UNIVERSITY OF TARTU
Institute of Computer Science
Software EngineerinGurriculum

Freddy Marcelo Surriabre Dick

Actor model I n the | oT ne
ating distributed appliceze
Masterds Thesis (30 ECTS)

Supervisofs). Satish Nirayana Srirama

Tartu2019

Actor model in the 10T network edge forcreating distributed applica-
tions using Akka

Abstract:

With the upcoming wave of devices coming in the next few years to the Internet of Things
(IoT), new challenges will arise with respect to the vasbant of data generated by these
devices and the processing of all these data in an efficient manner-celawid architec-

tures, that rely on the distant cloud for processing data, do not seem to fit the new require-
ments of this new dynamic Internet ofifigs, where multiple devices constantly need to
interact with each other, handling réahe data processing. The edge cormmuimodel

moves the computing from the cloudtb@ network edgelose to the source of data, reduc-

ing latency and bandwidth needf the whole network among other benefits. Moreover, in
this new model, edge devices play a central role, handling the incoming and outgoing of the
data, and providing computation power to the netwdkthermore, theris the possibility

to distributethe computation process among all edge devices. In this new decentralized
model, a new paradigm is needed that can deal tvshdistributed scenario. Thector

model, which defines actors as its basic unit of computation, addresses the need of working
in a distributed environment with requirements of concurrency, resiliency and scalability
among others. Message passing is defined as the sole mechanism for interaction between
actors in the model, allowing to perform concurrent and parallel computatioouivitie

need of locks or any threafe mechanisms. The Akka toiblis an implementation of the

Actor model which offers, through its platform, a series of modules and libraries than can
be used to build concurrent and distributed applications. Inhbf&s, the Akka toolkit is

used as an alternative for developing applications on the, egglying the concept of the
Actor model. Lightweight containerization through Docker is used to deploy the application
on a distributed network of devices represemtihe edge devices. Finally, an loT Akka
system architecture is proposaldng with its implementatigrbased on a Wireless Sensor
Network I0T scenario, to demonstrate the feasibility of conceiving applications on the edge
rather than using a cloud bassggproach.

Keywords:
loT, Akka, Actor Model, Edge computingocker
CERCS: P170:Computer science, numerical analysis, systems, control

Tegutsejate mudel Asjade Interneti hajusate rakenduste loomiseks
servavorgus Akka abil

Lihikokkuvote :

Lahiaastatel oodatava Asjade Interneti seadmete hulga kasvuga kerkivad esile uued
valjakutsed arvestades seadmete toodetud suuri andmemahtusid ja andmete efektiivse
tootlemise vajadust. Pilvpdhised arhitektuurid, mis toetuvad kaugel asuvaile pilveserver-

itele andmete to0tluseks, ei tdida uue, dinaamilise Asjade Interneti vajadusi, kus mitmed
seadmed peavad pidevalt Uksteisega suhtlema ja reaalajaandmetddtlust teostama. Servaar-
vutuse mudel liigutab arvutused pilvest vorgu serva, andmeallikate |Ahedale, vakenidade
latentsust ja labilaskevdime vajadusi vorgu jaoks tervikuna.

Lisaks mangivad selles uues mudelis keskset rolli servaseadmed, hallates andmevoogude
sisenemist ja valjumist ning varustades vorku arvutusliku véimekusega. Sealjuures on ole-
mas vOimalus jatada arvutuslikku protsessi serva seadmete vahel laiali.

Selles detsentraliseeritud mudelis on vajadus uue paradigma jarele, mis taoliste hajus

stsenaariumitega toime tuleks. Tegutsejate mudel (inglise k. actor model), mille arvutus-

likeks baasuksusteks tegutsejad, vastab hajuskeskkonna vajadustele arvestades teiste seas
konkurentsuse, veataluvuse ja skaleruuvuse nduetega.

Ainsaks suhtlusmehhanismiks tegutsejate vahel selles mudelis on sGnumite edastus, véimal-
dades konkurrentset ja paralleelset arvutanima lukustus voi |dimeturvalisusme-
hhanismideta.

Akka todriistakomplekt on tegutsejate mudeli implementsioon, mille platvorm pakub
mooduleid ja teeke konkurrentsete ja hajusate rakenduste ehitamiseks. Kéesolevas 16putoos
kasutatakse Akka riistakomplektakendute arendamiseks servale, kasutades tegutsejate
mudeli p6himbtet. Kergeid konteinertehnoloogiad Dockeri naol kasutatakse rakenduse
juurutamiseks seadmete hajusvorku, mis esindab servaseadmeid. Viimaks esitletakse As-
jade Interneti slisteemi arhitektu koos implementatsiooniga, pdhinedes juhtmevaba sen-
sorvOrgu stsenaariumil, et demonstreerida rakenduste loomise teostatavust servas pilve
pbhise lahenduse asemel.

Votmesonad
Asjade Internet, Akka, Tegutsejateidel, Servaarvutus, Docker

CERCS: P170:Avutiteadus, arvutusmeetodid, susteemid, juhtimine (automaatjuhtimiste-
ooria)

4AAT A T £ #1171 O0A1T 00
1

Ta oo 18 Tox 1 o] o KA USRI 6
1.1 Problem StatemMent..........uuuuiiiiiie e e e e eeees s e e e e e e e e e e e e eeeeeeennnane 7
1.2 SCOPE ANA GOal.....cceiiiiiiiiiiii e a e —————- 7
1.3 Related work and thesis proposal.............cccccviiiieeeiiiiiiiiiiie e 7
1.4 TRESIS OULINE...uuuiiiiiei et eees 8

2 BACKOIOUNG......ooiiiiiiiiieiee e 9
2.1 10T T Internet of ThiNGS......oooiriiii e 9
2.2 EdQE COMPULING....eueiiiiiiiiiiiiiiee ettt meee e aeeas 10
2.3 ACION MOAEL...cciiiiiiiiie e e 11
2.4 The AKKaA tOOIKIT.........uueeeeiiiiie st e e e e e s eneess s e s e e e e e e e e e e e eeeeeeenenes 12

241 ACTOT ... et e e e e e e e e e a e 12

2.4.2 ACION ITECYCIE.....co i 14

2.4.3 MBS SATRS . ietuiiiii ittt ettt ———— et m———— 15

A T £] (=] [= 16

2.4.5 EVENT SOUICING....uiiiiiiiiiiii e ee e e e et e e e e e s nmmr et e e e e e eata e e 16

2.4.6 ROULING. . ..uuiiiiiiiiiiiiiee ettt et e e e e e e e e s et et e e e e e e e e e e e e e e e e e s s s smnne e e as 16

S A O 1113 = T S SS 17

2.4.8 MeMDEISNID...ciiiiiiiiiiie s 18

2.4.9 Membership lifecycle........ccooiiiii e, 19

P2t IO T Y= =T I T Yo [19

2.4.11 Cluster SINGIETON.........ovviiiii i 19

2.4.12 REMOUINGuuuuuiiiiiiiiiiiiiei ittt eeeete ettt ettt e e e e e e e e e e e s s rmme e e e e e e e e e e e e e s enbasbree s 20

2.4.13 SNArING .. cciiiii it ennnea 20

2.4.14 Configuration fil@So e 22
2.5 Lightweight virtualization...............ccccoiiiiiiiscceecccee e veeer e 22

3 IMPIEMENTALION. ...ttt 24
3.1 General CONSIAEratiONS.........coeviiiiiiiiiieeee e neesee bbb eeees 24
3.2 DOCKEI SWaIM SEIUP.ctiiiiiiiiiieeee et 24

3.2.1 OVerlay NEWOIK........cceieeeieiitiiecmmr e e e e e e e e e e e e e eeaeeen 26

3.2.2 Docker COMPOSE fil@.......uuiiiiiiiiiiiiiii e 27

3.2.3 DOCKEI IMAGES.....ccceiiiieeeeeee e e e e e e e e e e e e enans 28
3.3 AKKA MOAUIES..... ..o 28

3.3.1 Akka application architecture on a Docker Swarm..............cccccceveeeeenn... 28
3.4 A simple AKKa CIUSTEL.........uuiiiiiiiiiiiii e 29

4

34 L HTTP ManNagQEeMENL.........u it eeeee et eeee e e e e een e eeeeees 32

3.5 Clusteraware routers With DOCKET............ccooeiiiiiiiiicccee e 32
3.6 Akka cluster in a DOCKer SWarmL...........cooviiiiiiiiiimmee e 33
3.7 Cluster Shardig and persistence with AkKa...............c..oovviveiiieiieeiiiinnnn, 34
3.8 SUMIMANY. .. 35

O ol IS V£ =1 IR0t = L [TSRS 36
4.1 Cloud and edge arChiteCtUIES........coviiiiiiiiiiii e 36
A [0 I O 11 (T PSPPSR 38
G T \V = 1S =T g O 1] (T PP 39
4.4 WOTKET CIUSTEL....ciiiiiiiiie et re e bbb e e 41
4.5 Application WOrKfIOW...........oooiiii oo 43
4.6 Deployment of the application with Docker...............oovviiiiiiccciieeieeeiiiii, 45
A7 SUMMEATY....cciiiiiiieeetitnniiamme e e e e e e s emnnss s n e e e e e e e e e e e e e eeennnneeeaeeeees 46

5 EVAIUALION.......coiiiiiiii e ennrnneneeeeeee s AT
5.1 Feasibility of the Actor model on the edge............coooooiiiiiiiccc 47
5.2 Suitability for applications................uuvvuiiiiiicceeeies e AT
5.2.1 Distributed COMPULING.......ccoieiiiiiiiiii e e e a7
5.2.2 EXperimental reSUIS.........ccooeiiiiiie e eeee e 50
5.2.3 Programmability for appliCations..............ceeeiiiiiiieeciiiiiiiieieeieeeeeeeee e 53
5.2.4 LOCAtiON traNSPAIENCY......ceeiiieeeeeeeeieeeiieeee e e e e e e e e e e et e e e eeeeet s mnneeeeeeeeeesasennnns 54
5.2.5 Difficulty and challenges using AKKaL.............cooooiiiiiiiman, 54

5.3 Deployment of the Application Stack..............ccooeiiiiiiieeei e 54
5.4 Fault tolerance of the SYStem..........oooiiiiiiiiiiiic e 55
5.4.1 1s0lation Of failUreS.........couiiiiiiiiiii e 55
5.4.2 Use of replicas to update and maintain the system..............cccoeveeeeeeennn. 56

5.5 SUMMAIY.. .t arr e e e e e e e e e e aan s 58

G @ T 1113 [1 £ 59
A £ U= (=] =] [= PSPPI 62
LY o] 0 1= o) TP TRTPPPPPN 64
O I o =1 o T OO TRRTTTRP 64

p)T OOT AGAOGET 1

Throughout historyadvancesn technologyhave changed the waeoplesolve problems
andthink about the futuresSi nce t he i1 nvention ofanytother c o mp
new developments have surged based on the concept of having computing devices pro-
cessing data. There is hardly any other inventiothe lastcenturythat has had such a

significant impact on humdives, as thenvention of thdnternetas glolal communication
network

The invention of thénternet haglrastically changed the way people and machines interact
with each otherenabling instant access to réale information and services from different
parts of the worldln the last few yearsnternethas become almost a necessity, as multiple
services are onlgvailablethrough hternet Furthermore, mosdevices such asomputers,
smartphonessensorsetc. makeuse of theriternet for sharing data, performing computa-
tions or providingother types of functionalitiesThis connectivity of devices with the Inter-
net has led to the creation of new concepts such as the Internet of Thingsl{ioi has
gained popularity imecentyeas.

Along this line is also the concept oiocd computing, whiclhas becomen omnipresent
concept when itomes to mternet servicedMiultiple applicationsrely on the computing
power and other resourcpeovidedby the doud for their correct operatiorDevices such

as sensorandwearablesnake use ofloud servicesd processhe data they generafehis

fact puts on evidence the necessity of new waysamdlethe amount oflata originating

from thesedevices Challenges do not only involve elements such as data storage or com-
puting power, but alsdemandsoftware stutions that can manage and process this large
amount of information.

While many possible solutions halseenproposed and implemented to deal with this sce-
nario, most of thenrely on the toud asa serviceprovider. Fair enough,here aremultiple
cloud providers suclasAmazon Web Services and Microsoft Azure, that offEiousso-
lutions for different problems$However, within the next few years, a hew incoming wave
of devicesthat will generate vast amount of datéll increase the necessity of differe
resources and wilemanddifferent types of solutiongddressing issues relatedateaila-
bility, security and latency among others.

Edge computing is set to be one of the main focus of research in the upcoming years as it
specificallydealswith the dorementioned problenj&]. The amount of datgeneratedrom

multiple devices will require a change of approach, not only in terms of network connectiv-
ity, but also in terms of software solutions.

One of these approachieshe Actor nedel. The Actor radd was developed by Carl Hewitt

in the 1973, and since then, it has been evolving from a mathematical model to a more
practical solution that fits the requirements of concurrency and distribution of computation
tasks in a distributed environmett.clearexampleof a practicalimplementation of the

Actor modelis the Akka toolkifwhich encompasses a seinaddules andibraries that use

the Actor nodel as its core element to provide@nprehensive set of todler creating
applicationsn a distributed envonment, favoring concurrency andiency among other
features

The Actor model, from an application model perspectdaes not limit itself to a specific
domain or architecture. It can be used to model almost any kind of applicatiany clo-
main, ad it can be useadidifferent types oscenarioswhether thats onthe doud, edge
or other types of environmenfBheActor model presents a solution that can nefkeient
use of the availableesources withira network and distributdhe processingasksamong

6

all the nodes that conform it, providing a robust framework which can be used to build
different types of applications in a distributed environment.

1.1 Problem statement

Internet of ThingslpT) devicesused orthe edge are usually resource caasid evices,

at least compared wittloud devices This implies that efficient use of its resources is not

an option but a central problem that needs to be addressed. Systems to be developed on the
edge must be able to respond to different challengesangnthese challengethe most
important are:

Concurrency: The fact that the edge deals with resource constrained devices, makes it al-
most inevitable to think about the concept of concurrency in an effort to use all the available
computing power of all edgdevices, distributing the computation tasks.

Resiliency: It is imperative to deal with the problem of connectivity. Especially with re-
source constrained devices, which can run out of power or suffer other types of problems,
which can affect the systemrictionality and/or availability. In this sense, the system needs

to be reactive and sethanagegdin orderto deal with these type of situations.

Scalability: Given the amount of d&ces working at the edge layand its charaetistics,
especially in terra of connectivity and power consumption, systemshe edge layer must
be flexible enough to allow new devices to join the network or to leave it, withquiting
majoreffortsin configuration or modifications to adapt to new environments.

Performance: Appropriate use of resources is mandatory. Memory and computing power
with fast and reliable responaee one of the main challengasthe edge layer.

1.2 Scope and Goal

The main focus of this thesis isstudy the applicability ofhe Actor modelin thenetwork
edge to build distributed applicatioria order to achieve this goal, different applications
are developedsingthe Akka toolkit with Javaas thgprogramming language. Another goal
of the thesis is to identify and analyze ways to deploy thesesgsn the edge, for which
Docker, and more specifically Docker Swarm is used. The specific research goals are:

Feasibility of the Actor model on the edgeAnalyze howto apply the Actor model on the
networkedge.

Suitability for applications: In terms ofdeveloping apptiations for the edge using the
Actor model with the Akka toolkit.

Deployment of the Application Sack: Analyze mechanisms to deploy the Application
Stack to the different nodes on the edge.

Fault-tolerance of the systemOnce deployechowthe system can heal and manage itself
in different scenarios.

1.3 Related work and thesis proposal

Several works have been dealing with the computation at the network edge, developing
frameworks and platforms that can be applied on different donfaamsg etal. [12] pro-

posed a framework for edge computing on the road for vehicles, using efficiently all the
available resources on the edgganageet al. [13] developed a framework for mobile

devices to provide a computation service platform. Chang et apf@gpse the idea of the

Indie Foginfrastructurej n whi ch userd6s edge devices, suc
ing a computational service platform on the network edge. Long et al. [15] proposed an edge

7

computing framework for video data processimgged on the availability of mobile devices
and their computation power.

Furstet al. [16] proposed an actor based execution framework for distributed 10T applica-
tions, calledNandu This framework is also based on the Actor model, however, instead of
expasing to developers with a distributed application model using the Actor model, it pro-
vides an execution environment that can be used to implement sequential application logic,
abstracting the underlying execution mechanism that works using actors andgatiegoh
throughout the lifetime of the application.

Most of the related work have dealt with the computation at the edge using the typical edge
model of distributed devices with no further importance to the model and the relationships
behind the connectity of the nodes in the network. The workFiirstet al. [16], instead

of using the Actor model as an application model, envisions to abstract its logic from the
development process. Contrary to all these approaches, in this thesis, the focus is on the
architectural model and patterns that can be used to conceive applications on the network
edge, embracing the distributed nature of the environment. More specifically, using the Ac-
tor model as an application model to build different types of edge applisalibe Akka

toolkit is used as a main tool for providing a robust edge architecture, that can be used to
conceive applications on the network edge, making use of all the available power of the
different nodes that compose the network.

1.4 Thesis outline

This thesis is structured in the following mannEirst, on dhapter 2the basic conceptsf
the Actor model and Akkare introduced in order to have a clear understanding of the con-
cepts discussetthroughoutthe thesisNext, on chapter 3wo implementations elveloped
using the Akka toolkit argresented andiscussedalongwith detailed descriptions of the
structure of the applications and its componedtschapter 4, an edge architecture is pro-
posed along with its implementatiapplied on a real 10T scemarin order to demonstrate
how applicationgan be conceived usitige Actor model and the Akka toolk@®n chapter

5, the main aplication developed on chapter ¥ put on evaluatiomith respect to the
researclgoalsof the thesisFinally, on chapteb, a series of conclusions are drawased

on all the work carried out throughadtie thesisanalyzing the most important aspseand
considerationso be made when working with tietor model using the Akka toolkitto
create edge applications

¢ " AREQIOA
2.1 10T z Internet of Things

The Internet of fings represents an interconnected netvadritifferent elements such as

mobile phones, sensors, vehicles, home appliances, wearables etc. The heterogeneity of
these el ements i s r ep,raemwaddyssatmosb anythingg @an beo r d
connected through the internet.

The availability of the internet in a global scale has allowed manufacturers toplpved-
uctsthatcan rely on the internéd share and process datédis has brought along the de-
velopment of software applicatiotisatcan leverage these devices through the use of inter-
net, enablingcommunication between these devieaslother componentandmaking it
possible to proess data on a large scale. These devices are pireaénbst anyield of the
human activity. An example of this are all thew smarthhome appliances that can be re-
motely controlled through internet. Another example is the car industry, where new car
models are fully automated aoderatesending and receiving reime information through
sensors and using the internet to share and gather data in order to make decisions.

Cloud data centers
Enterprise services and

applications
Edge network
[, = Gateways
_— %}% = Routers
. =] _r ! Access points
¢ EE - ‘,
R ’

!=
J J

|oT Devices

)
A B R

Figure 1.10T Architecture

2.2 Edge computing

The idea of edge computing consists of giving more decision capabilities and independence
to the netwrk edge. The network edge is the closest to the devices that are the source of
the data to be processed. Placing computing power and other resources on the proximity of
these devices can help dealing with different problems inherent of internet comimuanica
such as latency and bandwid1j.

Real-time data processing
Data aggregation
Pre-processing
Data caching

Heterogeneity of devices
and architectures

. Networking using Wi-Fi, Bluetooth
@ @ zigbee m aMQTE MQTT among others.

Figure 2.Edge computing characteristics

There are many classifications for the edge devices, and this could vary depending on many
aspects suchsahe deployment architectui® [3]. The concept of what encorgses the

edge is also blurry, with different authors extending the tenmctadedifferentelements

Taking this into account, it is possible to say that the edge comprehends a wide range of
elements, from small and resowmenstrained devices, suchsensors and wearables, up

to more heterogeneous and complex elemsnth as resouregch servers and edge data
centers.

The benefits of using edge computing can be summarized in the following aspects:

1 Low latency communication: As the source of dataase to the processing center,
there is less time between sending and receiving packets of information.

1 Reduce bandwidth of the network: As more data is handled locally, the amount of
data that travels back and forth with the distant cloud is redudedatihg the sat-
uration of the whole network.

1 Location awareness: A device on the edge can be aware of the surrounding context
where it is deployed.

1 Geographical distribution: Devices on the edge can be distributed on a large area,
providing uninterrupted onnecti on, critical aspect

1 Security: With most of the data processed locally, there is no need to send important
private information to the cloud, meaning less opportunities for attackers to obtain
information by interceptig communications or taking advantage of cloud data
breaches.

Despites these benefithere are numerous challenges to fanehe edgelots of these
challenges are related with the inherent characteristics of the edge, such as limited compu-
tation poweror the heterogeneity of the devices.

10

As suggested by different authors such as Weigtilhgmong thee challenges there is one

in paticular thatis of interested of this thesis, the programmability of edge applications. In
this sense, applications oretedge must be in accordance with the nature of the edge, that
is to say, applications must be designed so that they can be partitioned or distributed over
the network. This seems like a perfect fit for the Actor model which is discussed in the next
sectian.

2.3 Actor model

The Actor model was developed by Carl Hevii} in 1973.This isa mathematical model
thatwas inspired by physics laws rather than mathematics. The model was conceived as a
universal paradigm for concurrent computatiognceijt is in natire a concurrent model of
computationwhich means that is suitable for creating highly concurrent and parallelizable
systems in a distributed environment.

At a higher levelthe model is simple. The basic unit of computation is an Actor. An Actor

IS an efity that can communicate with other actors through messages, and this is the only
mean of communication. An actor can also create other actors establishing a hierarchy of
actors within a system. An actor embodies the following three things:

1. Information pocessing (computation through ldshavioy
2. Storage (state)
3. Communication (through message passing)

An actor has state arlzehavior, much like an Object on th®bject Oriented Paradigm.
However, in the Ator model there are some restrictions that brinmgesguarantees at the

time of carrying out computations. The state is own completely by the actor and it is not
sharable or accessible to other actors on the system. This means that there is no necessity
for locks or other types of synchronizatioechanismmon a multithreaded environment.

The actor can change its staterésponse to a message or can perform some computation
depending on the message. The computation ise¢haviorof the actor. An actor can also
send messages, which will be directed talsanother actor or the actor itséfius,allow-

ing recursionThis recéving actor, will proceedto take aspecific action, as previously men-
tioned. The set of actotisattake part othiscommunicationwill construct an actor system.

Messages are orw the key concepts of this model. It is the only vwiaycommunicate
between actors. In concrete, an actor can do one of the following things in response to a
messageq]:

1 Send a finite number of messages to other actors
1 Create a finite number of new actor
1 Designate théehaviorto be used for the next message it receives

One of the main achievements of this model is the decoupling of the actor from the process
of sending messages, which can be done asynchronously. An actor can only communicate
with otherconnected actors. Connections can be done through:

T direct physical attachment

1 memory or disk addresses

1 network addresses

1 email addresses
Depending on the type of connection, addresses will vary, it could be MAC address in case
of physical connectionr a simple memory address. Messages are delivered on best efforts
basis. Once an actor has sent a messaigeresponsibilityof the receiveto handle it this

11

Is the key element that allows decoupling a message from the sendeihigdype of
conmmunication is also referred &ise and forget

The Actor model is an abstract concept based on some axioms that detwedaveorand
structure of the model. There are several properties and mechanisms working behind scenes.
Implementations of the modshould obey these rules and may use other concepts on top of

it, to expose théehaviorof the model in a practical way.

2.4 The Akka toolkit

Akka is a toolkit based on the idea of creating distributed systemg tin# Actor model.
Akka was developed for Seaand Javanaking use of the Java Virtual Machine (J\V/\)
is alsopossible to fid other implementations of thecfor model for other programming
languagessuch as Akka.NETfor the .NET platformusingC# and F#.

It is also important to notice thenmunt of information and projects available using Akka

in regards to the language. Most of these implementations use Scala, while varg few
implemented irotherprogramminganguages. This care explained because tieorigin

of the creators of Akkayho are also involved in the development of Sdaldalso because

of the facilities that Scala provideFor instance, code for implementing Akka in Scala is
very short and succinct in comparison with Java code, which can be quite long and bloated.

Akka defines itself as a toolkitvhich provides different sets afiodules andibraries for
exposingdifferent types of functionalitiesf the Actor model, such as remoting, clustering,
persistence, etc. Thikka documentation is extensideving deep into somconcepts. Most

of the implementation details come from research papers and industry experience. The com-
pany that is bhind the development of Akkiaightbend is a commercial comparyffering
enterprisesoftware solutions for distributed systems andalenvironments. This company

is also behind the development of multiple frameworks and platforms such as the Play
framework and the Scala programming language. Most of the examples and tools provided
are oriented towards Scala with less support for dadather languages

In order to start building applications with Akkaisimportantto have a clear understand-
ing of the basic concepts. In this caiee core concept is the concept of an Actor and how
it is implemented in Akka. On top of this basic cept other more elaborated concepts are
built, such as Clustering argharding

2.4.1 Actor

Akka defines an actor as a container for stag¢daviorand a mailbox along with its child

actors and supervan strategy. All of these elements worgitbgether confan an actor in

Akka.In the context o&n actor system, actors need to know where to reach each other. For
this, Akka uses actor references, which is an object than can be passed around as a sort of
contact informationthat can be used to communicate vétbpecific actor. This actor ref-
erenceservesas the only way of communication with an actor, leaving the internal compo-
nents of an actor isolated from other actors, which serves to preserve its internal state from
any kind of modification from the outside/hich in turns allow for parallelism of opera-

tions.

The actordés state can be defined using a Fi
vides as a library, or it can be defined by user requirements as any other object. Akka guar-
antees the thread safef passing messagdbus,the actor can process each message with-

out the necessity of using locksanryother type of thread synchronization.

12

Akka provides an infrastructure in which the actan live, that is to say\kka creates the

actor systemrmvironment so that the user can deal directly with application details instead
of dealing with the actor system internal details. This environment consists of a hierarchy
of actors, with parenthild relationshipsFigure 3 illustrates the Akka hierarchiyam actor
system.

— /
root guardian

Default created _|
actors

luser
user guardian

/system
system guardian

/user/al /user/a2 /system/internalActor

/user/a1/childActor1

user created actors system created actors

Figure 3.Actor system hierarchy

The root guar dactarrbeciuseevery actoahaspishave d parent actor that
createst, as shown in the hierarchy, but becaus
aparent, st cannot be a Acompleted actor. This
actors in a actor system.

The user guardian A/usero is the parent of
they are not created directly under the root guartianinstead they have their own branch

under the user guardian, this serves to distsigthese actors from the othekk& private

actors.

The system guardi an #(Akkaprigate @aatos that sire tisédgo rgma r e n t
and maintain the systefunctionalities. These actors are not directly accessible to user ac-
tors and it is not possible to create user actors under this branch.

The three previously mentioned actors are created by default when Akka starts an actor
system. It is also important toention how user created actors are supervised. The actor
system hierarchy defines a special relationship between actors. Every actor, at least user
created actors, have a parent actor, and possibly multiple ctold.da the case of failures,

Akka defnes different options to respondadailure:

1. Resume the subordinate, keeping its accumulated internal state

2. Restart the subordinate, clearing out its accumulated internal state
3. Stop the subordinate permanently

4. Escalate the failure, thereby failing itself

In this sensgAkka defines a supervision hierarchy which responds to the four above men-
tioned possible scenarios. This aspect is also related with arifectgele.

13

2.4.2 Actor lifecycle

Actors have a lifecycle that begins when an actor is creatadspedic context or by the
ors are created
totypes are classes that extend one of the predefined oldgSklsa to create actors, such

actor system. Act

asAbstractActoror AbstractPersistentActor

from

Apr ot

Thecreated actor is also called incarnation, which has a unique identifier or UID. This iden-

tifier will be maintained by the incarnation even afterestarts. However, if an actor is

stopped, and then created again, then it will be given a new unique afertgart from
the identifier a unique path for an actor is assigned so it can be reachable from other actors.

Once the incarnation has been created, a method hook is called on the created actor, in this

case thereStarthook is called. This hook can heed to initialize the actor ung) database

connection or other types of initialization tasks

The postStophook is calledvhenan actor has received the order to be stopped. This hook

can be used to free up resources and close respective connections.
In case of restarting there are two additional hooks.pre&estarhook which terminates

all child actors of an actor before restarting. Once all children are stopped, a new instance
is created and theostRestarhookis called on this new instancEhe pogRestarthook, by

default calls thepreStarthook on the new instance gbatit can be correctly initialized.

The whole process is illustratedfigure 4.

Actor path

- > Empty path

create actor with actorOf(...) method

path is reserved

UID is assigned

actor instance is created

preStart() is called on the new instance

ﬂctor incarnation

s belongs to a path
¢ hasa UID
e Has a mailbox

Resume

-

Actor
instance

« replace old instance

« postRestart() is called on new instance

A

New
instance

Restart

preRestart() is called /

Stop actor with: stop() or PoisonPill

* postStop() is called on the instance
« Terminated message is sent to watchers
« path is allowed to be used again

Figure 4. Actor lifecycle

14

2.4.3 Messages

Actors can communicate with each other through message&nd a message from within
an actor it is necessary to have an Actor referenemactorSelectiorobject which repre-
sents tle address of the recipienttbie message

There are two possible ways of using messages:
1. Usi ng t he iviica Will send mmdsdagedsynchronously and return im-

mediately.
2. Using the fiaskod method, which deal s with
sending messages.
Using the Atell o function is the most comm
dealingwithmoe compl ex scenarios it iIs better to

aggregate different futures, meaning different messages, and combine tisescethan it
can be piped to another actor.

It is also possible to f methwhwhidh isusesubvehgne s wi
using proxy actors that act as routers or replicators.

In order to receive a message, evacior must override the methoteateReceivéhat re-

turns aReceiveobject. Akka provides a useful receive builder that helps to d#éfelee-

haviorof the receiving actor. ThReceiveobject represesthe behaviorof the actor when
receiving messages. It matches the types of messages it can receive and defines a handler
per each type as follows:

@Override
public ReceivecreateReceive {
returnreceiveBuildef)
.matchiMsglclass this::receiveMsgl
.matchiMsgZ2class this::receiveMsg2
.matchiMsg3class this::receiveMsg3
Jbuild();

It is necessary to always match theayyd message otherwise this could generate a failure.
Replying to messages is done in the same way as sending. To aetbtheference of the
sender Aka provides the methagetSender

Actors receive messages on a mailbox. Every actor has a mailboxs Abtain messages

from the mailbox one by one. This allows for the actor to perform in a simglad manner

with respect to message processing. The order of message arrival from one actor to another

Is guaranteed bykka. That is to say that if messagenl, m2 and m3 are send, in that
particular order, from actorl to actor2, then actor2 will receive in its mailbox2Im3,

preserving the order. Then actor2 will start processing the messages in a FIFO order. Also
important to mention is the fact thakkaby def aul t of fers fAat mos
means that a message is sent once, but no guarantees that it will be received. If this is needed,

it can be configured to do so at expense of performance.

15

The above mentioned concepts are thedanesthat enable the wholecdor model on
Akka. More detailed descripti@on the implementation of theckor model and other con-
cepts concerning,itire defined in the official documentatifj that is quite extensive and
involves different aspects to considwhen implementing an actor system, such as fault
tolerance aspects or changing bihaviorof actorsin orderto respondn different ways at
different stagesf an application

2.4.4 Persistence

It is common to deal with stateful actors that maintain aadgé its state through its lifecy-
cle. For this reasomkka provides the concept of persistent actors. This is another library
extension that comes with some default plugins, such as mdraeey journals and local
snapshostore. In order to make use bfg persistent capabilities, the stateful actor should
extend theAbstractPersistentActabstract class or the more specialized abstract Alass
stractPersistentActorAtLeastOnceDelivewhich offers some guarantees when delivering
messages.

2.4.5 Event sourcin g

Akka uses event sourcing to deal with persistence. In this scenario, a persistent actor re-
ceives commands, through messages, these commands are then validated, and once they are
marked as validhey generate events that represent the effect of the auhifiaese events

are persisted in a journal preserving its order of occurrence. A journal is the place where
events are stored and become the source of events when a stateful actor is recovered. The
fact that only events are stored, and not commands, rjaagathat an actor recovers to a

valid state, as only valid commands that later generated events are stored in the journal.

Another option to handle persistence is through snapshots. This concept can be useful in
systems that have long life or handle lanerous amount of operations. For example, a
ticketing system, that can provide different operations such as reservations, cancellations,
modifications,etc, where each of those operations can be performed per ticket. In case of
recovering this type of syem, it would require a lot of time to replay all the events that
occurred since the beginning of its existence. With snapshots, it is possible to persist the
state of an actor at a certain point in time and to bring it all\whek recoveringn a sinde
operation instead of going through all the events one by one.

2.4.6 Routing

In Akka, routing is usedsa mean for passing messages efficiently between actors. The idea
is to have an actor that serves as a router. This actor is in charge of routing reessagas

to other actors called routees, using a specific routing logic. Akka includes a set of routing
logic strategiegor routing messages, such ReundRobinRoutingLogiar SmallestMail-
boxRoutingLogiceach with different characteristics for differenspible scenarios, mak-

ing routing flexible to fit different types of applicatiorisigure 5 illustrates the routing
mechanism in Akka.

There are two main ways to define router actors:

1. Having a normal actor, and creating a Router object inside the actorcAdating
the routees as normal children actors and then adding them as routees to the router
object.

2. Creating aself-containedouter actor, with the help of some configurationhsatit
can handle itself the routees and all routing details.

16

Routing logic

4 1 rL Routee A

i et e I ~ w

L Router] 2 > Routee B

> Routee C

Figure 5 Routing in Akka

The first case is straight forward. Basically, it is necessary to specify in the code all the
characteristics of the router and how it will handle the routees. The second case is more
interesting as the actor itself acts as a router.rdotger capabilities, restrictions or limita-

tions are defined in the configuration file. Akka uses two configuration fdpplica-
tion.confandreference.confat the end both are merged into one configuration file). Differ-
ent configurations can be set fouting actors, such as the routing logic, number of routees,
local or remote routees, etc.

Routing actors are divided into two types: Pool and Group.

A Pool router actor have the characteristic that it creates the routees itself, and have full
control am supervision of the routees. Whereas a Group router actor does not create the
routees, and relies on them being created externally and being passed to it for their use.

The way to pass messages to routers is the same as with normal actors, at thieeend, eit
being a router itself or not, a router still works in an actor environment. The handling of the
message, however, is somehow different. When a message is sent to a router, the router
receives the message and forwards it to one of the routees, extteptase of a broadcast
message, in which case all routees will receive the same message. The original sender of the
message is preserved, meaning that when a
method, it will send the response back to the caiggender not the router actor, even though

it received the message from the rowatetor.

2.4.7 Clustering

The main idea behind Akka is to work in a distributed environment where all communica-
tion is handled asynchronously. From its conception, Akka was thaaghtlistributed tool
taking into account the nature of distributed systems and how they differ frochstoio-

uted systems |7

In this context, one of the core concepts within Akka is the concept of Clusters. Actors live
within systems and these systeoan be distributed within a network. A Cluster is a group

of nodes where each node represents an actor system runnidgva &irtual Machine

(JVM). This is not a restriction, as it is possible to have multiple actor systems under the
same JVM, but thenost common practice is to use one single actor system per @/M
shown in figure 6 This does not onlgerveto preserve the idea of nodes as single actor
systems, in which one node is one actor system, but also helps to maintain independence
between aor systems.

17

/ Virtual Machine \
/ JVM \

Actor system

o v,

Figure 6. Actor System in a JVM

The cluster works as a peterpeer network, in which all nodes are peers, with no concept
of master node (although the mastt&ve pattern can be implemented within the cluster).
This helps to eliminate thgngle point of failure problem, or single point of bottleneck.

Akka relieves the pain of dealing with the problem of local or remote communication as it
enforces distributed mechanism from its roots using location transparency. This is reflected
in theway the actors communicate with each other. In this aspect, there is no difference, in
terms of code, between a communication with a local actor or a remote actor. Actors are
unaware if the communication is local or remote, they just send a messageruantgr
reference of the receiver, and the rest is handled by the system.

Terms
The following are the main terms used when dealing with clustering:
Node

A logical member of a cluster. There could be multiple nodes on a physical machine. De-
fined by ahostrame:port:uidtuple.

Seed nodes

Nodes that are used as entrypoints for new nodes to join the cluster.
Cluster

A set of nodes joined together through the membership service.
Leader

A single node in the cluster that acts as the leader. Managing clustergssrogeand mem-
bership state transitions.

2.4.8 Membership

Clusters make use of a Gossip Protocol to allow new nodes to join a cluster. This type of

member ship i s i nspi systan8papd Rekdatabase]fPhis o n a mo
tocolmakesuse of communicato bet ween t he members of a cl
Sipo between each other until al | of them
nodes are aware of the Agossipo.

18

2.4.9 Membership lifecycle
The cluster membership lifecycle can be represented etstates afhe nodes, as shown

infigure7, where Afdo stands for failure detect]
when a node wants to join the cluster it is
to make sure that the gossipthe new node entering the cluster has converged. Once this
happens, the state of the node changes to T
Up —> Leaving
¥..

Joining € > Exiting

[Down]—>~—|

Figure 7.States of a node in an Akka Cluster
When a node |l eaves it is in the Aleavingo s
the | eaving of the node, the | eader node put
movedo state. Regarding the fdowaltheaherat e, i
states, except for the fr e mmgerékingint aceotint , as
as par of the cluster. In order teet a node down, the node first has to be in a ¢piake
called Aunreachabl ed which acts as a flag i

munication with the node.

2.4.10 Seed nodes

Seed ndes are defined as the entry points for a node to join the cluster. Theseakeda

special role within the cluster, gy are the ones in chargebofilding up the cluster. The
definition of which nodes are seed nodes is done in the configurdgpmfthe form of a

list of remote addresses. The creation of the cluster is as follows: At the beginning of the
cluster, when there are no members, and in fact, there is no cluster yet, the first seed node
on the list is the one that has the respongitili creating the cluster. Obviously it has to be

up in order to start the cluster. Later other seed nodes and normal noden tam ghister

by contacting any seed node that is reach&ldy the first seed node is capable of starting

the cluster. Tis is done in ordeto avoid other seed nodes creatirggv clusters in the case

of a network partition. Once the first seed node on the list is up, and other seed nodes have
joined the cluster, any node trying to join the cluster can do it by contacirgead node,

not only the first on the list, as the cluster is already started

2.4.11 Cluster singleton

This a pattern that is used on clusters when there is the necessity for a Singleton Actor across
the cluster. Akka offers the possibility to create a singleictor but it also warns of some
shortcomings of doing so, such as: Single point of failure, bottleneck, relying into its exist-
ence at all times and multiple singletons created in case a network partition occurs.

19

Neverthelessghe documentatioalso prowdes someayuidance on howo circumventhese
problems.Furthermorethere could be some useful cases in which singletons are needed
such as having one master nddecentralizing some functionalities. Akka itself uieis
concept when dealing with Cles Sharding

2.4.12 Remoting

Remoting is the communication module that works underneath a cluster. This module is
what makes it possible to have a pgepeer communication between actor systems. Akka
defines remoting based on the idea of symmetric commuomsatin the sense that both
ends of the communication can accept and initiate connections.

This modie is now an essential part ofkka, and is no longer intended to use as a
standalone module. Most of the concepts and configussi@nalready present the clus-

ter module and it is recommended to use the cluster configuration instead of just remoting
[10].

Akka offers two ways of remote interaction: Lookup and Creation.

Lookup deals with finding remote tacs. In order to do so, kka uses the concept AL-
torSelectionwhich works like an actor reference. To obtainAlsgorSelectiont is neces-
sary to specify the location of the actor in the following format:

akka.<protocol>://<actor system name>@<hostname>:<port>/<actor path>

And can be used in thellawing manner to obtain the ActorSelection:

ActorSelection selection = context.actorSelection("akka.tcp://app@10.0.0.1:2552/user/ser-
viceAlworker");

With the selectionit is possible to send messages to the remote actor in the same way as
with an Actorreference. It is alspossible to obtain directly aamctor reérence from the
actor selection.tirequires an exchange of messages with the identity of the remote actor.

The second type of remote interaction, Creation, refers to the case possibilitaciban
system to remotely deploy actors on other (remote) system. The location of the nodes to
deploy can be configured in code or within the configuration file. The remote creation of
actors allows for a distributed approach when dealing with actor syatem®uting, ena-

bling load balancing and other benefits that are also used when sharding a cluster.

2.4.13 Sharding

The next big concept in Akka is Sharding. Sharding goes hand in hand with Clustering and
it seems like a natural progression of the concept ast@iung. Sharding consist in distrib-
uting actors of a specific type across different nodes in a cluster in order to properly distrib-
ute the use of resources of a cluster. The type of the sha@saxtabel that represents the
types of entities that ateandled by a shard. In order to use sharding in a cluster, all nodes
should create a shard region for the corresponding type.

The Sharding concept involves the following main terms:

1 Entity: An actor with an Id in a Shard
20

Shard: Group of entities that areanaged together. A shard also has an Id.

Shard Region:A region within a node that holds Shards

Shard Coordinator: An actor in a node in charge of managing the Shard Region.
This is a singleton actor

/ Cluster \
/ Node 1 \
Actor System

Shard coordinator

Shard Region

E

f_

Entity

/ Node 2 \ / Node 3 \

Actor System Actor System

Shard Region Shard Region

Figure 8.Akka Sharding within a Cluster of 3 nade

Cluster ®iarding comes as a modus® it is necessary to import the required library in order

to use it. The user does not have to deal with all the internal details of the sharding process.
Akka provides a clean solution to maintain the user focus@business logic while hiding

the internal complexities of the shardimgechanismwhich can be configured by setting
different parameters.

In concrete, the user should only care about creating a shard region with its corresponding
configuration settingsAt creatian time, the user must defindvessageExtractonn order
to do so, it is necessary to create an object of this class overriding the following methods:

1 entityld
1 entityMessage
1 shardid

The implementation of these methods can vary depending @pjpiieation requirements.

The idea is that when a shard region receives a message, from this message is should be
possible to: extract the id of the receiving entity vatitityld method,so that it knows to

which actor the message is destined, extractrtessage or payload widgntityMessage

method and identify to which shard the message should be directed to wsthatiakéd

method.

21

That is all the responsibility of the user, it should only care about creating the proper con-
figuration for the shards. Athe setup for creating entities, routing and balancing the shards
is handled by Akka.

Behind the scenes, Akka uses the help ofShardCoordinatoto manage the shards, this
coordinator is a singleton actor per type of shard. When a shard is creat&dattiCoor-

dinator will decide which shard region should manage the shard, and it will notify it. The
shard region in response, creates the Shard actor. This actor will create the individual entities
and will become its supervisor.

The whole process worles follows: when an actor sends a message (directedetatisy

of a shard), it sends it to the shard region actor instead of the entity. The shard region uses
the MessageExtractoto extract the details of message, such asfiaedldandentityld

Thenit communicates with the shard coordinator asking for the location of the shard with

the extractedhardld The shard coordinator knows all the locations of the shards so it will
reply to the shard region with the correct location of the siNest, the $iard region re-

ceives the message and redirects, if necessary, the message to another shard region. If the
shard is residing under the same node of the shard region, then it just passes the message to
the corresponding shard actor. Finally, the shard aatbpass the message to the corre-
sponding entity using the entityld.

It is also important to notice that the messages to be handled by the sharding mechanism
must be in accord with tidessageExtractoin case thdlessageExtractotannot extract

the coresponding ids or the payload message from the message, the the communication will
fail.

The other important concept in sharding is rebalancing. This consist in the migration of a
shard, with all its entities living under it, from one node to another. &bisidn of when to
migrate can be configured by using strategies and setting some threshold values. While do-
ing the migration all messages to the shard are retained until the hand off is concluded. Once
the sharding has being recreated the messages wébbected to the new location of the
shard.

Persistence plays an important role in sharding. At least in the case where persistence is
required. This is because, when a shard is migrated from one node to the other, all the entities
and its states are desyed. Later, the entities will be recreated on the new shard location,
but its state will be lost. In this case, it is necessary to use persistence to store the state so
that the new entities can replay the corresponding events to recover its preat®us st

2.4.14 Configuration files

Akka makes extensive use of the configuration files(s). There are two main configuration
files: application.confindextension.conBoth use the HOCON (Humadptimized Config
Object Notation). This is a configuration formatdeyeled by A Typesaf eo,
pany behind Akka. There is no particular difference between both configuration files, and
both can be present. The only distinction mentioned in the Akka documentation is that the
extension.confile should be used in case afeating Akka libraries, meant to be used by
other Akka applications. While thepplication.conffile should be use in cases where the
main goal is to build Akka applications.

2.5 Lightweight virtualization

It comes naturally to think that in a heterogenesmgronment such as the edge, it is nec-
essary to use some kind of tool that would assist in the process of deploying services to the

22

edge, considering all the constraints and characteristics of edge resoutt¢ke complex-
ities of the networkin this cantext, Lightweight virtualization technologiesrise as good
alternative to deal with this problem.

Lightweight virtualization, applied through Containers, allows for a decoupling of hardware
and software, allowing for software to be deployed on difteggres of hardware architec-
tures. This scenario seems to fit into the description of the requirements for creating edge
services.

There are multiple benefits of using virtualization technologeegecially in the current
context where many specializest® have been developed throughout the past years reach-
ing a point where they are suited to be used in production environments. A very clear ex-
ample of this is Docker, that offers a rich set of functionalities to conveniently deploy ap-
plications in distrilnted environments, for instance, the use of Docker Swarm.

There are plenty of research papers that have studied the use of Containerization on 10T
context, deploying services at edge nodes and gateways. An excellent reference in this con-
text it the paperfoRoberto Morabitd11]. In this document, the author evaluated in terms

of performance the use of lightweight virtualization, using Docker, in the context of 0T
applications, using different Singgoard Computers (SBC), including the Raspberry Pi 2
modé B and the Raspberry Pi 3 model B. The author takes one step further, using as base
other related works and adding other metrics such as power consumption and energy effi-
ciency.

In particular, among several conclusions, the following conclusions areecésh

1 Employing containewirtualization does not incur in a significant impact in terms of
performances when compared with native solutions, this includes the scenario when
several containers are running at the same time.

T Raspberry Pi oysfficeotdealidgwitraloweolumesgfmétwork traf-
fic. This aspect can be useful for deploying applications at the gateway level and
other messaging protocols such as M@WEssage Queuing Telemetry Transport).

It is also important to mention, that thatlaor also makes reference to some specific points
that were not fully considered during this research, such as the interaction between multiple
gateways and the security using containers.

Nevertheless, the study provides a sufficient background to #ssattis not only practical
but also appropriate to use lightweight virtualization through containers in the context of
developing 10T applications in the edge.

23

o)i Bl AIl AT OAGEIT 1
This chapterdeals with the implemeation of the Ator model o the netwdk edge using
Akka. The developedpplicationsaim to serve abaseframeworksfor future applications

on the edge, taking into consideration elements of availability, resiliency, and scalability
among others, which are desired on the network edge.

3.1 General considerations
Programming language

The official Akka toolkitprovides support fobcalaandJava, although in thegrgny JVM
language could be usethe implementationdevelopedor this thesisiseJava as them-
plementatiorprogramming language. Howavet is important to mention that Akka itself

is implemented using Scala, and it uses several concepts that are more in accordance with
the functional approach that Scala provides, such as using functions-es$sstitizens

Build Tool

Gradle was chgen as the build tool for the applicasoAlthough Maven is another option,
Gradle is a tool that is being used more often in several new platforms and applications,
such as Android. Gradle uses Groovy as a DSL (domain specific language) to define the
build script, which is easier to use, as Groovy itself is a programming language.

Akka version

Akka version 2.5 is used for the project. It is important to mention that the Akka toolkit is
in constant developmenAdditional features are still being develdpand others are on
testing stages. For this reason, only the stable features are used for ths, praject other
features out of scope in order to conceive stable applications.

Devices

A Linux machine, with enough resour¢casich as CPU computatiorower, is used as a
representative of a more powerful device on the edge.

2 Raspberry Pmodel3B+ areused as a representative of constrained resource sevice
Implementations

There are differenttypes of applicationdevelopedThe first one consist @& simple clus-

ter application. The second one adds the concept of Routing and Docker Swarm. Finally,
the third application involvea more compleXoT scenariousing Docker Swarm. These
projects are available through pubkpositorie$™ where eaclprojectis independent of the
othess, which allows to use them independently and in accordance to the requirements of
the applications to be built on top of them. The last implementation, which model§ a
scenario, uses the concepts and techniques useehvioys implementationss guidelines

3.2 Docker Swarm setup

The idea of a distributed system is to have a group of interconnected devices that can com-
municate and share information between each other. On the networkredgedifferent

1 http://github.com/marcels/akkaclusterbasic/
2 http://dthub.com/marcels/akkaclusterswarm/
3 http://github.com/marcels/akkaiot-wsn/

24

http://github.com/marcelo-s/akka-cluster-basic/
http://github.com/marcelo-s/akka-cluster-swarm/
http://github.com/marcelo-s/akka-iot-wsn/

aspects must be consred, such aseterogeneitglevicesandnetworkrelated issuedan-
aging all thesaspectgan become a complex task, for which some kind ahaeism must
be used to facthis challenge

As previously stated, lightweight virtualization hetpsaddresshese concerns. The idea is

to have the edge devices connected using Docker. In order to accomplish this, it is necessary
to have Docker running on every device. Fordbeeloped applicationsvo Raspberry Pi
devices wereised along with &inux machine EachRaspberry Piuns theRaspbiarOper-

ating System (OS$Swhich is the default OS whenstalling the OS through the Raspberry

Pi software tool NOOB (New Out Of the Box SoftwarelRaspbian is a light OS based on

the Debian Linux distribution. Installatiaf Docker on Linux devices is quisgmplefol-

lowing the instructions provided in the official Docker website. The advantage ofaising
Linux operating system is that Docker works natively when installed on Linux devices and
takes advantage of the Linuschitecture to create containers.

Dockeroffesa f eat ur e c al | iewhichisBveatmaehinesiBimrg Dauoldy,

also called nodegan be connected through Docker forming a clusigishown on figure

9. Nodes in a swarm can be one of two typeanager nodeor worker nodes. Manager
nodes, as the name implies, are in charge of carrying out the orchestration of the swarm,
such asscalingand managing services among others tasks. Worker nodes are mainly con-
tainers that run tasks or services. Maragpdes can also act as worker nodes along with its
administrative tasks, this is the default behawdrile worker nodes can also be promoted

as manager nodes.

O--: O--:

Worker Node \Q / Worker Node
o
oon
EEEEE r

O . Manager Node G .

Worker Node
Worker Node

Figure 9.Docker Swarm nodes

There are several things to consider regarding a clustemswach as the correct number

of managers and load balancing. According to the characteristics of the network edge, these
settings can be customized in order to best fit the requirenkemtthe swarm application,

the Linux machne acts as a swarm managed theRaspberry Pdevicesact as workes,

as illustrated on figure 1@orrespondinglythis scenariocan be easily scaleabut using

more devicess long as they can run Docker in swarm mode.

25

Docker Node

bt
Manager Node

""Docker Node Docker Node

Worker node Worker node
Figure 10Docker Swarm setup

The benefits of usin@pocker are put on evidence when trying to add more devices
system. Wietherit is a more powerful device or a resource constraint desmgedevice, as

long as it is capable of running Docker in swarm mode, can join a swarm and become reach-
able within tke network established for the swarThis facilitates the deployment of appli-
cations on multhode scenarg wheremultiple nodes can join or leave the swarm.

3.2.1 Overlay network

Docker swarm creates an overlay network by default sitting on top obstenétwork. An
overlay network helps to bind together the nodes of the swarm creating an internal network
for the containers participaty on the swarm. All the nodeas the swarm are connected to

this network and they communicate using this network, ¢éveagh externally they both

may be in different networks, namely the respective networks of the Rapise11illus-

trates howlte overlay network sets a direct communication among nodes asigdarm

having each one a specific #idldress on the ovest network

/ Node 1 \ / Node 2 \
Y r mEEEN

Docker Container Docker Container
10.0.0.2 10.0.0.3
— Overlay Network ~ ———
~ i 10.0.0.0/24 ; /
172.201.2 | TTTTTTTmmnTiTTnmmmmmmmmmmmmmmmmmmmmmeees 192.168.1.234
>

Figure 11Docker Swarm nodes

26

To further isolate and keep control of the network, it is better not to use the default overlay
net wor k cal | ed.itiflettegto eeate an. ovetlay setwerk ekclusively for
the swarm. This canebdone externally, meaning creating the network independently and
then assigning it to the swarm, or automatically along the definition of the services using a
dockercomposdile.

3.2.2 Docker compose file

Thedockercomposdile is a YAML*file that defies all the services, networks and volumes
that are going to be used and deployed to the swarm. This file is simildo¢t&exfilein its
syntax but instead of using it to build an image, doekercomposdile is used to bootstrap
the swarm.

The following is an extract of thdockercomposedile used for thesecond application,
which makes use @ockerswarm:

versian: '3'
services
seedi
Image marcelodock/akkaswarmarm32v7
ports
- "2550:2550"
environment
CLUSTER_IR seedl
CLUSTER_PORT2550
SEED1_TCP_ADDRseedl
SEED2_TCP_ADDRseed2
ROLE: backend
networks
- akkacluster
deploy.
replicas 1
placement
constraints[node.role == managler
commandgradle run

networks
Akka-cluster

Thedockercomposdile defines theeonfiguration settings for each of the services to deploy
on the swarmin this case, there is a servicdl@dseedl1Theconfiguration settings for this
service are

image: This service will use a custom image created for the swarm, which will be discussed
later. This image contains the application to be run on this nodemBlgemust be availa-
ble on dockehub so that remote nodes can pull the image.

ports: The ports are defined in congruence with the applicqtoots that are defined in the
application.confile on the Akka application.

4 https://yaml.org/
27

https://yaml.org/

environment: These are the environment variables that are setdoagplication. These
variables andheir values are accessible to the container running the application, therefore
they can be used by Akka for its configuration. All the variables defined are in accordance
to what is needed in the Akka configuration flee specific nde. In this case, the seeds IP
addresses and ports are defined along with the role of the node.

networks: As mentioned before, a specific networldefined for the swarm calledkka
cluster. All the services that should join this netwohosld define the name of the network
in order to join. The creation of the network is done at the end of the fileheitioplevel
optionnetworks

deploy: Defines options for the deployment of the service. In this case, only one replica is
defined withthe constraint that it should be deployed on a manager node.

3.2.3 Docker images

Differenttypes of images were created for ttikerent projectsthis was required as for the

specific characteristics @fach ofthe projecs. Giving that Raspberryi Bevices have dif-

ferent architecture, nameAdvanced RISC MachinfARM), all software associated with

the service to be deployed on a RaspberrgeRicemust be compatible with ARM hard-

ware.For example, to use Gradkn ARM compatible imagdnas to be usefbr the Rasp-

berri Pi deviceswhile theLinuxmac hi ne uses the fAnor mal 6 Gr a

3.3 Akka modules

Akka offers a large set of tools to build distributed systems. The selection of which capabil-
ities to use varies depending on the requirements of tHeagmns to build. The network

edge faces different challenges in different aspects such as latency, availability and connec-
tivity. In order to provide a suitable application environment, taking into account these char-
acteristics, the following modules veeconsidered for the projects:

1 Routing: To increase the throughput of the system.
1 PersistenceTo persist data used by the system.

1 Remoting: To enable the communication of actors on different nodes.

9 Cluster: To build up a cluster, composed of the différedge nodes.

9 Cluster Sharding: To loadbalance actor across the swarm.

Despite being a simple concept on the surface, the Akka implementation of the Actor Model
involves different kinds of concepts to provide a solid and robust distributed framework
suchasCQRS (Command Query Responsibility Segregation) and Reactive Programming.

In this sense, Akkprovides multiple modules and libraries that can be used alongside each
other. The toolkit is large and its use depends on the specific requirements jlicatiap.

For the projec developed for thishesis the previously mentioned modules were selected
as they address directly the aforementioned problems regarding the network edge.

3.3.1 Akka application architecture on a Docker Swarm

Following the Swarnarchitecture provided by Docker, the network edge devices can be
mapped to Akka cluster nodégyure 12 in the following manner:

Manager nodes as Seed nodes or Persistence nodésnager nodes are the ones in charge
of managing the swarm. These nodesrast simple workers, as they already have special
responsibilities within the swarm. Manager nodes can be defined to be special nodes in the
swarm. Thicould mean that these nodes may have better capabilities such as rashurce

28

servers and that theyuld be located and deployed in such form that they are easily main-
tainable and accessible, and less susceptible to failures or outages. Given this context, these
nodes can be a good fit for seed nodes within the Akka cluster. Another good use for these
nodes could be for psistence of data of the clustéoy instance, to create a distributed
Cassandraluster.

Moreover, depending on the architecture of the system, micro data centers could be estab-
lished where all, or most of the servers, would act aagemodes given the special char-
acteristics of these devices.

Worker nodes as normal Akka nodesWorker nodes are given tasks or jobs to perform.
These nodes can be very heterogeneamgjingfrom very resource constrained devices to
more resourceich nodes. These nodes could be set up as normal Akka nodes that perform
different types of computations. Depending on the specific requirements of these computa-
tions, it is possible to set these nodes to handle only specific types of computations. This
can beaccomplished by using routers within the Akka cluster.

Docker Swarm

e Manager Node Worker Node
. =]
| ;
Seed Node
Aakka Persistence Node el [

Akka Cluster

Figure 12 Mapping of Docker Swarm nodes to Akka Cluster nodes

Because of the nature of Akka, based on a-fepeer communication, the nodes on the
cluster do not need to be different. In factlaster of only Raspberry Pi devices can be
established, where any node can act as a seed node, persistent node or a normal node. How-
ever,the differentthe limitations and restrictions of some of the devices on theradge

be considered asome of thenare better suited for different roles in an Akka cluster, in-
creasing the availability and scalability of the system among other benefits.

3.4 A simple Akka cluster

The network edge is composed of different interconnected devices. These devices can be
grouped m cluster(s), where each nodepresents a device on the netwedge.The deci-

sion of how to group nodes could be done in different ways. One of the most obvious ways
to group would be to do it by proximity of the nodes. This would be a better fit is case
where low latency is required as less hops would be required for passing data through the
network. Another case could be to group nodes by services they provide, in order to have
clusters of serviceg.he decision of how to cluster nodes should conslterequirements

of the application and taking into account the physical and logical distribution of the devices
on the networledge.

29

The Cluster module of Akka make use of the Remoting module. This is no surprise, as the
idea of having a cluster is to gno nodes that are on remote machines. The following is a
description of the configuration to have a basic cluster running with Akka.

The configuration fileapplication.confis where the application configuration is defined.
The configuration file uses ttéOCON (HumarOptimized Config Object Notation) for-
mat. The format works similar to JSON, as it is a superset of it. All the Akka configuration

I's defined under the top | evel key fAAkkao.
configuration is requird:

actor {
provider = "cluster"

}

For the configuration of the communication protocadl 4R, the following configuration
optionsneeds to be set:

remote {
log-remotelifecycle-events = off
netty.tcp {
hostname = "127.0.0.1"
port=0
}
}

The important part is the definition of the TCP protocol, where the hostname and port is
defined. If running the cluster locally, the hastme can be set to localhost. If running re-
motely thelP address of the machine should be used instead. The port is also defined. If set
to 0 a random port is assigned.

Another important part of the configuration is the definition of nodes for the cluster:

clustering {
cluster.name = ClusterSystem
seedlip ="127.0.0.1"
seediport = 2550
seedzp ="127.0.0.1"
seed2port = 2560

}

These variables can beferencedn other places of the configuration. For the application,
the cluster name, seed addesssnd ports are defined. As mentioned before, this configu-
ration changes when used with remote nodes which wélkpkinedaterin more advanced
scenarios.

To illustrate how the communication can be done in a cluster two types of actors were de-
signed:

Frontend: These type of actors act as interface between the cluster and the outside, gather-

ing request for jobs and assigning thgdes to the Backend. The cluster application pro-
vides the service through these actors.

30

Backend: These actors are the worker actors in the cluster. They perform some kind of
computation, based on the jobs received by the frontérese actorare the onethat ac-

tually do the processing.

This simple applicatiostructure, shown in figure 18as2 Frontend actor systems, and 3
Backend actor systems. The frontend simulates receiving jobs with a scheduler that creates
a new job every second. As there areohtiend actor systems, there are 2 jobs created every

second.

/ Cluster

Frontend Actor System

Frontend Actor System

Backend Actor System Backend Actor System

Backend Actor System

2

/

Figure 13 Cluster using Frontend and Backend actors

The sequence of actions in the cluster proceed in the following manner:

Frontend receives a job to be done.

wmn e

is not available.

Frontend checks if there aradkend nodes available to assign the job.
If no backend node is available, Frontend responds with a message that the service

4. If there is a node available, Frontend delegates the job to an available backend node.

5. Backend node receives tjub, process it, and retwsthe result

6. Frontend receives the result of the job
There are three types of messages on this application:
1 JobMessagewhich carries the job to be done.

1 ResultMessagemessage that carries the result of the computation
1 FailedMessage message that carries information about the failing computation

All the messages are grouped togethanimterfacecalledAppMessaged hisis done in
order to haveone specific place to look for the messaded aire used in the applicatjon

instead of having them dispersed on different clas§ds.i s
saging Protocol o, and can
types of messages.

ki
be

nd of
usef ul

pattern
when

The main idea of the basic cluster is to have different actéeragsand connect them to
form a cluster. The frontend nodes serve as a base to which other applicationuin be
on top of it. For instance, in the case of a Raspberry Pi, a sensor can be installed on it, and

31

d

send the readirspf this sensor to the Bkend systems for processiagd latey when re-
sults of the processing areceivedactbased on the results.

3.4.1 HTTP Management

Akka offers another module to manage the cluster through an HTTP API. This module is
useful to see the state of a clustangs web browser. Among other things, the API allows
to:

List all nodes on the cluster

Join a node to the cluster

Put down a node from the cluster
See the state of a specific node

= =4 -4 9

This module can be useful to develop web applications to query the fstatduster using

the API. This would allow to have a bit of control of the cluster without using terminals or
having deep knowledge of the inner workings of the cluster HTTP management module

is used in this simple cluster application. It is stadadne of the backend nodes that act
as a seed node of the cluster.

3.5 Cluster-aware routers with Docker

The previous setup was used to illustrate the basic configuratian agplication using
Akka. The next step is to use Docker to run the applicatiorevAaoncept is introduced in
this next version of the application: Clustaware routers

With clusteraware routers it is possible to deploy routees in other nodes of the ,chsster
shown in figure 14This increases the availability and scalability & #pplicationThere
are different ways of deploying the routelesr this application, a pool router actor is used,
so that it can handle itself the creation of its routees.

Figure 14 Clusteraware routing with remote deployed routees

To explain howthis application works a brief description of the components and their inner
workings are described.

32

