
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Freddy Marcelo Surriabre Dick

Actor model in the IoT network edge for cre-
ating distributed applications using Akka

Masterôs Thesis (30 ECTS)

Supervisor(s): Satish Narayana Srirama

Tartu 2019

2

Actor model in the IoT network edge for creating distributed applica-

tions using Akka

Abstract:

With the upcoming wave of devices coming in the next few years to the Internet of Things

(IoT), new challenges will arise with respect to the vast amount of data generated by these

devices and the processing of all these data in an efficient manner. Cloud-centric architec-

tures, that rely on the distant cloud for processing data, do not seem to fit the new require-

ments of this new dynamic Internet of Things, where multiple devices constantly need to

interact with each other, handling real-time data processing. The edge computing model

moves the computing from the cloud to the network edge, close to the source of data, reduc-

ing latency and bandwidth needs of the whole network among other benefits. Moreover, in

this new model, edge devices play a central role, handling the incoming and outgoing of the

data, and providing computation power to the network. Furthermore, there is the possibility

to distribute the computation process among all edge devices. In this new decentralized

model, a new paradigm is needed that can deal with this distributed scenario. The Actor

model, which defines actors as its basic unit of computation, addresses the need of working

in a distributed environment with requirements of concurrency, resiliency and scalability

among others. Message passing is defined as the sole mechanism for interaction between

actors in the model, allowing to perform concurrent and parallel computation without the

need of locks or any thread-safe mechanisms. The Akka toolkit is an implementation of the

Actor model which offers, through its platform, a series of modules and libraries than can

be used to build concurrent and distributed applications. In this thesis, the Akka toolkit is

used as an alternative for developing applications on the edge, applying the concept of the

Actor model. Lightweight containerization through Docker is used to deploy the application

on a distributed network of devices representing the edge devices. Finally, an IoT Akka

system architecture is proposed along with its implementation, based on a Wireless Sensor

Network IoT scenario, to demonstrate the feasibility of conceiving applications on the edge

rather than using a cloud based approach.

Keywords:

IoT, Akka, Actor Model, Edge computing, Docker

CERCS: P170:Computer science, numerical analysis, systems, control

3

Tegutsejate mudel Asjade Interneti hajusate rakenduste loomiseks

servavõrgus Akka abil

Lühikokkuvõte :

Lähiaastatel oodatava Asjade Interneti seadmete hulga kasvuga kerkivad esile uued

väljakutsed arvestades seadmete toodetud suuri andmemahtusid ja andmete efektiivse

töötlemise vajadust. Pilve-põhised arhitektuurid, mis toetuvad kaugel asuvaile pilveserver-

itele andmete töötluseks, ei täida uue, dünaamilise Asjade Interneti vajadusi, kus mitmed

seadmed peavad pidevalt üksteisega suhtlema ja reaalajaandmetöötlust teostama. Servaar-

vutuse mudel liigutab arvutused pilvest võrgu serva, andmeallikate lähedale, vähendades nii

latentsust ja läbilaskevõime vajadusi võrgu jaoks tervikuna.

Lisaks mängivad selles uues mudelis keskset rolli servaseadmed, hallates andmevoogude

sisenemist ja väljumist ning varustades võrku arvutusliku võimekusega. Sealjuures on ole-

mas võimalus jaotada arvutuslikku protsessi serva seadmete vahel laiali.

Selles detsentraliseeritud mudelis on vajadus uue paradigma järele, mis taoliste hajus-

stsenaariumitega toime tuleks. Tegutsejate mudel (inglise k. actor model), mille arvutus-

likeks baasüksusteks on tegutsejad, vastab hajuskeskkonna vajadustele arvestades teiste seas

konkurentsuse, veataluvuse ja skaleruuvuse nõuetega.

Ainsaks suhtlusmehhanismiks tegutsejate vahel selles mudelis on sõnumite edastus, võimal-

dades konkurrentset ja paralleelset arvutamist ilma lukustus- või lõimeturvalisusme-

hhanismideta.

Akka tööriistakomplekt on tegutsejate mudeli implementsioon, mille platvorm pakub

mooduleid ja teeke konkurrentsete ja hajusate rakenduste ehitamiseks. Käesolevas lõputöös

kasutatakse Akka riistakomplekti rakendute arendamiseks servale, kasutades tegutsejate

mudeli põhimõtet. Kergeid konteinertehnoloogiad Dockeri näol kasutatakse rakenduse

juurutamiseks seadmete hajusvõrku, mis esindab servaseadmeid. Viimaks esitletakse As-

jade Interneti süsteemi arhitektuuri koos implementatsiooniga, põhinedes juhtmevaba sen-

sorvõrgu stsenaariumil, et demonstreerida rakenduste loomise teostatavust servas pilve-

põhise lahenduse asemel.

Võtmesõnad:

Asjade Internet, Akka, Tegutsejate mudel, Servaarvutus, Docker

CERCS: P170:Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimiste-

ooria)

4

4ÁÂÌÅ ÏÆ #ÏÎÔÅÎÔÓ

1 Introduction ... 6

1.1 Problem statement .. 7

1.2 Scope and Goal ... 7

1.3 Related work and thesis proposal ... 7

1.4 Thesis outline .. 8

2 Background ... 9

2.1 IoT ï Internet of Things ... 9

2.2 Edge computing .. 10

2.3 Actor model .. 11

2.4 The Akka toolkit ... 12

2.4.1 Actor .. 12

2.4.2 Actor lifecycle ... 14

2.4.3 Messages ... 15

2.4.4 Persistence ... 16

2.4.5 Event sourcing ... 16

2.4.6 Routing .. 16

2.4.7 Clustering .. 17

2.4.8 Membership ... 18

2.4.9 Membership lifecycle .. 19

2.4.10 Seed nodes ... 19

2.4.11 Cluster singleton .. 19

2.4.12 Remoting ... 20

2.4.13 Sharding .. 20

2.4.14 Configuration files .. 22

2.5 Lightweight virtualization .. 22

3 Implementation ... 24

3.1 General considerations ... 24

3.2 Docker Swarm setup ... 24

3.2.1 Overlay network ... 26

3.2.2 Docker compose file .. 27

3.2.3 Docker images .. 28

3.3 Akka modules ... 28

3.3.1 Akka application architecture on a Docker Swarm .. 28

3.4 A simple Akka cluster .. 29

5

3.4.1 HTTP Management .. 32

3.5 Cluster-aware routers with Docker ... 32

3.6 Akka cluster in a Docker Swarm .. 33

3.7 Cluster Sharding and persistence with Akka .. 34

3.8 Summary ... 35

4 IoT System scenario .. 36

4.1 Cloud and edge architectures .. 36

4.2 IoT Cluster .. 38

4.3 Master Cluster .. 39

4.4 Worker Cluster ... 41

4.5 Application workflow ... 43

4.6 Deployment of the application with Docker .. 45

4.7 Summary ... 46

5 Evaluation ... 47

5.1 Feasibility of the Actor model on the edge .. 47

5.2 Suitability for applications ... 47

5.2.1 Distributed computing .. 47

5.2.2 Experimental results ... 50

5.2.3 Programmability for applications ... 53

5.2.4 Location transparency .. 54

5.2.5 Difficulty and challenges using Akka .. 54

5.3 Deployment of the Application Stack .. 54

5.4 Fault tolerance of the system .. 55

5.4.1 Isolation of failures .. 55

5.4.2 Use of replicas to update and maintain the system .. 56

5.5 Summary ... 58

6 Conclusions ... 59

7 References ... 62

Appendix ... 64

I. License ... 64

6

ρ)ÎÔÒÏÄÕÃÔÉÏÎ

Throughout history advances in technology have changed the way people solve problems

and think about the future. Since the invention of the computer on the 1800ôs, many other

new developments have surged based on the concept of having computing devices pro-

cessing data. There is hardly any other invention in the last century that has had such a

significant impact on human lives, as the invention of the Internet as global communication

network.

The invention of the Internet has drastically changed the way people and machines interact

with each other, enabling instant access to real-time information and services from different

parts of the world. In the last few years, Internet has become almost a necessity, as multiple

services are only available through Internet. Furthermore, most devices such as computers,

smartphones, sensors, etc. make use of the Internet for sharing data, performing computa-

tions or providing other types of functionalities. This connectivity of devices with the Inter-

net has led to the creation of new concepts such as the Internet of Things (IoT) which has

gained popularity in recent years.

Along this line is also the concept of cloud computing, which has become an omnipresent

concept when it comes to Internet services. Multiple applications rely on the computing

power and other resources provided by the cloud for their correct operation. Devices such

as sensors and wearables make use of cloud services to process the data they generate. This

fact puts on evidence the necessity of new ways to handle the amount of data originating

from these devices. Challenges do not only involve elements such as data storage or com-

puting power, but also demand software solutions that can manage and process this large

amount of information.

While many possible solutions have been proposed and implemented to deal with this sce-

nario, most of them rely on the cloud as a service provider. Fair enough, there are multiple

cloud providers such as Amazon Web Services and Microsoft Azure, that offer various so-

lutions for different problems. However, within the next few years, a new incoming wave

of devices that will generate vast amount of data, will increase the necessity of different

resources and will demand different types of solutions, addressing issues related to availa-

bility, security and latency among others.

Edge computing is set to be one of the main focus of research in the upcoming years as it

specifically deals with the aforementioned problems [1]. The amount of data generated from

multiple devices will require a change of approach, not only in terms of network connectiv-

ity, but also in terms of software solutions.

One of these approaches is the Actor model. The Actor model was developed by Carl Hewitt

in the 1973, and since then, it has been evolving from a mathematical model to a more

practical solution that fits the requirements of concurrency and distribution of computation

tasks in a distributed environment. A clear example of a practical implementation of the

Actor model is the Akka toolkit, which encompasses a set of modules and libraries that use

the Actor model as its core element to provide a comprehensive set of tools for creating

applications in a distributed environment, favoring concurrency and resiliency among other

features.

The Actor model, from an application model perspective, does not limit itself to a specific

domain or architecture. It can be used to model almost any kind of application, on any do-

main, and it can be used in different types of scenarios, whether that is on the cloud, edge

or other types of environments. The Actor model presents a solution that can make efficient

use of the available resources within a network and distribute the processing tasks among

7

all the nodes that conform it, providing a robust framework which can be used to build

different types of applications in a distributed environment.

1.1 Problem statement

Internet of Things (IoT) devices used on the edge are usually resource constrained devices,

at least compared with cloud devices. This implies that efficient use of its resources is not

an option but a central problem that needs to be addressed. Systems to be developed on the

edge must be able to respond to different challenges. Among these challenges, the most

important are:

Concurrency: The fact that the edge deals with resource constrained devices, makes it al-

most inevitable to think about the concept of concurrency in an effort to use all the available

computing power of all edge devices, distributing the computation tasks.

Resiliency: It is imperative to deal with the problem of connectivity. Especially with re-

source constrained devices, which can run out of power or suffer other types of problems,

which can affect the system functionality and/or availability. In this sense, the system needs

to be reactive and self-managed, in order to deal with these type of situations.

Scalability: Given the amount of devices working at the edge layer and its characteristics,

especially in terms of connectivity and power consumption, systems on the edge layer must

be flexible enough to allow new devices to join the network or to leave it, without requiring

major efforts in configuration or modifications to adapt to new environments.

Performance: Appropriate use of resources is mandatory. Memory and computing power

with fast and reliable response are one of the main challenges on the edge layer.

1.2 Scope and Goal

The main focus of this thesis is to study the applicability of the Actor model in the network

edge to build distributed applications. In order to achieve this goal, different applications

are developed using the Akka toolkit, with Java as the programming language. Another goal

of the thesis is to identify and analyze ways to deploy these services on the edge, for which

Docker, and more specifically Docker Swarm is used. The specific research goals are:

Feasibility of the Actor model on the edge: Analyze how to apply the Actor model on the

network edge.

Suitability for applications: In terms of developing applications for the edge using the

Actor model with the Akka toolkit.

Deployment of the Application Stack: Analyze mechanisms to deploy the Application

Stack to the different nodes on the edge.

Fault-tolerance of the system: Once deployed, how the system can heal and manage itself

in different scenarios.

1.3 Related work and thesis proposal

Several works have been dealing with the computation at the network edge, developing

frameworks and platforms that can be applied on different domains. Feng et al. [12] pro-

posed a framework for edge computing on the road for vehicles, using efficiently all the

available resources on the edge. Liyanage et al. [13] developed a framework for mobile

devices to provide a computation service platform. Chang et al. [14] propose the idea of the

Indie Fog infrastructure, in which userôs edge devices, such as routers, are used for provid-

ing a computational service platform on the network edge. Long et al. [15] proposed an edge

8

computing framework for video data processing, based on the availability of mobile devices

and their computation power.

Fürst et al. [16] proposed an actor based execution framework for distributed IoT applica-

tions, called Nandu. This framework is also based on the Actor model, however, instead of

exposing to developers with a distributed application model using the Actor model, it pro-

vides an execution environment that can be used to implement sequential application logic,

abstracting the underlying execution mechanism that works using actors and adapting them

throughout the lifetime of the application.

Most of the related work have dealt with the computation at the edge using the typical edge

model of distributed devices with no further importance to the model and the relationships

behind the connectivity of the nodes in the network. The work of Fürst et al. [16], instead

of using the Actor model as an application model, envisions to abstract its logic from the

development process. Contrary to all these approaches, in this thesis, the focus is on the

architectural model and patterns that can be used to conceive applications on the network

edge, embracing the distributed nature of the environment. More specifically, using the Ac-

tor model as an application model to build different types of edge applications. The Akka

toolkit is used as a main tool for providing a robust edge architecture, that can be used to

conceive applications on the network edge, making use of all the available power of the

different nodes that compose the network.

1.4 Thesis outline

This thesis is structured in the following manner: First, on chapter 2 the basic concepts of

the Actor model and Akka are introduced in order to have a clear understanding of the con-

cepts discussed throughout the thesis. Next, on chapter 3, two implementations developed

using the Akka toolkit are presented and discussed, along with detailed descriptions of the

structure of the applications and its components. On chapter 4, an edge architecture is pro-

posed along with its implementation applied on a real IoT scenario, in order to demonstrate

how applications can be conceived using the Actor model and the Akka toolkit. On chapter

5, the main application developed on chapter 4, is put on evaluation with respect to the

research goals of the thesis. Finally, on chapter 5, a series of conclusions are drawn based

on all the work carried out throughout the thesis, analyzing the most important aspects and

considerations to be made when working with the Actor model, using the Akka toolkit, to

create edge applications.

9

ς "ÁÃËÇÒÏÕÎÄ

2.1 IoT ɀ Internet of Things

The Internet of Things represents an interconnected network of different elements such as

mobile phones, sensors, vehicles, home appliances, wearables etc. The heterogeneity of

these elements is represented by the word ñthingsò, as nowadays almost anything can be

connected through the internet.

The availability of the internet in a global scale has allowed manufacturers to develop prod-

ucts that can rely on the internet to share and process data. This has brought along the de-

velopment of software applications that can leverage these devices through the use of inter-

net, enabling communication between these devices and other components, and making it

possible to process data on a large scale. These devices are present in almost any field of the

human activity. An example of this are all the new smart home appliances that can be re-

motely controlled through internet. Another example is the car industry, where new car

models are fully automated and operate sending and receiving real-time information through

sensors and using the internet to share and gather data in order to make decisions.

Figure 1. IoT Architecture

10

2.2 Edge computing

The idea of edge computing consists of giving more decision capabilities and independence

to the network edge. The network edge is the closest to the devices that are the source of

the data to be processed. Placing computing power and other resources on the proximity of

these devices can help dealing with different problems inherent of internet communication,

such as latency and bandwidth [1].

Figure 2. Edge computing characteristics

There are many classifications for the edge devices, and this could vary depending on many

aspects such as the deployment architecture [2] [3]. The concept of what encompasses the

edge is also blurry, with different authors extending the term to include different elements.

Taking this into account, it is possible to say that the edge comprehends a wide range of

elements, from small and resource-constrained devices, such as sensors and wearables, up

to more heterogeneous and complex elements, such as resource-rich servers and edge data

centers.

The benefits of using edge computing can be summarized in the following aspects:

¶ Low latency communication: As the source of data is close to the processing center,

there is less time between sending and receiving packets of information.

¶ Reduce bandwidth of the network: As more data is handled locally, the amount of

data that travels back and forth with the distant cloud is reduced, alleviating the sat-

uration of the whole network.

¶ Location awareness: A device on the edge can be aware of the surrounding context

where it is deployed.

¶ Geographical distribution: Devices on the edge can be distributed on a large area,

providing uninterrupted connection, critical aspect in some applicationôs context.

¶ Security: With most of the data processed locally, there is no need to send important

private information to the cloud, meaning less opportunities for attackers to obtain

information by intercepting communications or taking advantage of cloud data

breaches.

Despites these benefits, there are numerous challenges to face on the edge. Lots of these

challenges are related with the inherent characteristics of the edge, such as limited compu-

tation power or the heterogeneity of the devices.

11

As suggested by different authors such as Weisong [4], among these challenges there is one

in particular that is of interested of this thesis, the programmability of edge applications. In

this sense, applications on the edge must be in accordance with the nature of the edge, that

is to say, applications must be designed so that they can be partitioned or distributed over

the network. This seems like a perfect fit for the Actor model which is discussed in the next

section.

2.3 Actor model

The Actor model was developed by Carl Hewitt [5] in 1973. This is a mathematical model

that was inspired by physics laws rather than mathematics. The model was conceived as a

universal paradigm for concurrent computation, hence, it is in nature a concurrent model of

computation, which means that is suitable for creating highly concurrent and parallelizable

systems in a distributed environment.

At a higher level, the model is simple. The basic unit of computation is an Actor. An Actor

is an entity that can communicate with other actors through messages, and this is the only

mean of communication. An actor can also create other actors establishing a hierarchy of

actors within a system. An actor embodies the following three things:

1. Information processing (computation through its behavior)

2. Storage (state)

3. Communication (through message passing)

An actor has state and behavior, much like an Object on the Object Oriented Paradigm.

However, in the Actor model there are some restrictions that bring some guarantees at the

time of carrying out computations. The state is own completely by the actor and it is not

sharable or accessible to other actors on the system. This means that there is no necessity

for locks or other types of synchronization mechanisms on a multithreaded environment.

The actor can change its state in response to a message or can perform some computation

depending on the message. The computation is the behavior of the actor. An actor can also

send messages, which will be directed towards another actor or the actor itself, thus, allow-

ing recursion. This receiving actor, will proceed to take a specific action, as previously men-

tioned. The set of actors that take part on this communication, will construct an actor system.

Messages are one of the key concepts of this model. It is the only way to communicate

between actors. In concrete, an actor can do one of the following things in response to a

message [5]:

¶ Send a finite number of messages to other actors

¶ Create a finite number of new actors

¶ Designate the behavior to be used for the next message it receives

One of the main achievements of this model is the decoupling of the actor from the process

of sending messages, which can be done asynchronously. An actor can only communicate

with other connected actors. Connections can be done through:

¶ direct physical attachment

¶ memory or disk addresses

¶ network addresses

¶ email addresses

Depending on the type of connection, addresses will vary, it could be MAC address in case

of physical connection or a simple memory address. Messages are delivered on best efforts

basis. Once an actor has sent a message, it is responsibility of the receiver to handle it, this

12

is the key element that allows decoupling a message from the sender actor. This type of

communication is also referred as fire and forget.

The Actor model is an abstract concept based on some axioms that define the behavior and

structure of the model. There are several properties and mechanisms working behind scenes.

Implementations of the model should obey these rules and may use other concepts on top of

it, to expose the behavior of the model in a practical way.

2.4 The Akka toolkit

Akka is a toolkit based on the idea of creating distributed systems using the Actor model.

Akka was developed for Scala and Java, making use of the Java Virtual Machine (JVM). It

is also possible to find other implementations of the Actor model for other programming

languages, such as Akka.NET, for the .NET platform, using C# and F#.

It is also important to notice the amount of information and projects available using Akka

in regards to the language. Most of these implementations use Scala, while very few are

implemented in other programming languages. This can be explained because of the origin

of the creators of Akka, who are also involved in the development of Scala, but also because

of the facilities that Scala provides. For instance, code for implementing Akka in Scala is

very short and succinct in comparison with Java code, which can be quite long and bloated.

Akka defines itself as a toolkit, which provides different sets of modules and libraries for

exposing different types of functionalities of the Actor model, such as remoting, clustering,

persistence, etc. The Akka documentation is extensive diving deep into some concepts. Most

of the implementation details come from research papers and industry experience. The com-

pany that is behind the development of Akka, Lightbend, is a commercial company offering

enterprise software solutions for distributed systems and cloud environments. This company

is also behind the development of multiple frameworks and platforms such as the Play

framework and the Scala programming language. Most of the examples and tools provided

are oriented towards Scala with less support for Java and other languages.

In order to start building applications with Akka, it is important to have a clear understand-

ing of the basic concepts. In this case, the core concept is the concept of an Actor and how

it is implemented in Akka. On top of this basic concept other more elaborated concepts are

built, such as Clustering and Sharding.

2.4.1 Actor

Akka defines an actor as a container for state, behavior and a mailbox along with its child

actors and supervision strategy. All of these elements working together conform an actor in

Akka. In the context of an actor system, actors need to know where to reach each other. For

this, Akka uses actor references, which is an object than can be passed around as a sort of

contact information, that can be used to communicate with a specific actor. This actor ref-

erence serves as the only way of communication with an actor, leaving the internal compo-

nents of an actor isolated from other actors, which serves to preserve its internal state from

any kind of modification from the outside, which in turns allows for parallelism of opera-

tions.

The actorôs state can be defined using a Finite State Machine mechanism, which Akka pro-

vides as a library, or it can be defined by user requirements as any other object. Akka guar-

antees the thread safety of passing messages, thus, the actor can process each message with-

out the necessity of using locks or any other type of thread synchronization.

13

Akka provides an infrastructure in which the actors can live, that is to say, Akka creates the

actor system environment so that the user can deal directly with application details instead

of dealing with the actor system internal details. This environment consists of a hierarchy

of actors, with parent-child relationships. Figure 3 illustrates the Akka hierarchy of an actor

system.

Figure 3. Actor system hierarchy

The root guardian ñ/ò is a pseudo-actor because every actor has to have a parent actor that

creates it, as shown in the hierarchy, but because this actor is the main root, it doesnôt have

a parent, so it cannot be a ñcompleteò actor. This root guardian serves a parent of all other

actors in an actor system.

The user guardian ñ/userò is the parent of all user created actors. When creating an actor,

they are not created directly under the root guardian, but instead they have their own branch

under the user guardian, this serves to distinguish these actors from the other Akka private

actors.

The system guardian ñ/systemò is the parent of all Akka private actors that are used to run

and maintain the system functionalities. These actors are not directly accessible to user ac-

tors and it is not possible to create user actors under this branch.

The three previously mentioned actors are created by default when Akka starts an actor

system. It is also important to mention how user created actors are supervised. The actor

system hierarchy defines a special relationship between actors. Every actor, at least user

created actors, have a parent actor, and possibly multiple child actors. In the case of failures,

Akka defines different options to respond to a failure:

1. Resume the subordinate, keeping its accumulated internal state

2. Restart the subordinate, clearing out its accumulated internal state

3. Stop the subordinate permanently

4. Escalate the failure, thereby failing itself

In this sense, Akka defines a supervision hierarchy which responds to the four above men-

tioned possible scenarios. This aspect is also related with an actor lifecycle.

14

2.4.2 Actor lifecycle

Actors have a lifecycle that begins when an actor is created on a specific context or by the

actor system. Actors are created from ñprototypesò that are defined by the user. These pro-

totypes are classes that extend one of the predefined classes of Akka to create actors, such

as AbstractActor or AbstractPersistentActor.

The created actor is also called incarnation, which has a unique identifier or UID. This iden-

tifier will be maintained by the incarnation even after it restarts. However, if an actor is

stopped, and then created again, then it will be given a new unique identifier. Apart from

the identifier, a unique path for an actor is assigned so it can be reachable from other actors.

Once the incarnation has been created, a method hook is called on the created actor, in this

case the preStart hook is called. This hook can be used to initialize the actor using database

connection or other types of initialization tasks.

The postStop hook is called when an actor has received the order to be stopped. This hook

can be used to free up resources and close respective connections.

In case of restarting there are two additional hooks. The preRestart hook which terminates

all child actors of an actor before restarting. Once all children are stopped, a new instance

is created and the postRestart hook is called on this new instance. The postRestart hook, by

default, calls the preStart hook on the new instance so that it can be correctly initialized.

The whole process is illustrated in figure 4.

Figure 4. Actor lifecycle

15

2.4.3 Messages

Actors can communicate with each other through messages. To send a message from within

an actor it is necessary to have an Actor reference or an actorSelection object, which repre-

sents the address of the recipient of the message.

There are two possible ways of using messages:

1. Using the ñtellò method, which will send a message asynchronously and return im-

mediately.

2. Using the ñaskò method, which deals with ñfuturesò and handlers or callbacks when
sending messages.

Using the ñtellò function is the most common way to use for simple messages, but when

dealing with more complex scenarios it is better to use the ñaskò method, which allows to

aggregate different futures, meaning different messages, and combine the results so than it

can be piped to another actor.

It is also possible to forward messages with the ñforwardò method which is useful when

using proxy actors that act as routers or replicators.

In order to receive a message, every actor must override the method createReceive that re-

turns a Receive object. Akka provides a useful receive builder that helps to define the be-

havior of the receiving actor. This Receive object represents the behavior of the actor when

receiving messages. It matches the types of messages it can receive and defines a handler

per each type as follows:

It is necessary to always match the type of message otherwise this could generate a failure.

Replying to messages is done in the same way as sending. To get the actor reference of the

sender Akka provides the method getSender.

Actors receive messages on a mailbox. Every actor has a mailbox. Actors obtain messages

from the mailbox one by one. This allows for the actor to perform in a single-thread manner

with respect to message processing. The order of message arrival from one actor to another

is guaranteed by Akka. That is to say that if messages: m1, m2 and m3 are send, in that

particular order, from actor1 to actor2, then actor2 will receive in its mailbox m1, m2, m3,

preserving the order. Then actor2 will start processing the messages in a FIFO order. Also

important to mention is the fact that Akka by default offers ñat most one deliveryò. This

means that a message is sent once, but no guarantees that it will be received. If this is needed,

it can be configured to do so at expense of performance.

@Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(Msg1.class, this::receiveMsg1)

 .match(Msg2.class, this::receiveMsg2)

 .match(Msg3.class, this::receiveMsg3)

 .build();

 }

16

The above mentioned concepts are the basic ones that enable the whole Actor model on

Akka. More detailed descriptions on the implementation of the Actor model and other con-

cepts concerning it, are defined in the official documentation [6] that is quite extensive and

involves different aspects to consider when implementing an actor system, such as fault

tolerance aspects or changing the behavior of actors in order to respond in different ways at

different stages of an application.

2.4.4 Persistence

It is common to deal with stateful actors that maintain and change its state through its lifecy-

cle. For this reason, Akka provides the concept of persistent actors. This is another library

extension that comes with some default plugins, such as memory-based journals and local

snapshot-store. In order to make use of this persistent capabilities, the stateful actor should

extend the AbstractPersistentActor abstract class or the more specialized abstract class Ab-

stractPersistentActorAtLeastOnceDelivery, which offers some guarantees when delivering

messages.

2.4.5 Event sourcin g

Akka uses event sourcing to deal with persistence. In this scenario, a persistent actor re-

ceives commands, through messages, these commands are then validated, and once they are

marked as valid, they generate events that represent the effect of the command. These events

are persisted in a journal preserving its order of occurrence. A journal is the place where

events are stored and become the source of events when a stateful actor is recovered. The

fact that only events are stored, and not commands, guarantees that an actor recovers to a

valid state, as only valid commands that later generated events are stored in the journal.

Another option to handle persistence is through snapshots. This concept can be useful in

systems that have long life or handle a numerous amount of operations. For example, a

ticketing system, that can provide different operations such as reservations, cancellations,

modifications, etc., where each of those operations can be performed per ticket. In case of

recovering this type of system, it would require a lot of time to replay all the events that

occurred since the beginning of its existence. With snapshots, it is possible to persist the

state of an actor at a certain point in time and to bring it all back when recovering, in a single

operation instead of going through all the events one by one.

2.4.6 Routing

In Akka, routing is used as a mean for passing messages efficiently between actors. The idea

is to have an actor that serves as a router. This actor is in charge of routing received messages

to other actors called routees, using a specific routing logic. Akka includes a set of routing

logic strategies for routing messages, such as RoundRobinRoutingLogic or SmallestMail-

boxRoutingLogic, each with different characteristics for different possible scenarios, mak-

ing routing flexible to fit different types of applications. Figure 5 illustrates the routing

mechanism in Akka.

There are two main ways to define router actors:

1. Having a normal actor, and creating a Router object inside the actor. Also creating

the routees as normal children actors and then adding them as routees to the router

object.

2. Creating a self-contained router actor, with the help of some configuration so that it

can handle itself the routees and all routing details.

17

Figure 5. Routing in Akka

The first case is straight forward. Basically, it is necessary to specify in the code all the

characteristics of the router and how it will handle the routees. The second case is more

interesting as the actor itself acts as a router. The router capabilities, restrictions or limita-

tions are defined in the configuration file. Akka uses two configuration files: applica-

tion.conf and reference.conf (at the end both are merged into one configuration file). Differ-

ent configurations can be set for routing actors, such as the routing logic, number of routees,

local or remote routees, etc.

Routing actors are divided into two types: Pool and Group.

A Pool router actor have the characteristic that it creates the routees itself, and have full

control and supervision of the routees. Whereas a Group router actor does not create the

routees, and relies on them being created externally and being passed to it for their use.

The way to pass messages to routers is the same as with normal actors, at the end, either

being a router itself or not, a router still works in an actor environment. The handling of the

message, however, is somehow different. When a message is sent to a router, the router

receives the message and forwards it to one of the routees, except in the case of a broadcast

message, in which case all routees will receive the same message. The original sender of the

message is preserved, meaning that when a routee sends a message with the ñgetSenderò

method, it will send the response back to the original sender not the router actor, even though

it received the message from the router actor.

2.4.7 Clustering

The main idea behind Akka is to work in a distributed environment where all communica-

tion is handled asynchronously. From its conception, Akka was thought as a distributed tool

taking into account the nature of distributed systems and how they differ from non-distrib-

uted systems [7].

In this context, one of the core concepts within Akka is the concept of Clusters. Actors live

within systems and these systems can be distributed within a network. A Cluster is a group

of nodes where each node represents an actor system running in a Java Virtual Machine

(JVM). This is not a restriction, as it is possible to have multiple actor systems under the

same JVM, but the most common practice is to use one single actor system per JVM, as

shown in figure 6. This does not only serve to preserve the idea of nodes as single actor

systems, in which one node is one actor system, but also helps to maintain independence

between actor systems.

18

Figure 6. Actor System in a JVM

The cluster works as a peer-to-peer network, in which all nodes are peers, with no concept

of master node (although the master-slave pattern can be implemented within the cluster).

This helps to eliminate the single point of failure problem, or single point of bottleneck.

Akka relieves the pain of dealing with the problem of local or remote communication as it

enforces distributed mechanism from its roots using location transparency. This is reflected

in the way the actors communicate with each other. In this aspect, there is no difference, in

terms of code, between a communication with a local actor or a remote actor. Actors are

unaware if the communication is local or remote, they just send a message, using an actor

reference of the receiver, and the rest is handled by the system.

Terms

The following are the main terms used when dealing with clustering:

Node

A logical member of a cluster. There could be multiple nodes on a physical machine. De-

fined by a hostname:port:uid tuple.

Seed nodes

Nodes that are used as entrypoints for new nodes to join the cluster.

Cluster

A set of nodes joined together through the membership service.

Leader

A single node in the cluster that acts as the leader. Managing cluster convergence and mem-

bership state transitions.

2.4.8 Membership

Clusters make use of a Gossip Protocol to allow new nodes to join a cluster. This type of

membership is inspired by Amazonôs Dynamo system [8] and Riak database [9]. This pro-

tocol makes use of communication between the members of a cluster in the form of a ñgos-

sipò between each other until all of them converge into a state where all of the member

nodes are aware of the ñgossipò.

19

2.4.9 Membership lifecycle

The cluster membership lifecycle can be represented with the states of the nodes, as shown

in figure 7, where ñfdò stands for failure detection. There are 6 possible states. At the start,

when a node wants to join the cluster it is in the ñjoiningò state. At this stage, the leader has

to make sure that the gossip of the new node entering the cluster has converged. Once this

happens, the state of the node changes to ñupò.

Figure 7. States of a node in an Akka Cluster

When a node leaves it is in the ñleavingò state, and then once the gossip has converged with

the leaving of the node, the leader node puts it to the ñexitingò state and finally to the ñre-

movedò state. Regarding the ñdownò state, it is possible to reach this state from all the other

states, except for the ñremovedò state, as the removed node is no longer taking into account

as part of the cluster. In order to set a node down, the node first has to be in a quasi-state

called ñunreachableò which acts as a flag indicating that it is not possible to establish com-

munication with the node.

2.4.10 Seed nodes

Seed nodes are defined as the entry points for a node to join the cluster. These nodes take a

special role within the cluster, as they are the ones in charge of building up the cluster. The

definition of which nodes are seed nodes is done in the configuration file, in the form of a

list of remote addresses. The creation of the cluster is as follows: At the beginning of the

cluster, when there are no members, and in fact, there is no cluster yet, the first seed node

on the list is the one that has the responsibility of creating the cluster. Obviously it has to be

up in order to start the cluster. Later other seed nodes and normal nodes can join the cluster

by contacting any seed node that is reachable. Only the first seed node is capable of starting

the cluster. This is done in order to avoid other seed nodes creating new clusters in the case

of a network partition. Once the first seed node on the list is up, and other seed nodes have

joined the cluster, any node trying to join the cluster can do it by contacting any seed node,

not only the first on the list, as the cluster is already started.

2.4.11 Cluster singleton

This a pattern that is used on clusters when there is the necessity for a Singleton Actor across

the cluster. Akka offers the possibility to create a singleton actor, but it also warns of some

shortcomings of doing so, such as: Single point of failure, bottleneck, relying into its exist-

ence at all times and multiple singletons created in case a network partition occurs.

20

Nevertheless, the documentation also provides some guidance on how to circumvent these

problems. Furthermore, there could be some useful cases in which singletons are needed,

such as having one master node for centralizing some functionalities. Akka itself uses this

concept when dealing with Cluster Sharding,

2.4.12 Remoting

Remoting is the communication module that works underneath a cluster. This module is

what makes it possible to have a peer-to-peer communication between actor systems. Akka

defines remoting based on the idea of symmetric communications, in the sense that both

ends of the communication can accept and initiate connections.

This module is now an essential part of Akka, and is no longer intended to use as a

standalone module. Most of the concepts and configurations are already present in the clus-

ter module and it is recommended to use the cluster configuration instead of just remoting

[10].

Akka offers two ways of remote interaction: Lookup and Creation.

Lookup deals with finding remote actors. In order to do so, Akka uses the concept of Ac-

torSelection, which works like an actor reference. To obtain the ActorSelection it is neces-

sary to specify the location of the actor in the following format:

akka.<protocol>://<actor system name>@<hostname>:<port>/<actor path>

And can be used in the following manner to obtain the ActorSelection:

ActorSelection selection = context.actorSelection("akka.tcp://app@10.0.0.1:2552/user/ser-

viceA/worker");

With the selection, it is possible to send messages to the remote actor in the same way as

with an Actor reference. It is also possible to obtain directly an actor reference from the

actor selection. It requires an exchange of messages with the identity of the remote actor.

The second type of remote interaction, Creation, refers to the case possibility of an actor

system to remotely deploy actors on other (remote) system. The location of the nodes to

deploy can be configured in code or within the configuration file. The remote creation of

actors allows for a distributed approach when dealing with actor systems and routing, ena-

bling load balancing and other benefits that are also used when sharding a cluster.

2.4.13 Sharding

The next big concept in Akka is Sharding. Sharding goes hand in hand with Clustering and

it seems like a natural progression of the concept of Clustering. Sharding consist in distrib-

uting actors of a specific type across different nodes in a cluster in order to properly distrib-

ute the use of resources of a cluster. The type of the shard acts as a label that represents the

types of entities that are handled by a shard. In order to use sharding in a cluster, all nodes

should create a shard region for the corresponding type.

The Sharding concept involves the following main terms:

¶ Entity: An actor with an Id in a Shard

21

¶ Shard: Group of entities that are managed together. A shard also has an Id.

¶ Shard Region: A region within a node that holds Shards

¶ Shard Coordinator: An actor in a node in charge of managing the Shard Region.

This is a singleton actor.

Figure 8. Akka Sharding within a Cluster of 3 nodes

Cluster Sharding comes as a module, so it is necessary to import the required library in order

to use it. The user does not have to deal with all the internal details of the sharding process.

Akka provides a clean solution to maintain the user focus on the business logic while hiding

the internal complexities of the sharding mechanism, which can be configured by setting

different parameters.

In concrete, the user should only care about creating a shard region with its corresponding

configuration settings. At creation time, the user must define a MessageExtractor. In order

to do so, it is necessary to create an object of this class overriding the following methods:

¶ entityId

¶ entityMessage

¶ shardId

The implementation of these methods can vary depending on the application requirements.

The idea is that when a shard region receives a message, from this message is should be

possible to: extract the id of the receiving entity with entityId method, so that it knows to

which actor the message is destined, extract the message or payload with entityMessage

method and identify to which shard the message should be directed to with the shardId

method.

22

That is all the responsibility of the user, it should only care about creating the proper con-

figuration for the shards. All the setup for creating entities, routing and balancing the shards

is handled by Akka.

Behind the scenes, Akka uses the help of the ShardCoordinator to manage the shards, this

coordinator is a singleton actor per type of shard. When a shard is created, the ShardCoor-

dinator will decide which shard region should manage the shard, and it will notify it. The

shard region in response, creates the Shard actor. This actor will create the individual entities

and will become its supervisor.

The whole process works as follows: when an actor sends a message (directed to an entity

of a shard), it sends it to the shard region actor instead of the entity. The shard region uses

the MessageExtractor to extract the details of message, such as the shardId and entityId.

Then it communicates with the shard coordinator asking for the location of the shard with

the extracted shardId. The shard coordinator knows all the locations of the shards so it will

reply to the shard region with the correct location of the shard. Next, the shard region re-

ceives the message and redirects, if necessary, the message to another shard region. If the

shard is residing under the same node of the shard region, then it just passes the message to

the corresponding shard actor. Finally, the shard actor will pass the message to the corre-

sponding entity using the entityId.

It is also important to notice that the messages to be handled by the sharding mechanism

must be in accord with the MessageExtractor. In case the MessageExtractor cannot extract

the corresponding ids or the payload message from the message, the the communication will

fail.

The other important concept in sharding is rebalancing. This consist in the migration of a

shard, with all its entities living under it, from one node to another. The decision of when to

migrate can be configured by using strategies and setting some threshold values. While do-

ing the migration all messages to the shard are retained until the hand off is concluded. Once

the sharding has being recreated the messages will be redirected to the new location of the

shard.

Persistence plays an important role in sharding. At least in the case where persistence is

required. This is because, when a shard is migrated from one node to the other, all the entities

and its states are destroyed. Later, the entities will be recreated on the new shard location,

but its state will be lost. In this case, it is necessary to use persistence to store the state so

that the new entities can replay the corresponding events to recover its previous state.

2.4.14 Configuration files

Akka makes extensive use of the configuration files(s). There are two main configuration

files: application.conf and extension.conf. Both use the HOCON (Human-Optimized Config

Object Notation). This is a configuration format developed by ñTypesafeò, the same com-

pany behind Akka. There is no particular difference between both configuration files, and

both can be present. The only distinction mentioned in the Akka documentation is that the

extension.conf file should be used in case of creating Akka libraries, meant to be used by

other Akka applications. While the application.conf file should be use in cases where the

main goal is to build Akka applications.

2.5 Lightweight virtualization

It comes naturally to think that in a heterogeneous environment such as the edge, it is nec-

essary to use some kind of tool that would assist in the process of deploying services to the

23

edge, considering all the constraints and characteristics of edge resources and the complex-

ities of the network. In this context, Lightweight virtualization technologies arise as a good

alternative to deal with this problem.

Lightweight virtualization, applied through Containers, allows for a decoupling of hardware

and software, allowing for software to be deployed on different types of hardware architec-

tures. This scenario seems to fit into the description of the requirements for creating edge

services.

There are multiple benefits of using virtualization technologies, especially in the current

context where many specialized tools have been developed throughout the past years reach-

ing a point where they are suited to be used in production environments. A very clear ex-

ample of this is Docker, that offers a rich set of functionalities to conveniently deploy ap-

plications in distributed environments, for instance, the use of Docker Swarm.

There are plenty of research papers that have studied the use of Containerization on IoT

context, deploying services at edge nodes and gateways. An excellent reference in this con-

text it the paper of Roberto Morabito [11]. In this document, the author evaluated in terms

of performance the use of lightweight virtualization, using Docker, in the context of IoT

applications, using different Single-Board Computers (SBC), including the Raspberry Pi 2

model B and the Raspberry Pi 3 model B. The author takes one step further, using as base

other related works and adding other metrics such as power consumption and energy effi-

ciency.

In particular, among several conclusions, the following conclusions are of interest:

¶ Employing container-virtualization does not incur in a significant impact in terms of

performances when compared with native solutions, this includes the scenario when

several containers are running at the same time.

¶ Raspberry Piôs boards are highly efficient dealing with low volumes of network traf-

fic. This aspect can be useful for deploying applications at the gateway level and

other messaging protocols such as MQTT (Message Queuing Telemetry Transport).

It is also important to mention, that the author also makes reference to some specific points

that were not fully considered during this research, such as the interaction between multiple

gateways and the security using containers.

Nevertheless, the study provides a sufficient background to assert that it is not only practical

but also appropriate to use lightweight virtualization through containers in the context of

developing IoT applications in the edge.

24

σ)ÍÐÌÅÍÅÎÔÁÔÉÏÎ

This chapter deals with the implementation of the Actor model on the network edge using

Akka. The developed applications aim to serve as base frameworks for future applications

on the edge, taking into consideration elements of availability, resiliency, and scalability

among others, which are desired on the network edge.

3.1 General considerations

Programming language

The official Akka toolkit provides support for Scala and Java, although in theory, any JVM

language could be used. The implementations developed for this thesis use Java as the im-

plementation programming language. However, it is important to mention that Akka itself

is implemented using Scala, and it uses several concepts that are more in accordance with

the functional approach that Scala provides, such as using functions as first-class citizens.

Build Tool

Gradle was chosen as the build tool for the applications. Although Maven is another option,

Gradle is a tool that is being used more often in several new platforms and applications,

such as Android. Gradle uses Groovy as a DSL (domain specific language) to define the

build script, which is easier to use, as Groovy itself is a programming language.

Akka version

Akka version 2.5 is used for the project. It is important to mention that the Akka toolkit is

in constant development. Additional features are still being developed and others are on

testing stages. For this reason, only the stable features are used for the projects, leaving other

features out of scope in order to conceive stable applications.

Devices

A Linux machine, with enough resources, such as CPU computation power, is used as a

representative of a more powerful device on the edge.

2 Raspberry Pi model 3B+ are used as a representative of constrained resource devices.

Implementations

There are 3 different types of applications developed. The first one consist of a simple clus-

ter application. The second one adds the concept of Routing and Docker Swarm. Finally,

the third application involves a more complex IoT scenario using Docker Swarm. These

projects are available through public repositories123 where each project is independent of the

others, which allows to use them independently and in accordance to the requirements of

the applications to be built on top of them. The last implementation, which models an IoT

scenario, uses the concepts and techniques used in previous implementations as guidelines.

3.2 Docker Swarm setup

The idea of a distributed system is to have a group of interconnected devices that can com-

municate and share information between each other. On the network edge, many different

1 http://github.com/marcelo-s/akka-cluster-basic/
2 http://github.com/marcelo-s/akka-cluster-swarm/
3 http://github.com/marcelo-s/akka-iot-wsn/

http://github.com/marcelo-s/akka-cluster-basic/
http://github.com/marcelo-s/akka-cluster-swarm/
http://github.com/marcelo-s/akka-iot-wsn/

25

aspects must be considered, such as heterogeneity devices and network related issues. Man-

aging all these aspects can become a complex task, for which some kind of mechanism must

be used to face this challenge.

As previously stated, lightweight virtualization helps to address these concerns. The idea is

to have the edge devices connected using Docker. In order to accomplish this, it is necessary

to have Docker running on every device. For the developed applications, two Raspberry Pi

devices were used along with a Linux machine. Each Raspberry Pi runs the Raspbian Oper-

ating System (OS), which is the default OS when installing the OS through the Raspberry

Pi software tool NOOBS (New Out Of the Box Software). Raspbian is a light OS based on

the Debian Linux distribution. Installation of Docker on Linux devices is quite simple fol-

lowing the instructions provided in the official Docker website. The advantage of using a

Linux operating system is that Docker works natively when installed on Linux devices and

takes advantage of the Linux architecture to create containers.

Docker offers a feature called ñDocker Swarmò, in which several machines running Docker,

also called nodes, can be connected through Docker forming a cluster, as shown on figure

9. Nodes in a swarm can be one of two types: manager nodes or worker nodes. Manager

nodes, as the name implies, are in charge of carrying out the orchestration of the swarm,

such as scaling and managing services among others tasks. Worker nodes are mainly con-

tainers that run tasks or services. Manager nodes can also act as worker nodes along with its

administrative tasks, this is the default behavior, while worker nodes can also be promoted

as manager nodes.

Figure 9. Docker Swarm nodes

There are several things to consider regarding a cluster swarm, such as the correct number

of managers and load balancing. According to the characteristics of the network edge, these

settings can be customized in order to best fit the requirements. For the swarm application,

the Linux machine acts as a swarm manager and the Raspberry Pi devices act as workers,

as illustrated on figure 10. Correspondingly, this scenario can be easily scaled-out using

more devices as long as they can run Docker in swarm mode.

26

Figure 10. Docker Swarm setup

The benefits of using Docker are put on evidence when trying to add more devices to a

system. Whether it is a more powerful device or a resource constraint device, any device, as

long as it is capable of running Docker in swarm mode, can join a swarm and become reach-

able within the network established for the swarm. This facilitates the deployment of appli-

cations on multi-node scenarios, where multiple nodes can join or leave the swarm.

3.2.1 Overlay network

Docker swarm creates an overlay network by default sitting on top of the host network. An

overlay network helps to bind together the nodes of the swarm creating an internal network

for the containers participating on the swarm. All the nodes in the swarm are connected to

this network and they communicate using this network, even though externally they both

may be in different networks, namely the respective networks of the hosts. Figure 11 illus-

trates how the overlay network sets a direct communication among nodes inside a swarm,

having each one a specific IP address on the overlay network.

Figure 11. Docker Swarm nodes

27

To further isolate and keep control of the network, it is better not to use the default overlay

network called ñingressò. Instead, it is better to create an overlay network exclusively for

the swarm. This can be done externally, meaning creating the network independently and

then assigning it to the swarm, or automatically along the definition of the services using a

docker-compose file.

3.2.2 Docker compose file

The docker-compose file is a YAML4 file that defines all the services, networks and volumes

that are going to be used and deployed to the swarm. This file is similar to a dockerfile in its

syntax, but instead of using it to build an image, the docker-compose file is used to bootstrap

the swarm.

The following is an extract of the docker-compose file used for the second application,

which makes use of Docker swarm:

The docker-compose file defines the configuration settings for each of the services to deploy

on the swarm. In this case, there is a service called seed1. The configuration settings for this

service are:

image: This service will use a custom image created for the swarm, which will be discussed

later. This image contains the application to be run on this node. The image must be availa-

ble on docker hub so that remote nodes can pull the image.

ports: The ports are defined in congruence with the application ports that are defined in the

application.conf file on the Akka application.

4 https://yaml.org/

version: '3'

services:

 seed1:

 image: marcelodock/akkaswarmarm32v7

 ports:

 - "2550:2550"

 environment:

 CLUSTER_IP: seed1

 CLUSTER_PORT: 2550

 SEED1_TCP_ADDR: seed1

 SEED2_TCP_ADDR: seed2

 ROLE: backend

 networks:

 - akka-cluster

 deploy:

 replicas: 1

 placement:

 constraints: [node.role == manager]

 command: gradle run

networks:

 Akka-cluster:

https://yaml.org/

28

environment: These are the environment variables that are set for the application. These

variables and their values are accessible to the container running the application, therefore,

they can be used by Akka for its configuration. All the variables defined are in accordance

to what is needed in the Akka configuration for the specific node. In this case, the seeds IP

addresses and ports are defined along with the role of the node.

networks: As mentioned before, a specific network is defined for the swarm called: akka-

cluster. All the services that should join this network should define the name of the network

in order to join. The creation of the network is done at the end of the file with the top-level

option networks,

deploy: Defines options for the deployment of the service. In this case, only one replica is

defined with the constraint that it should be deployed on a manager node.

3.2.3 Docker images

Different types of images were created for the different projects; this was required as for the

specific characteristics of each of the projects. Giving that Raspberry Pi devices have a dif-

ferent architecture, namely Advanced RISC Machine (ARM), all software associated with

the service to be deployed on a Raspberry Pi device must be compatible with ARM hard-

ware. For example, to use Gradle, an ARM compatible image has to be used for the Rasp-

berri Pi devices, while the Linux machine uses the ñnormalò Gradle version.

3.3 Akka modules

Akka offers a large set of tools to build distributed systems. The selection of which capabil-

ities to use varies depending on the requirements of the applications to build. The network

edge faces different challenges in different aspects such as latency, availability and connec-

tivity. In order to provide a suitable application environment, taking into account these char-

acteristics, the following modules were considered for the projects:

¶ Routing: To increase the throughput of the system.

¶ Persistence: To persist data used by the system.

¶ Remoting: To enable the communication of actors on different nodes.

¶ Cluster: To build up a cluster, composed of the different edge nodes.

¶ Cluster Sharding: To load-balance actor across the swarm.

Despite being a simple concept on the surface, the Akka implementation of the Actor Model

involves different kinds of concepts to provide a solid and robust distributed framework,

such as CQRS (Command Query Responsibility Segregation) and Reactive Programming.

In this sense, Akka provides multiple modules and libraries that can be used alongside each

other. The toolkit is large and its use depends on the specific requirements of an application.

For the projects developed for this thesis, the previously mentioned modules were selected

as they address directly the aforementioned problems regarding the network edge.

3.3.1 Akka application architecture on a Docker Swarm

Following the Swarm architecture provided by Docker, the network edge devices can be

mapped to Akka cluster nodes (figure 12) in the following manner:

Manager nodes as Seed nodes or Persistence nodes: Manager nodes are the ones in charge

of managing the swarm. These nodes are not simple workers, as they already have special

responsibilities within the swarm. Manager nodes can be defined to be special nodes in the

swarm. This could mean that these nodes may have better capabilities such as resource-rich

29

servers and that they could be located and deployed in such form that they are easily main-

tainable and accessible, and less susceptible to failures or outages. Given this context, these

nodes can be a good fit for seed nodes within the Akka cluster. Another good use for these

nodes could be for persistence of data of the cluster, for instance, to create a distributed

Cassandra cluster.

Moreover, depending on the architecture of the system, micro data centers could be estab-

lished where all, or most of the servers, would act as manager nodes given the special char-

acteristics of these devices.

Worker nodes as normal Akka nodes: Worker nodes are given tasks or jobs to perform.

These nodes can be very heterogeneous, ranging from very resource constrained devices to

more resource-rich nodes. These nodes could be set up as normal Akka nodes that perform

different types of computations. Depending on the specific requirements of these computa-

tions, it is possible to set these nodes to handle only specific types of computations. This

can be accomplished by using routers within the Akka cluster.

Figure 12. Mapping of Docker Swarm nodes to Akka Cluster nodes

Because of the nature of Akka, based on a peer-to-peer communication, the nodes on the

cluster do not need to be different. In fact, a cluster of only Raspberry Pi devices can be

established, where any node can act as a seed node, persistent node or a normal node. How-

ever, the different the limitations and restrictions of some of the devices on the edge must

be considered as some of them are better suited for different roles in an Akka cluster, in-

creasing the availability and scalability of the system among other benefits.

3.4 A simple Akka cluster

The network edge is composed of different interconnected devices. These devices can be

grouped in cluster(s), where each node represents a device on the network edge. The deci-

sion of how to group nodes could be done in different ways. One of the most obvious ways

to group would be to do it by proximity of the nodes. This would be a better fit in cases

where low latency is required as less hops would be required for passing data through the

network. Another case could be to group nodes by services they provide, in order to have

clusters of services. The decision of how to cluster nodes should consider the requirements

of the application and taking into account the physical and logical distribution of the devices

on the network edge.

30

The Cluster module of Akka make use of the Remoting module. This is no surprise, as the

idea of having a cluster is to group nodes that are on remote machines. The following is a

description of the configuration to have a basic cluster running with Akka.

The configuration file application.conf is where the application configuration is defined.

The configuration file uses the HOCON (Human-Optimized Config Object Notation) for-

mat. The format works similar to JSON, as it is a superset of it. All the Akka configuration

is defined under the top level key ñAkkaò. For enabling the cluster mode, the following

configuration is required:

For the configuration of the communication protocol and IP, the following configuration

options needs to be set:

The important part is the definition of the TCP protocol, where the hostname and port is

defined. If running the cluster locally, the hostname can be set to localhost. If running re-

motely the IP address of the machine should be used instead. The port is also defined. If set

to 0 a random port is assigned.

Another important part of the configuration is the definition of nodes for the cluster:

These variables can be referenced on other places of the configuration. For the application,

the cluster name, seed addresses and ports are defined. As mentioned before, this configu-

ration changes when used with remote nodes which will be explained later in more advanced

scenarios.

To illustrate how the communication can be done in a cluster two types of actors were de-

signed:

Frontend: These type of actors act as interface between the cluster and the outside, gather-

ing request for jobs and assigning these jobs to the Backend. The cluster application pro-

vides the service through these actors.

actor {

 provider = "cluster"

 }

remote {

 log-remote-lifecycle-events = off

 netty.tcp {

 hostname = "127.0.0.1"

 port = 0

 }

 }

clustering {

 cluster.name = ClusterSystem

 seed1-ip = "127.0.0.1"

 seed1-port = 2550

 seed2-ip = "127.0.0.1"

 seed2-port = 2560

}

31

Backend: These actors are the worker actors in the cluster. They perform some kind of

computation, based on the jobs received by the frontend. These actors are the ones that ac-

tually do the processing.

This simple application structure, shown in figure 13, has 2 Frontend actor systems, and 3

Backend actor systems. The frontend simulates receiving jobs with a scheduler that creates

a new job every second. As there are 2 frontend actor systems, there are 2 jobs created every

second.

Figure 13. Cluster using Frontend and Backend actors

The sequence of actions in the cluster proceed in the following manner:

1. Frontend receives a job to be done.

2. Frontend checks if there are backend nodes available to assign the job.

3. If no backend node is available, Frontend responds with a message that the service

is not available.

4. If there is a node available, Frontend delegates the job to an available backend node.

5. Backend node receives the job, process it, and returns the result

6. Frontend receives the result of the job

There are three types of messages on this application:

¶ JobMessage, which carries the job to be done.

¶ ResultMessage, message that carries the result of the computation

¶ FailedMessage, message that carries information about the failing computation

All the messages are grouped together in an interface called AppMessages. This is done in

order to have one specific place to look for the messages that are used in the application,

instead of having them dispersed on different classes. This kind of pattern is called ñMes-

saging Protocolò, and can be useful when dealing with complex scenarios with multiples

types of messages.

The main idea of the basic cluster is to have different actor systems and connect them to

form a cluster. The frontend nodes serve as a base to which other applications can be built

on top of it. For instance, in the case of a Raspberry Pi, a sensor can be installed on it, and

32

send the readings of this sensor to the Backend systems for processing and later, when re-

sults of the processing are received, act based on the results.

3.4.1 HTTP Management

Akka offers another module to manage the cluster through an HTTP API. This module is

useful to see the state of a cluster using a web browser. Among other things, the API allows

to:

¶ List all nodes on the cluster

¶ Join a node to the cluster

¶ Put down a node from the cluster

¶ See the state of a specific node

This module can be useful to develop web applications to query the state of a cluster using

the API. This would allow to have a bit of control of the cluster without using terminals or

having deep knowledge of the inner workings of the cluster. The HTTP management module

is used in this simple cluster application. It is started on one of the backend nodes that act

as a seed node of the cluster.

3.5 Cluster -aware routers with Docker

The previous setup was used to illustrate the basic configuration of an application using

Akka. The next step is to use Docker to run the application. A new concept is introduced in

this next version of the application: Cluster-aware routers.

With cluster-aware routers it is possible to deploy routees in other nodes of the cluster, as

shown in figure 14. This increases the availability and scalability of the application. There

are different ways of deploying the routees. For this application, a pool router actor is used,

so that it can handle itself the creation of its routees.

Figure 14. Cluster-aware routing with remote deployed routees

To explain how this application works a brief description of the components and their inner

workings are described.

