UV coordinates and texture sizes through built-in UE5 functions such as

GetDefaultSceneTextureUV and GetSceneTextureViewSize.

We've explored how image processing works, particularly through Gaussian blurs, which

serve as a foundation for many stylized effects. The algorithm has been implemented and

examined in both GLSL for Maya and HLSL for UE5. In the next chapter, we will begin to

implement the plugin, applying the research and methods discussed up to this point to

initialize the integration of Flair in UE5.

43

5. Implementation

This chapter gathers all the insights discussed in all previous chapters to show how

everything is put together in a test version of the plugin. We designed this first version to

validate the design goals mentioned in Chapter 3, focusing on how easy it is for users to

interact with the system and how the system performs. Therefore, the test implementation

focuses only on some of Flair's core features, namely Style Presets and Material Presets.

Figure 5.1. Technology Stack of Flair UE5

5.1. Technology Stack

The selection of tools is primarily influenced by the original Flair, as to avoid code

duplication, re-use production proven toolsets and simplify future maintenance of code across

applications. The aim is to make shareable code between Flair for Maya and Flair for UE5.

For the Qt Dialogs, the original code was mostly integrated and adapted to be compatible

with UE5. Although this adaptation process seemed straightforward, it was necessary to

redesign the controller, the API and the model to facilitate communication between the Qt

view and the UE5 Python API.

Additional tools for this integration were chosen based on my prior experience with

UE5. The shelf was recreated using C++ Slate Widget. Rendering, materials, and

post-processing styles are written in HLSL, instead of the GLSL used in the original Flair. To

store shader data, We keep using dictionaries in Python as the model in

Model-View-Controller (MVC) pattern; however, we fetch data directly from the Material

Parameter Collection in UE5.

44

Figure 5.2. Architecture Blueprint of Flair UE5

45

5.2 Plugin Architecture

The plugin architecture in UE5 connects different parts of the plugin to the game engine

as shown in Figure 5.2. The shelf contains available tools within the UE5 workspace. This

shelf is implemented using a C++ Slate widget, which includes a view and a setup class that

registers itself within the project and the UE5 editor. When a user selects a tool on the shelf, it

triggers the Qt View to open. The Qt View is constructed using an MVC framework, similar

to the original version of Flair.

For the style and material preset, the Qt controller receives commands from the user into

UE5's rendering system. When using the Style Presets, the controller locates the

existing Post Process Volume and applies the chosen style to the rendering viewport.

For Material Presets, the user must select a mesh in the viewport and then apply the

material preset to it.

For adjustments such as Global Settings and Material Attributes, the tool

applies adjustments to the material instance. This applies to both style and material preset

adjustments, allowing UE5 to re-render changes in real-time. Flair materials, including

post-processings and regular materials, are programmed in HLSL supported by UE5.

5.3 The Shelf with Slate Widget

To integrate a responsive and dockable shelf within the UE5 workspace, we chose the

Slate Widget framework written in C++ to construct the shelf. The framework allows users to

easily access the shelf through the tools menu by selecting the "Flair" option.

Shown in Figure 6.4, this shelf plugin is located in /Plugins/FlairManager,

consists of 3 classes shown in Figure 6.3, which facilitate the functionality and integration of

the shelf within UE5. These classes are crucial for the modular implementation of the shelf,

each serving a specific role.

The main class (3) FlairManager.cpp/.h, manages the configuration of the shelf

within the UE5 editor. It ensures the shelf is available when needed and is properly removed

when the editor is closed or the plugin is disabled.

The class (1) FlairStyle.cpp/.h is responsible for creating and managing a

custom Slate style set, which includes defining icons(FSlateImageBrush) and properties.

46

Figure 6.3. Flair Shelf in UE5 Figure 6.4. Flair Shelf in UE5

The class (2) FlairShelf.cpp/.h, is derived from SCompoundWidget for

constructing the shelf, allowing to have child widgets within itself to form a cohesive GUI.

Its child contains the SWrapBox widget for layout flexibility and responsiveness. The shelf

can be customized into different layout styles based on user preferences, whether vertical,

horizontal, or as a floating window.

5.4 QT GUI Integration with UE5

When the user selects a tool from the shelf, the corresponding Qt View will open. The Qt

View is located in the /Plugins/FlairUI directory inside the UE5 project. It is written

using the MVC framework, similar to the original version of Flair.

However, all controllers in this version are rewritten to exclusively communicate with

UE5 instead of Maya. Presented in Figure 6.5, tt contains the central controller in which any

tool can access called UEController. Additionally, each tool can also have its local

controller, for example, GlobalAPICall, which is accessible only within Global

Settings.

47

Figure 6.5 QT GUI Integration Architecture

48

5.4.1 Style Presets

The Styles Presets tool is created to automatically apply a

post-processing material and add the material into Post

Process Volume in the Outliner. The tool also detects

whether to replace the existing materials or insert a new one. The

implemented styles include Blur, Cel, Sobel, Gaussian and Pixel.

This tool can also be considered as a filter selection. The

post-processing presets are provided internally in the UE5

project.

This tool includes two main parts:

StylePresetLibrary and StylePresetsUI. Within the

module, the Style Preset class uses StylePresetsUI as the

view to interact with the user, providing a GUI for applying the

stylized post-processing styles based on the user’s command.

The command is then sent to UEController (the controller)

to apply changes to UE5 Editor. The StylePresetLibrary

manages the post-processing data received from the controller.

5.4.2 Global Settings

The Global Settings tool provides a GUI containing the collection of global parameters

from all active post-processing materials. Users can tune the parameter to influence overall

environment appearance all at once without manually going through each of its instances in

the UE5 Content Browser.

The Global class includes GlobalView, providing the GUI and displaying all global

parameters and GlobalAPICall(the controller) contains the command to communicate

between the view and UE5’s Material instance.

5.4.3 Material Presets

The Material presets is a tool to easily create and load stylized materials within UE5.

The tool is opened by clicking on the PRES shelf icon. The GUI construction is identical to

Style Preset as they are derived from the same View. The available materials, similar to the

Style Presets, include Blur, Cel, Sobel, Gaussian and Pixel.

49

The Material Preset class, MaterialPresetLibrary and MaterialPresetsUI,

handles the automation to assign a material or add the material into the selected Mesh

Blueprint in the workspace. The tool can replace the existing material or assign a new one to

the mesh.

Figure 6.7 Material Presets GUI

5.4.4 Material Attributes

The Material Attributes tool, provides a GUI that looks similar to the Style Presets’, for

adjusting the attributes of materials used within the selected mesh blueprint. Users can adjust

a set of parameters of each material assigned in mesh without manually going through each

material and adjust it one by one.

The Material Attributes class includes AttrView, providing the GUI and displaying all

material parameters and AttrAPICall(the controller) contains the command to

communicate between the view and UE5’s Material instances and Mesh Blueprints.

50

Figure 6.6 QT GUI Integration Architecture

5.5 NPR Materials and Construction
Material plays a major role with the Flair UE5 plugin, which is designed to enhance

creativity and ease of use with NPR (Non-Photorealistic Rendering) shaders and materials.

The structure of each Flair’s material is modular, with each element having a specific role.

Figure 6.6. Preset’s architecture

51

5.5.1 Material Parameter Collection as Parameter Configuration

This component acts as the default configuration and provides predefined values for each

Flair material. The configuration is manually adjusted in the editor mode and cannot be

modified through the Qt Framework. This standard applies to all presets under the plugin.

5.5.2 Material Asset

Material Assets are central to the material implementation in UE5. These are created and

modified within the Material Editor, where we utilize HLSL (High-Level Shader Language)

along with UE5’s material components to achieve specific rendering effects.

5.5.3 Material Instance

A Material Instance is derived from a Material Asset and can be used within both the Qt

Pyside2 and UE5 environments. Modifications to this instance can be performed directly or

through external mechanisms such as Flair globals or attributed materials.

This chapter has wrapped up a detailed overview of the Flair UE5 plugin's development,

from the initial blueprint to its full integration with UE5's tools like C++, Slate Widget,

HLSL, and the UE5 Python API, combined with the Qt framework. This design prepares the

plugin for future scalability and extensive testing.

The upcoming testing phase is crucial to validate if the plugin meets our design goals,

focusing on user-friendliness and usability. With the customized architecture from the

original Flair, based on the MVC framework, and its ability to automate settings and material

attributes, the plugin has potential to advance rendering capabilities in UE5.

52

6. Results and Evaluation

This chapter details the procedures and outcomes of the testing sessions for UE5's Flair

Plugin, particularly focusing on the Styles and Material Presets. Testing involved UE5 artists

and developers, who represent the target groups identified early on in the User Research and

Design process (referenced in Chapter 3).

These sessions not only uncovered unanticipated issues but also validated elements that

correspond to the design goal. The feedback will be used for further refinements after all

testing sessions. Thus, the version of the plugin presented during all testing sessions was in a

slightly different state compared to the finished product, but the core feature of the plugin

remained the same.

6.1 Testing Objective and Methodology

The objective was to validate the usability and user-friendliness of “Style Presets”

and “Material Presets”, as well as the integrated Qt Dialog and Flair’s shelf. The

qualitative approach was used to capture individual thoughts and user experiences that

quantitative methods might overlook.

Following the methodology proposed in "Why You Only Need to Test with 5 Users," by

Jakob Nielsen18, the test consisted of 5 sessions with each tester participating in a one-on-one

setup. During each session, the tester was asked to perform specific actions without explicit

guidance, such as opening the preset tab or applying a style to a scene. This approach helped

observe the practical use of the plugin and captured the testers' experiences.

6.2 Participant Recruitment
The recruitment took place from April 16th 2024 to April 26th, 2024. Participants booked

their available date and time through a Doodle form19 titled “UE5 Flair NPR Usability Test.”

I recruited participants by personally writing and posting the advertisement on the University

of Tartu Game Jam Discord channel, which led to the recruitment of two testers.

Additionally, Raimond Tunnel, the head of the Computer Graphics and Virtual Reality

Study Lab(CGVR) at the University of Tartu, significantly assisted me by posting the ads in

19 UE5 Flair NPR Usability Test:
https://doodle.com/meeting/organize/id/b8B1YJ2e

18 Why You Only Need to Test with 5 Users by Jakob Nielsen:
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

53

https://doodle.com/meeting/organize/id/b8B1YJ2e
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

Estonian within the Tartu Art School community forums, successfully attracting three more

testers whose profiles closely matched the target user group. Following registration through

Doodle, the date and time of each session were booked in Google Calendar, with details

subsequently sent via email.

6.3 Testing Location
The testing environment took place in the CGVR lab (Delta room 2007) with each

testing session using the same hardware and software configurations to ensure consistency.

Unreal Engine 5.2.1 was installed on a personal computer with the Flair plugin pre-installed.

6.4 Testing Procedure

Each participant was informed that the testing session would be recorded, including

audio. If a participant preferred not to be video recorded, the camera could be disabled.

However, audio recording and screen capture were mandatory.

The participant sat in front of the personal computer while recording using Zoom,

enabling the use of webcam and screen sharing features. The recordings were automatically

saved at the end of each session.

6.4.1 Phase 1 - Initial Q&A

The test began with a brief interview to collect background information about each

tester, including their name, experience with Unreal Engine 5, familiarity with stylized

rendering, and prior usage of any UE5 plugins to facilitate their workflow.

Table 1: Information of each participant in the session.

Session Date Professional

Backgrounds

UE5

Experience

(Years)

Experience

with NPR

Duration
(minutes)

1 2024-04-22 Generalist
UE5 Developer

1 None 14.13

2 2024-04-22 Senior UE5
Technical Artist

7 Advanced 30.34

3 2024-04-22 Generalist
UE5 Developer

4 Intermediate 20.38

54

Session Date Professional

Backgrounds

UE5

Experience

(Years)

Experience

with NPR

Duration
(minutes)

4 2024-04-23 UE5 and Unity
Environment
Artist

1 Intermediate 12.16

5 2024-04-26 Generalist
UE5 Developer

10 Intermediate 19.56

6.4.2 Phase 2 - Task Performance

This phase served as a blind test to assess if the UI design is intuitive. Participants were

given specific tasks but not instructed on how to proceed, testing the UI’s clarity and their

ability to navigate it independently.

Figure 7.1 UE5 Editor - Flair Test Environment

55

Tasks List:

1. Open Flair Shelf:

Participants accessed the NPR tools within UE5.

2. Explore Plugins:

Participants discussed their previous experience with post-processing effects. Those

unfamiliar with these effects were given a brief introduction.

3. Open Documentation:

Participants were asked to locate the Flair documentation on the shelf to determine

how to proceed if they got lost with specific actions.

4. Use Style Presets:

Participants were asked to open “Style Preset” from the shelf, load one or two NPR

styles (e.g., Blur, Outline, Cel) then inspect the viewport

5. Adjust Globals:

Participants accessed the Flair Globals node by clicking the GLOB icon and modified global

parameters, assessing effectiveness in impacting the entire scene.

6. Create and Save New Preset:

After adjusting global parameters, participants were asked on how to save these

presets for future use.

7. Delete Preset:

Participants deleted custom style presets as needed.

8. Conceptualize Material Presets and Material Attributes:

Participants were asked to find where on the shelf to access Material Presets and

adjust material attributes. This task was designed to compare with the Style Preset task to

gather feedback on similar functions.

9. Manual NPR Creation:

Participants manually implemented post-processing volumes, wrote HLSL code for

post-processing, creating a simple material, and integrating these into the scene. This task

was for users to compare the ease of operations with and without the plugin.

56

Table 2: User Task Performance in Flair Plugin Testing

Session
ID

Professional
Background

Experience
(year)

1.
Open
Shelf

2.
Explore
Plugins

3.
Open
Documentation

4.
Style
Presets

5.
Adjust
Globals

6.
Save
New
Preset

7.
Delete
Preset

8.
Access
Material
Presets

9.
Manual
NPR

1 Generalist
UE5 Developer

1 ✔ ✔ ❓ ✔ ❓ ✔ 😐 😐 ❌

2 UE5 Technical
Artist

7 ✔ ✔ ✔ ✔ 😐 ✔ 😐 😐 ✔

3 Generalist
UE5 Developer

4 ✔ ✔ ❓ ✔ ❓ ✔ ✔ 😐 😐

4 Environment
Artist

1 ✔ ✔ 😐 ✔ ✔ ✔ ✔ ✔ ❌

5 Generalist
UE5 Developer

10 ✔ ✔ 😐 ✔ 😐 ✔ ✔ 😐 ✔

Sum ✔

(all)

✔

(all)

😐(2)

❓(2)

✔(1)

✔

(all)

😐(2)

❓(2)

✔(1)

✔

(all)

✔(3)

😐(2)

😐(4)

✔(1)

❌(2)

✔(2)

😐(1)

✔: Figured out with no problem.😐: Figured out after some effort.❓: Needed guidance. ❌: Completely unable to figure out

57

Table 2 presents participants performing the tasks from 1 to 9 validating the UI's

intuitiveness. Each session revealed common issues, notably in Task 3 and 5. Additionally,

participants’ feedback often reflected their professional backgrounds; generalists and juniors

primarily suggested design improvements, whereas developers and technical artists focused

on technical and performance aspects of the plugin.

Task Completion Success:

All participants successfully completed tasks Open Shelf (1), Explore Plugins (2), Style

Presets (4), and Save New Preset (6), proving that initial access to the plugin is intuitive

across all user levels.

Complex Tasks and User Levels:

Developers and generalists experienced difficulty using Global Settings (5), mentioned

that the word “Global” is common among technical artists and specialized 3D artists, not with

general developers.

Delete Preset (7) showed varied results based on user prior experience. Senior users

generally handled them better, possibly due to their familiarity with other tools and intuitions

of long experience.

Session 1 and Session 4 were unable to perform the task Manual NPR Creation (9) as

they had no prior experience creating shaders using HLSL and implementing post-processing

volume from scratch. This results in their testing sessions ending early within 12-14 minutes.

The participant in Session 3, in spite of years of experience and coding skills, needed

guidance to understand the process. These user types matched the design goal as the Style

Preset and Material Preset are made to aid artists who have limited knowledge in coding and

technical overhead.

In contrast, participants who could smoothly implement NPR pipelines were the senior

technical artist with 7 years of experience and the senior UE5 developer/generalist with 10

years of experience (Sessions 2 and 5). These users will only use the plugin if the plugin

offers stunning NPR presets and they can access a bit of shader code to help them be creative.

58

6.4.3 Phase 3 - Q&A - User Feedback

Post-Testing Questions:

1. What is the overall experience so far?

2. Should the Glob tab be merged with the same Style Preset tab?

3. Is the plugin worth having in your project?

4. Anything else you want to add?

6.5. Discussion

The overall outcomes of the user testing sessions contain the successes, challenges, and

critical insights derived from the UE5 users from wide ranges of experiences with the plugin.

6.5.1 Interactive User Observations

The hands-on sessions proved the core strengths in the plugin design and functionality,

aligning well with the design goals. During these interactive observations, participants were

able to navigate and utilize the Style Preset tool effectively, showcasing how

integration could enhance their workflow efficiency.

Most participants appreciated that they can customize and explore several NPR styles.

Traditionally, creating NPR materials from scratch and setting Post Process Volume is

time consuming and unconventional for users such as 3D artists and environment artists.

Once the all the NPR styles and presets available in Flair for Maya are ported over and

implemented in UE5, the plugin will reach its full potential allowing to quickly iterate within

stylized workflows.

The plugin appears to suit target groups like environment artists and technical artists,

who found the Global settings (Glob) intuitive based on my interactions with the five

participants. However, other generalists and developers occasionally struggled with the

terminology. This suggests that while the plugin meets the needs of some users quite

effectively, the clarity of its language and user interface need to be refined more to serve a

broader range of professional users.

59

6.5.2 Areas for Improvement

Several areas still require improvement despite the positive feedback. Users faced

difficulties figuring out the icon from the shelf to open the documentation and the global

settings. The lack of intuitive design interrupts the workflow and affects the user experience.

In addition, when users successfully saved a customized preset, the content browser did

not navigate to its file's location, and its thumbnails were missing. This left users unsure

whether the preset was successfully saved or not. It has been suggested to improve visual

feedback when presets are saved. Notably, this functionality is available in Flair for Maya but

has not yet been implemented in Flair for UE5.

Moreover, the “Delete” button in “Style Preset” and “Material Preset” tabs were quite

concerning; it is recommended that this button should be hidden unless the preset is actively

selected. This change would simplify the GUI and smoothen the user experience by removing

non-applicable options and adding a confirmation step to prevent accidental deletions.

6.6 Issues and Improvements Priority

After all testing sessions were completed, I evaluated the comments and findings,

leading to the identification of main issues necessary for improving the design and usability

of the system. These issues have been prioritized based on their impact from Section 7.4.3

Phase 3 - Q&A - User Feedback.

The table below categorizes all identified issues according to their relevance to different

features of the Flair Plugin. Each issue is coded with a letter and numbers: 'u' stands for

usability, 'd' for design. The second digit indicates the specific feature affected: 1 for

documentation, 2 for style presets, 3 for global settings. The third digit specifies the

sub-feature involved. For example, 'u22' refers to a usability issue concerning the clarity of

the "save" function within style presets.

60

Table x: Prioritized Issues and Recommended Actions

Issue# Description Recommended Solutions Proportion Priority

u1 Documentation Clarity:
struggles with accessing
documentation.

Implement Tooltips in UE5 100% High

u3 Global Settings Clarity:
improve intuitive use and
access.

Display Global Settings
after a preset selection.

100% High

u22 Save Function Clarity and
Responsiveness:
lacks clear feedback on
action completion.

Implement navigation to the
saved preset's location in
the UE5 content browser.

40%
(1,5)

High

d24 Delete Function Risk:
design causing accidental
deletions

Modify the Delete function:
Either
1. Enable it only when a
preset is actively selected.
2. Include a confirmation
step
Or
Right click on the preset
node to delete

40%
(1,5)

Medium

d1 The Plugin's
Immersiveness Issues:
QT dialogs don’t seem to
blend well with UE5

Reskin GUI design to be
more engaging and
intuitive; using the similar
color scheme according to
UE5

40%
(1,3)

Low

Most of these issues will be addressed during the upcoming thesis defense, with critical

ones such as u1 and u3 being the main priority before the presentation. This enables staff

and other stakeholders to see the improvements made. The commitment to refining the

project and enriching the quality is crucial as we prepare for the plugin's future growth.

Lastly, this chapter reflected the generally positive feedback towards the Flair Plugin,

despite a few issues that were identified. The findings from all testing sessions helped in

identifying and prioritizing issues and tasks for future improvements based on users’

experiences. After resolving the tasks listed in this chapter, the next step is to improve the

plugin’s quality and usability to ensure the smooth integration in professional workflows.

61

7. Conclusion

This thesis documented partially integration of the Flair plugin from Autodesk Maya into

Unreal Engine 5. The journey began with overviews on non-photorealistic rendering (NPR)

and Flair in Maya. Then we continued with a detailed survey of levels of control. I also get

familiared with technical terms essential for mutual communication with our target audience

—technical and 3D artists.

The design phase included crafting user journeys to identify essential features, creating a

persona and a user story to define design goals, and the hands-on experience of developing

the plugin's shelf in UE5. This phase was crucial for integrating the plugin into the new

application, which caters to game development and possibly wider target audiences.

During the development phase, the integration of the Slate widget with the QT

framework, and the planning of the software architecture resulted in an immersive interface

by combining these frameworks. This phase provided a valuable learning opportunity,

allowing me to explore new areas, such as writing Python APIs, writing HLSL and GLSL,

which enriched my technical skills as a developer.

The testing phase confirmed that the plugin functions well with our main target groups,

including junior developers and generalists. The core design of the plugin, such as the Style

Preset and Material Preset, was well-received by participants, aligning with our target group's

needs. With the integration improvements, including the well-crafted NPR presets provided

by Artineering, are expected to contribute to the success of this project."

This project showcased how integrating Flair's into Unreal Engine 5 opens up to new

possibilities for creative expression in digital art and in game development. As computer

graphics continue to grow, tools such as real-time rendering engines, easy-to-use shading

languages, and intuitive plugins are essential. They make digital art more accessible and

expressive for artists, which suits Unreal Engine's core mission of democratizing access to

powerful creative tools.

62

8. Acknowledgments

First and foremost, I would like to express my deep gratitude to Ulrich Norbisrath, the

professor at The University of Tartu, and Santiago Montesdeoca from Artineering, for their

continuous support, patience, and guidance throughout the journey of this thesis. Their

expertise and insights were invaluable to this work.

I am also grateful to the CGVR team at the University of Tartu for providing essential

resources and a supportive research and testing environment. The staff were consistently

responsive and helpful, assisting with a range of tasks from recruiting testers and thesis

writing to submission, planning, and coding.

Special thanks to all participants, whose feedback and suggestions significantly

enhanced the quality of this work.

I appreciate the UE-Developer Community and the Discord server from the Udemy

course led by Vince Petrelli for their willingness to engage in technical discussions, assist

with troubleshooting my code, and support me through moments of doubt and clarity.

To my friends and family, for their continuous encouragement, and for being my

sanctuary of strength during this journey, I cannot thank you enough.

Last but not least, to all those who indirectly contributed to this thesis and those I may

have inadvertently omitted, I am grateful for your role in my academic journey.

63

9. References

[1] Santiago E. Montesdeoca, Hock Soon Seah, Pierre Bénard, Romain V.J. Thollot, Amir

Semmo and Davide Benvenuti. 2018. MNPR: a framework for real-time expressive

non-photorealistic rendering of 3D computer graphics

https://doi.org/10.1145/3229147.3229162

[2] Santiago E. Montesdeoca. 2018.

Real‑time watercolor rendering of 3D objects and animation with enhanced control

https://dr.ntu.edu.sg/bitstream/10356/102529/1/Thesis%20-%20Final.pdf

[3] Eric Chu a, Loutfouz Zaman 2021.

Exploring alternatives with Unreal Engine’s Blueprints Visual Scripting System

https://doi.org/10.1016/j.entcom.2020.100388

[4] NPR rendering study on Unreal Engine 5.1

https://dev.epicgames.com/community/learning/tutorials/l7kR/npr-rendering-study-on

-unreal-engine-5-1

[5] Cassidy Curtis, Kevin Dart, Theresa Latzko, and John Kahrs. 2020.

Real-time non-photorealistic animation for immersive storytelling in “Age of Sail”

https://doi.org/10.1016/j.cagx.2019.100012

[6] Paulius Liekis, Julian Hodgson and Renaldas Zioma. 2012.

Art pipeline: transition from offline to realtime CG

https://doi.org/10.1145/2343045.2343096

[7] NPR Environment in UE5

https://80.lv/articles/learn-how-to-make-a-fantasy-npr-environment-in-ue5/

[8] Aaron Hertzmann. 1999

Introduction to 3D Non-Photorealistic Rendering: Silhouettes and Outlines

https://www.dgp.toronto.edu/~hertzman/hertzmann-intro3d.pdf

[9] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017

Automated Testing of Graphics Shader Compilers

https://www.doc.ic.ac.uk/~afd/homepages/papers/pdfs/2017/OOPSLA.pdf

[10] Nicholas Moon, Megan Reddy, and Luther Tychonievich. 2021

Non-photorealistic ray tracing with paint and toon shading

https://doi.org/10.1145/3450618.3469173

[11] David Mould, Regan L. Mandryk, and Hua Li. 2012

Emotional response and visual attention to non-photorealistic images

64

https://doi.org/10.1145/3229147.3229162
https://dr.ntu.edu.sg/bitstream/10356/102529/1/Thesis%20-%20Final.pdf
https://doi.org/10.1016/j.entcom.2020.100388
https://dev.epicgames.com/community/learning/tutorials/l7kR/npr-rendering-study-on-unreal-engine-5-1
https://dev.epicgames.com/community/learning/tutorials/l7kR/npr-rendering-study-on-unreal-engine-5-1
https://doi.org/10.1016/j.cagx.2019.100012
https://dl.acm.org/doi/10.1145/2343045.2343096
https://80.lv/articles/learn-how-to-make-a-fantasy-npr-environment-in-ue5/
https://www.dgp.toronto.edu/~hertzman/hertzmann-intro3d.pdf
https://www.doc.ic.ac.uk/~afd/homepages/papers/pdfs/2017/OOPSLA.pdf
https://dl.acm.org/doi/10.1145/3450618.3469173

https://doi.org/10.1016/j.cag.2012.03.039

[12] Bruce Gooch and Amy Gooch. 2001 Non-Photorealistic Rendering

https://dl.acm.org/doi/book/10.5555/558817

[13] Kohei Doi, Yuki Morimoto and Reiji Tsuruno. 2021

Global Illumination-Aware Color Remapping with Fidelity for Texture Values

https://doi.org/10.1145/3450618.3469165

[14] MINIMALEFFORTTECH. 2021 QT TO SLATE TRANSITION GUIDE

https://minimaleffort.tech/qt-to-slate-transition-guide/

[15] MINIMALEFFORTTECH. 2021 Simple UX Tips For Developers

https://minimaleffort.tech/simple-ux-tips-for-developers/

[16] Mathew Wadstein. 2019. Editor Utility Widget in Unreal Engine 4 (UE4)

https://youtu.be/C9UAuH72z6M?si=Z1x-vpLbMdui9LYL

[17] J. Wu, R.R. Martin, P.L. Rosin, X.-F. Sun, Y.-K. Lai, Y.-H. Liu, C. Wallraven c. 2014

Use of non-photorealistic rendering and photometric stereo in making bas-reliefs from

photographs

https://doi.org/10.1016/j.gmod.2014.02.002

[18] Antonio Giordano. 2020.

Study and development of a mobile-oriented application for the efficient management

of a radiation test.

https://webthesis.biblio.polito.it/15292/

[19] Why You Only Need to Test with 5 Users by Jakob Nielsen:

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

[20] Top 10 Tech Stacks That Reign Software Development in 2024 - Fingent

https://www.fingent.com/blog/top-7-tech-stacks-that-reign-software-development/

65

https://doi.org/10.1016/j.cag.2012.03.039
https://dl.acm.org/doi/book/10.5555/558817
https://doi.org/10.1145/3450618.3469165
https://minimaleffort.tech/qt-to-slate-transition-guide/
https://minimaleffort.tech/simple-ux-tips-for-developers/
https://youtu.be/C9UAuH72z6M?si=Z1x-vpLbMdui9LYL
https://doi.org/10.1016/j.gmod.2014.02.002
https://webthesis.biblio.polito.it/15292/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.fingent.com/blog/top-7-tech-stacks-that-reign-software-development/

10. Appendices

I – Glossary

1. Non-Photorealistic Rendering –

2. MNPR – A framework for real-time expressive NPR of 3D computer graphics [2]

3. Live Coding – A tool that can be used within the Editor, that allows the hot-reload of

C++ code for faster iteration when developing.20

4. Shaders – A set of instructions that are executed all at once for every single pixel on

the screen.

5. Pipeline –

a. (General) A series of processes or steps through which digital content is

created, developed, and finalized.

b. (Game Development) The structured process through which game assets,

code, and functionalities are developed, integrated, tested, and refined to

create a complete, playable game.

c. (Flair Integration) The pipeline focuses on adapting and extending Flair's

functionalities to be compatible with UE5's architecture, ensuring artists and

developers can leverage its NPR capabilities across platforms.

6. Technology Stack [20] – a combination of programming languages, frameworks,

libraries, tools, and technologies that are used to develop and deploy a

software application or system

II – Plugin Guide

To access and use Flair for UE5, one must follow these:

1. Extract FlairIntegration.zip

2. Open the FlairIntegration folder

3. Open FlairIntegration.uproject

4. On the top of the screen go to Tools>Flair

Requirements:

● Unreal Engine 5.0 up to 5.2.1

20 https://dev.epicgames.com/community/learning/knowledge-base/GDdl/unreal-engine-live-coding-primer

66

https://dev.epicgames.com/community/learning/knowledge-base/GDdl/unreal-engine-live-coding-primer

● Windows 10 or 11

● Python installed

● C++ for game development enabled

III – Usage of AI Tools

This thesis includes ChatGPT-4 for research and writing up until May 15, 2024. The tool is

categorized in two primary areas: Thesis Writing Assistance and Programming Assistance.

Thesis Writing Assistance:

ChatGPT-4 assisted with several documentation and refinement tasks:

1. Help in drafting and structuring a title and chapters of the thesis.

2. Tone adjustments and word choices for non-developers.

3. Summarize research papers.

4. Help with explaining and simplifying complex academic language.

5. Format references according to academic standards.

6. Explain the table or diagram and help drafting them

7. Analyze testing sessions

8. Improve clarity and readability of sections.

9. Write ads to recruit participants for testing.

10. Revising the tone and content of a conclusion chapter.

11. Translate the abstract to Estonian

For Programming

List 10 prompts i used to ask you

1. Debug syntax errors in Python.

2. Improve efficiency of image processing algorithms.

3. Compare different code snippets for performance and quality.

4. Handle communications between Slate Widget in C++ and PySide2.

5. Evaluate the pros and cons of using different UI tools.

6. Custom UI tools using Slate and other tools such as UMG and Editor Utility Widgets.

7. Handle shader programming errors

8. Handle compile error during live coding in UE5 is on.

9. Help with creating responsive panels using Slate Widget.

67

10. Manage material parameters through Python APIs.

11. Manipulate materials inside Post Process Volume through Python APIs.

Impact on Thesis

ChatGPT-4 significantly improved the quality of both the written and technical components

of the thesis. Screenshots demonstrate the specific uses and benefits. The AI's support was

essential for meeting deadlines and maintaining high academic and technical standards.

68

IV – Source Code

Available via request on

● https://github.com/Alitcher/UE5ShaderIntegration

Please send an email to alicia.sudlerd@gmail.com to request access.

69

https://github.com/Alitcher/UE5ShaderIntegration

V – License

Non-exclusive licence to reproduce the thesis and make the thesis public

I, Alicia Sudlerd,

(author’s name)

1. grant the University of Tartu a free permit (non-exclusive licence) to reproduce, for the

purpose of preservation, including for adding to the DSpace digital archives until the

expiry of the term of copyright, my thesis

UE5 Flair's Integration – UI, Shaders, and Image Algorithms for NPR

(title of thesis)

supervised by Ulrich Norbisrath, PhD and Santiago Montesdeoca, PhD

(supervisors’ name)

2. I grant the University of Tartu a permit to make the thesis specified in point 1 available to

the public via the web environment of the University of Tartu, including via the DSpace

digital archives, under the Creative Commons licence CC BY NC ND 4.0, which allows,

by giving appropriate credit to the author, to reproduce, distribute the work and

communicate it to the public, and prohibits the creation of derivative works and any

commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in points 1 and 2.

4. I confirm that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection legislation.

Alicia Sudlerd

15/05/2024

70

