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Efficient Use of Pre-trained NMT Models Through Mixing and Match-
ing

Abstract: With an increasing amount of pre-trained language models and neural machine
translation (NMT) models becoming available, it is important to investigate how to use
them when training new models to avoid expensive training from scratch. This thesis
investigates how to effectively use pre-trained models, focusing on combining encoders
and decoders of different independent pre-trained NMT models as modules. This is not
directly possible since the intermediate representations of any two independent NMT
models are different and cannot be combined without modification. To get around
this, firstly, a dimension adapter is added if the encoder and decoder have different
embedding dimensionalities, and secondly, extra encoder layers are added after the
pre-trained encoder to align the intermediate representations. As a proof of concept,
this thesis looks at many-to-Estonian translation and combines a massively multilingual
encoder and a high-quality language-specific decoder. The results show significant
improvements in both translation quality and speed for many-to-one translation over the
baseline multilingual model. Furthermore, the ability to rapidly train a high-quality NMT
system is successfully demonstrated with Estonain-Ukrainian and Ukrainian-Estonian
translation, achieving competitive results compared to previous works. More broadly,
the thesis demonstrates that sentence representations of two independent NMT models
can be made compatible without changing the pre-trained components while keeping
translation quality from deteriorating.
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natural language processing, neural machine translation, machine translation, multilin-
gual machine translation, artificial neural networks

CERCS: P176, Artificial intelligence

2



Eeltreenitud neuromasintõlke mudelite efektiivne kasutamine
Lühikokkuvõte:

Kuna järjest enam eeltreenitud keelemudeleid ja neuromasintõlke (NMT) mudeleid on
vabalt kättesaadavad, on oluline uurida, kuidas neid kasutada uute mudelite treenimisel,
et vältida ressursimahukat nullist treenimist. Käesolev töö uurib, kuidas eeltreenitud
mudeleid tõhusalt kasutada, keskendudes erinevate eeltreenitud NMT mudelite kompo-
nentide kombineerimisele. Erinevate mudelite komponente pole otseselt ilma muutmata
võimalik kombineerida, kuna kahe sõltumatu NMT mudeli lausete vektoresitused ei ole
ühilduvad. Töös pakutakse välja meetod, kus esmalt lisatakse eeltreenitud kodeerijale
mõõtme adapter, kui kodeerija ja dekodeerija omavad erinevaid vektoresituse mõõtmeid,
ning seejärel täiendavaid kodeerijakihte. Meetodi demonstreerimiseks kombineeritakse
202 keelt toetava mitmekeelse NMT mudeli kodeerija ja eesti keele spetsiifilise NMT
mudeli dekodeerija ning vaadeldakse tõlget eesti keelde. Tulemused näitavad olulist võitu
nii tõlkekvaliteedis kui -kiiruses võrreldes mitmekeelse baasmudeliga. Lisaks demonst-
reeritakse edukalt võimekust treenida kiiresti kvaliteetne NMT süsteem eesti-ukraina
ja ukraina-eesti tõlke jaoks, saavutades konkurentsivõimelisi tulemusi võrreldes varase-
mate töödega. Üldisemalt näitab lõputöö, et kahe sõltumatu NMT mudeli komponendid
saab muuta ühilduvaks, sealjuures muutmata eeltreenitud parameetreid ja ohverdamata
tõlkekvaliteeti.

Võtmesõnad:
loomuliku keele töötlus, neuromasintõlge, masintõlge, mitmekeelne masintõlge, tehisnär-
vivõrgud

CERCS: P176, Tehisintellekt
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1 Introduction
The field of natural language processing (NLP) has witnessed a significant transformation
in recent years and has seen an increase in the availability of pre-trained neural machine
translation (NMT) models and language models (LMs), which are increasingly large and
trained on vast amounts of data. Instead of starting from scratch every time a new and
improved system needs to be trained, it makes sense to leverage pre-trained components,
both from an economic and environmental perspective.

Previous research has investigated efficient fine-tuning of NMT models (Bapna and
Firat, 2019; Philip et al., 2020) and making use of language models in training NMT
models (Zhu et al., 2020; Rothe, Narayan, and Severyn, 2020; Chen et al., 2021; Sun,
Wang, and Li, 2021; Chen et al., 2022). This thesis proposes and investigates combining
components of pre-trained NMT models to efficiently create new NMT models which
improve on the previous models by adding new directions, offering better translation
quality and speed. In the process, this work also explores how to align the intermediate
representations of two independent NMT models so that the sentence representations
outputted by the encoder of one model can be decoded by the decoder of another. We
mainly look at the case of combining a massively multilingual model’s encoder with
a language-specific decoder to achieve fast and high-quality machine translation. We
hypothesize that the translation quality can be increased since we add a language-specific
decoder to a massively multilingual model, which likely suffers from capacity bottleneck
as shown to be the case for universal models by previous research (Johnson et al., 2017;
Tan et al., 2019; Arivazhagan et al., 2019). Achieving high-quality translation to one
language likely requires fewer parameters than in the multilingual case, and thus, we can
decrease the total size of the model. We also demonstrate that aligning the representations
with data from a few languages can transfer to a much larger set of languages that are
unseen by the original decoder and also not in the current training set.

In order to combine an encoder from one NMT model and a decoder from another,
there are two obstacles that have to be solved. Firstly, the incompatible representational
spaces of the two models need to be aligned, and secondly, the models could have
different embedding dimensionalities, which would have to be transformed as well. The
approach proposed in this thesis solves both of these issues. The proposed architecture, as
illustrated in Figure 1, involves the incorporation of a dimension adapter – a feed-forward
layer (linear transformation) – which serves the purpose of converting the dimensionality
of the encoder if it differs from that of the decoder. Moreover, we incorporate randomly
initialized transformer layers to convert the pre-trained encoder’s representation to a
representation understandable to the decoder. We freeze the parameters of the original
pre-trained models so they remain unchanged, however we also investigate the possibility
of unfreezing the original modules to enable further improvements.

To demonstrate our approach, we combine the encoder NLLB (NLLB Team et
al., 2022), a massively multilingual NMT model, and the language-specific decoder
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Figure 1. The proposed architecture. Dimension adapter denotes a component that takes
input with the dimensionality of model A output and outputs with the dimensionality of
model B (for example, a feed-forward layer). Adapter layers are transformer encoder
layers. Components from models A and B have frozen parameters.

of MTee (Tättar et al., 2022), an Estonian-centric model covering 4 languages. We
focus on improving many-to-Estonian translation directions and demonstrate significant
improvements in that regard. The model is more efficient to train than full fine-tuning
and also reduces the number of parameters by 40% compared to the NLLB model. This
also means reduced running costs of the model in the long term compared to NLLB.

To further show the effectiveness of this approach, we demonstrate it in a real-life
scenario – Ukrainian-to-Estonian translation. With the increase of Ukrainian refugees
in Estonia, the Ukrainian-Estonian translation direction has become more important.
There is, however, a relatively limited amount of Ukrainian-Estonian parallel data.
We demonstrate that with our approach, we can produce a high-quality, competitive
Ukrainian-Estonian translation system using pre-trained models with only a few hours of
training and no Ukrainian-Estonian data required.

We also explored training the decoder from scratch instead of initializing from a pre-
trained model and found that this is also a viable approach to creating a new decoder. We
demonstrated it by training a Ukrainian decoder for NLLB, which showed competitive
translation quality. Since we do not train the parameters of the NLLB encoder, the
Estonian and Ukrainian decoders can be combined into a single system without needing
multiple large encoders/decoders, making it scalable and simple to deploy.

This thesis provides a comprehensive comparison of the proposed methods to other
methods such as pivoting and full fine-tuning. Since most of the available high-quality
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training data is for English, the resulting systems usually have higher translation quality
for English directions. With this in mind, we also evaluate the translation quality with
pivoting through English – for example when translating from German to Estonian, we
first translate from German to English and then from English to Estonian. We evaluate
the scenario with translations to English being created with NLLB and the translation
from English to Estonian being created with MTee. For comparison, we also explore a
scenario with both translations being produced with NLLB. We confirm that pivoting
is a competitive approach, which improves on the baseline NLLB model. However, a
major downside of pivoting is its increased translation time since two translations must
be produced for one sentence.

The main contributions of this work are the following:

• a novel method to combine components of pre-trained NMT models,

• successful demonstration of the proposed method for many-to-Estonian and many-
to-Ukrainian translation,

• a detailed investigation of the proposed methods with comparison to other widely
used approaches and previous research,

• an open-source implementation (see Section 4.5).

This thesis is organized into 7 sections including the Introduction (Section 1). Back-
ground (Section 2) provides an overview of the core theoretical concepts of NMT model
development. Related Works (Section 3) gives an overview of NMT approaches and
related works. Approach (Section 4) describes the proposed methods, experiment setup
and evaluation. Results (Section 5) reports and analyses the results of this thesis. Discus-
sion (Section 6) provides further discussion relating to the results and future research.
Conclusion (Section 7) gives a final overview of the thesis’ findings and contributions.

8



2 Background

2.1 Transformers
Machine translation is a sequence-to-sequence task usually tackled using encoder-decoder
architectures. After being proposed by Vaswani et al., 2017, the Transformer architecture
(shown in Figure 2) has become the most widely used architecture in neural machine
translation, providing state-of-the-art results over the previously used models.

Figure 2. The Transformer architecture (Vaswani et al., 2017).

Vaswani et al., 2017 achieve performance improvements by omitting recurrence and
convolutions, commonly used in previous architectures, and instead using only attention
mechanisms, implemented as scaled dot-product attention. The authors use two types of
attention: self-attention and cross-attention (encoder-decoder attention). Self-attention is
present in both the encoder and the decoder, allowing all the positions in the sequence
to attend to each other. Cross-attention is present in the decoder, allowing the decoder
to attend to the encoder output. The authors also add positional embeddings to encoder
and decoder inputs so the transformer has the information on the order of tokens in the
sequence.

A major benefit of the transformer architecture over recurrent neural networks (RNN-
s) is its parallelizability: it has a constant number of sequential operations as opposed to
RNN-s linear operations in relation to the sequence length (Vaswani et al., 2017). The
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authors also noted that, in sequence modeling tasks such as machine translation, the
transformer is desirable because of its ability to model long-term dependencies since
it offers O(1) path length between any two dependencies in the sequence. Vaswani
et al., 2017 note that one limitation of the transformer is the limited sequence length
caused by the quadratic attention complexity in relation to it, making the self-attention
more efficient than recurrence only when the sentence length is smaller than the model
dimensionality. There are, however, approaches that try to alleviate this issue, such as
Dai et al., 2020 and Beltagy, Peters, and Cohan, 2020.

In machine translation, the transformer is usually applied in an auto-regressive
manner. The source sentence is processed with the encoder and inputted to the decoder
via cross-attention. The decoder then generates the output position by position, using the
sequence generated so far as the input (in addition to the encoder output). In other words,
a decoder position receives the output at the previous position as an input. Usually, a
decoding algorithm is applied to obtain quality output sequences, with one of the most
commonly used algorithms being beam search.

Originally, the Transformer was demonstrated on the machine translation task and
constituency parsing with an encoder-decoder architecture (Vaswani et al., 2017); how-
ever, it has also been applied with encoder-only or decoder-only architectures. For
example, BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) are encoder-only
language models and GPT-like models, for example, GPT-2 (Radford et al., 2019), and
ChatGPT are decoder-only. The Transformer architecture has been applied to other
tasks as well, for example, it has been successfully applied in computer vision tasks
(Dosovitskiy et al., 2021).

2.2 Byte-pair Encoding
Neural machine translation models typically have a finite vocabulary of tokens they can
process. Real-world texts rarely have a finite vocabulary of words, raising the need to
split the text into tokens. One possible way would be to split the text into individual
characters. While being a simple and language-independent solution, this would make the
number of tokens in the sequence relatively large, increasing computational costs. Using
the most frequent words as a vocabulary has even more issues since we would encounter
many rare words that the model has not seen. The vocabulary would also grow very large,
which would be computationally ineffective. For example, Estonian is a morphologically
rich language, where suffixes would be used instead of prepositions like in English, for
example, "raamatusse" ("into a book") and "raamatust" ("from a book"). This would
create many variations of the same word root "raamat" ("book"). Another difficult case
would be compound words, for example, "Donaudampfschifffahrtsgesellschaftskapitän"
in German (translates to "Danube steamship company captain"), which is a very rarely
used word and not likely to come up in training data; however, the components of that
word would likely be common enough for the model to learn to translate it successfully
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if given them separately. This demonstrates the need for subword segmentation in NMT.
A successful subword segmentation approach was proposed by Sennrich, Haddow,

and Birch, 2016, who used the Byte-Pair encoding compression algorithm (Gage, 1994)
to learn the segmentation model from the training data. The main idea of the algorithm is
that the text is split into characters as subwords and iteratively combined according to the
frequency in the training data until the desired vocabulary size is reached. The approach
proposed by Sennrich, Haddow, and Birch, 2016 is also language-agnostic and can be
learned from the data in an unsupervised manner without requiring any knowledge about
the language.

2.3 Translation Quality Metrics
Evaluating machine translation models’ translation quality is a crucial step in the develop-
ment process. While human evaluators would provide the most high-quality insight into
the model’s performance, it is too labor-intensive and expensive to use in the day-to-day
development process. This has led to many automatic metrics being used in NMT model
development.

2.3.1 BLEU

One of the most well-known automatic machine translation evaluation metrics is BLEU,
which relies on word n-gram overlap between the candidate and the reference (Papineni
et al., 2001). To evaluate a translation it calculates word n-gram precision – the count
of n-grams occurring in reference translation divided by total n-grams in the candidate.
To penalize too long translations, Papineni et al., 2001 clip the count of each n-gram in
the translation by the maximal count in reference. They note that too short translations
should also be avoided and thus introduce a corpus-level brevity penalty that penalizes
translations that are shorter than the references. They demonstrate that BLEU highly
correlates with human evaluations, is language-independent and fast to compute, making
it a useful metric for automatic MT evaluation. Typically the n-grams from unigrams to
4-grams are used for calculating BLEU, and the metric values are scaled to range from 0
to 100.

BLEU also has many downsides. For example, since BLEU uses word n-gram
precision, it fails to consider synonyms and different variations of the same base word. It
is also dependent on how the text is tokenized into words. The correlation of BLEU to
human judgments is also lower than other more recent evaluation methods (Freitag et al.,
2022).
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2.3.2 chrF

Character n-gram F-score (chrF), similarly to BLEU, is also a candidate-reference overlap
based automatic MT evaluation metric, however, instead of word n-gram precision, it uses
character n-gram F-score (Popović, 2015). The authors demonstrated that it outperforms
BLEU in human correlation, especially for morphologically rich languages, while having
the desirable features of BLEU, such as being language-independent and fast to compute
(Popović, 2015; Popović, 2016). chrF’s correlation to human evaluations was even
further improved by combining it with word n-gram F-score (wordF), yielding chrF+
(up to 6-gram chrF, unigram wordF) and chrF++ (up to 6-gram chrF, bigram wordF)
(Popović, 2017). Due to its language independence and relatively high correlation to
human judgments, chrF++ is used in this thesis instead of BLEU.

2.3.3 Neural Network Based Metrics

There also exist transformer encoder based metrics such as COMET (Rei et al., 2020)
and BLEURT (Sellam, Das, and Parikh, 2020). Recently, Kocmi and Federmann, 2023
proposed a GPT-based metric GEMBA, which uses zero-shot prompting with no training
or training data required. They have been shown to offer a higher correlation with human
evaluation than BLEU and chrF (Freitag et al., 2022). The downsides of these metrics are
that they require more resources to compute and need trained data (or a pre-trained model
trained with the training data) to support a language, which might not be possible or yield
subpar results for low-resource languages. For example, none of the aforementioned
metrics support all the languages used in evaluating models in this thesis.
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3 Related Works

3.1 Multilingual Neural Machine Translation
Using a system of single models (one model per translation direction) has been a standard
implementation for multilingual NMT. However, this provides no transfer-learning,
meaning that low-resource languages will end up with low translation quality, and zero-
shot translation is outright impossible. We also face the issue of quadratically growing
number of models in relation to the number of languages, should we require to translate
in all directions. An alternative would be pivoting, where we translate through a language
that has enough resources with the translated languages to achieve higher translation
quality for low-resource directions and make zero-shot translation possible (Habash and
Hu, 2009). However, pivoting is slower than using a single model directly since the
sentences are translated through multiple models. There is also a possibility of errors
being propagated more and information being lost.

A more recent widely used approach for multilingual NMT would be using Universal
models, where instead of having a separate model for each language pair, we would
have a single universal model to handle all directions (Johnson et al., 2017). A target
language token is added to the encoder or the decoder input to indicate which language
the model should translate into. This has enabled the successful development of massively
multilingual NMT models (Aharoni, Johnson, and Firat, 2019; Arivazhagan et al., 2019;
Zhang et al., 2020). With the universal model, the low-resource and zero-shot directions
benefit greatly from transfer learning. The universal model is also more scalable for
many-to-many translation than a system of single models (Dabre, Chu, and Kunchukuttan,
2020). Unfortunately, universal models often suffer from the negative transfer, with high-
resource languages having lower translation quality (outperformed by single models)
because the model has to share capacity between all the different directions, also known
as a capacity bottleneck (Johnson et al., 2017; Tan et al., 2019; Arivazhagan et al., 2019).

Adding sparsity to the models is a way to achieve the best of both worlds regarding
adequate transfer learning and providing enough capacity for high-resource directions.
Escolano, Costa-jussà, and Fonollosa, 2019 and Escolano et al., 2021 proposed a simple
and effective approach to creating modular models with language-specific encoders
and decoders, which are jointly trained. They demonstrated that the modular model
outperforms the universal model and is extendable by adding new encoder-decoder
modules. Lyu et al., 2020 further demonstrated the feasibility of the modular model from
the industry’s standpoint.

There can also be models with partially shared parameters. For example, some
parameters can be shared universally, while others are language-specific. Liao et al., 2021
demonstrate that the zero-shot capabilities of a model with language-specific encoders
and decoders can be improved by sharing some layers universally. The largest models
of the M2M-100 series also use sparsity this way - the top layers of the decoder are
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language-group-specific or language-specific, while the rest of the model is universal
(Fan et al., 2020).

The sparsity could also be added inside transformer layer components (sub-layer
level). One such example would be adapters. Bapna and Firat, 2019 propose using the
adapter, which consists of layer normalization, down-projection (feed-forward layer),
up-projection, and a residual connection and is added to the end of each transformer
layer. They demonstrated the usefulness of adapters for massively multilingual NMT by
pre-training a universal NMT model and training translation direction-specific (bilingual)
adapters with the rest of the parameters frozen. The authors achieve translation quality
on par with single models for high-resource languages while having a more parameter-
efficient model and zero-shot capabilities of the universal model. Philip et al., 2020
propose and demonstrate the effectiveness of language-specific (monolingual) adapters.
Zhang et al., 2021 add conditional language-specific routing (CLSR) layers/adapters
after transformer sublayers. CLSR adapters learn to route each token to either language-
specific or shared feed-forward neural network conditioned on the token representation
(Zhang et al., 2021).

A prominent direction in creating massively multilingual models is incorporating
sparsely-gated mixture-of-experts (MoE) layers (Shazeer et al., 2017), which were
applied to transformer architecture by Lepikhin et al., 2020 so that tokens get routed to
different feed-forward neural networks (FFNs) instead of a single FFN being used for all
tokens (vanilla transformer). The Switch transformer (Fedus, Zoph, and Shazeer, 2021)
scaled the transformer up to a trillion parameters by using MoE sub-layers with every
token routed to a single expert. The largest NLLB NMT model uses Mixture-of-Experts
for scaling the model to 56 Billion parameters (NLLB Team et al., 2022). Gong, Li, and
Genzel, 2021 propose a sparse NMT model which selects layers, attention heads, and
FFN parameters conditioned on input languages.

3.2 Making Use of Pre-trained Language Models
With many pre-trained language models becoming openly available, research into using
pre-trained language models as starting points for NMT model training has become
increasingly important. Using pre-trained models can be beneficial to achieve higher
translation quality and use fewer computational resources.

One approach to using pre-trained models is pre-training encoder-decoder models
on sequence-to-sequence (seq2seq) tasks and then fine-tuning on machine translation.
MASS is a pre-trained seq2seq model, which was trained on masked sentence fragment
reconstruction task and was shown to improve several downstream tasks (including
machine translation) when fine-tuned (Song et al., 2019). Liu et al., 2020 propose
mBART - a seq2seq denoising autoencoder model trained on BART task in 25 languages.
They show that initializing from mBART for machine translation fine-tuning improves
translation quality and provides transfer learning for zero-shot directions.
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The other approach would be taking existing encoder-only pre-trained language
models and/or decoder-only language models and using them for initializing NMT
model parameters. Zhu et al., 2020 incorporate BERT (Devlin et al., 2019) sentence
representations via the attention mechanism of the NMT model’s encoder and decoder.
Rothe, Narayan, and Severyn, 2020 use BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and GPT-2 (Radford et al., 2019) for initializing NMT model parameters.
SixT (Chen et al., 2021) and SixT+ (Chen et al., 2022) use XLM-RoBERTa (Conneau
et al., 2019) to initialize the encoder of an NMT model. They conduct the training in
two stages: first, training the randomly initialized decoder and then training the whole
model. Sun, Wang, and Li, 2021 propose Graformer, which is constructed by initializing
the encoder from a BERT-like model and the decoder from a GPT-like model and adding
extra transformer layers to both the encoder and decoder to connect them.

DeltaLM combines the two aforementioned approaches by initializing a seq2seq
encoder-decoder model from InfoXLM (Chi et al., 2021), which is an encoder-only
language model, and pre-training on span corruption and translation span corruption
tasks (Ma et al., 2021). The authors fine-tuned DeltaLM on machine translation and
found that it outperforms strong baselines such as the M2M-100 model. The translation
system trained from DeltaLM also achieved the highest ranking in WMT21 machine
translation shared task (Yang et al., 2021).

3.3 Pre-trained NMT models
There are many pre-trained NMT models already openly available for use. OpusMT
provides over 1000 NMT models, most of which are bilingual, but some also multilingual
(Tiedemann and Thottingal, 2020). Rothe, Narayan, and Severyn, 2020 published NMT
models which were initialized from BERT and trained on the NMT task. M2M-100 is
a series of NMT models (varying in size) which were trained on 7.5B sentence pairs
and support translation between 100 languages (Fan et al., 2020). The NLLB-200 NMT
model further improves it and extends support to 200 languages with a training dataset of
18B sentence pairs (NLLB Team et al., 2022). Both M2M-100 and NLLB-200 are strong
baselines in NMT research regarding translation quality. MetaAI has also made their
WMT shared news/general translation task NMT models public (Ng et al., 2019; Chen
et al., 2020; Tran et al., 2021). MTee provides an Estonian-centric (Estonian to/from
English, German, Russian) NMT model with language-specific encoders-decoders (Tättar
et al., 2022).
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4 Approach

4.1 Architecture and Models
Our proposed approach enables the combination of any two pre-trained transformer-
based NMT model’s encoder and decoder without modification. Furthermore, it also
allows language models using the transformer encoder architecture to be used as the
NMT model’s encoder.

To achieve this, we add randomly initialized transformer layers, which we refer to
as adapter layers, to the end of the encoder. This allows us to align the encoder and
decoder representational space without changing the pre-trained modules by keeping
them frozen and only training the added layers. If the encoder’s dimensionality differs
from the decoder’s dimensionality, we add a dimensionality adapter, either before, after,
or in-between the adapter layers. The dimensionality adapter is defined as a simple
feed-forward linear transformation with learnable parameters W and b:

DimAdapt(x) = Wx+ b

W ∈ Rd2×d1 , b ∈ Rd2

Layers before the dimensionality adapter will have the pre-trained encoder’s di-
mensionality (d1), while the layers following the dimensionality adapter will have the
pre-trained decoder’s dimensionality (d2).

We add extra layers to the encoder and not decoder to avoid increasing the decoder
size and achieve higher computational efficiency in inference with beam search since the
encoder representation will be computed once. In contrast, the decoder representation
will be computed multiple times depending on the beam size.

Inspired by Chen et al., 2021 and Chen et al., 2022, we also use 2-stage training,
where we first train with pre-trained parameters frozen and then continue training with
some or all of them unfrozen. In most cases, we unfreeze only the decoder since it is
computationally less expensive to train than the encoder in our experiments. We also
experiment with 1-stage training, where we only train the randomly initialized parameters
and leave pre-trained parameters frozen.

In the main experiments, we use the NLLB-1B-distilled model. Unless otherwise men-
tioned, NLLB or NLLB-1B refers to NLLB-1B-distilled. NLLB-1B has 1.3B parameters
with 24/24 layers in encoder/decoder, 1024 embed dim., 8192 feed-forward dim., and 16
attention heads. We also use NLLB-600M-distilled in Section 5.5.4. For comparison, we
also report NLLB MoE 54B parameter model results from NLLB Team et al., 2022 but
do not use it in our models because of its large size. We also use XLM-RoBERTa-large
(Conneau et al., 2019) (355M parameters) to demonstrate that our method works with
encoder-based language models.
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For the pre-trained decoder, we use the Estonian decoder from MTee (Tättar et al.,
2022). MTee has 227M parameters, however, it has language-specific encoders and
decoders following the transformer-base architecture (6/6 layers encoder/decoder, 512
embed dim., 2048 feed-forward dim., 16 attention heads), so translating in one direction
uses 57M parameters.

We add a dimension adapter followed by two adapter layers to the base pre-trained
encoder in the main experiments.

We also experiment with using a randomly initialized decoder with an NMT pre-
trained encoder and apply the same approach with adapters to use a narrower (smaller
dimensionality) and deeper (larger number of layers) decoder instead a wider and shal-
lower one with the same number of parameters following the encoder dimensionality.

4.2 Dataset
The training dataset for the main experiments is created from the CCMatrix corpus
(Schwenk et al., 2019). We use English-Estonian, German-Estonian, French-Estonian,
and Polish-Estonian directions (see dataset sizes in Table 1). We additionally have
experiments where we investigate many-to-Ukrainian translation. The training set for
those experiments is composed of CCMatrix Estonian-Ukrainian and English-Ukrainian
data.

Table 1. Main many-to-Estonian and many-to-Ukrainian parallel dataset compositions in
the number of sentence pairs (CCMatrix).

Target
Source

ET EN DE FR PL

ET - 22.0M 12.5M 11.8M 7.0M

UK 2.0M 20.0M - - -

We use FLORES-200 dev-test as our test set and dev as the validation set. We trust
that NLLB training set did not contain examples from FLORES-200 dev-test and dev,
since they were used for evaluation. Furthermore, we also confirm that MTee training
dataset did not contain these evaluation sets. The translations are evaluated for all 201
FLORES-200 directions with Estonian as the target (many-to-Estonian translation).

In Section 5.5.4, we use Europarl (Tiedemann, 2012) English-Estonian, German-
Estonian, French-Estonian, Polish-Estonian, Latvian-Estonian, and Finnish-Estonian
directions with the dataset composition reported in Table 2

Appendix II. Table 17 provides the language codes used when abbreviating language
names in this thesis.
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Table 2. Additional ablation dataset composition in the number of sentence pairs (Eu-
roparl).

Target
Source

EN DE FR PL FI LV

ET 651236 578248 630126 639046 620939 637468

4.3 Data Preprocessing
The training data is filtered for validation and test set overlaps. We use SentencePiece
(SP) BPE (Kudo and Richardson, 2018) segmentation models from the respective pre-
trained models. For example, if NLLB is used as an encoder, we preprocess the source
sentences with the NLLB SP model, if MTee is used as a decoder we preprocess the target
sentences with the MTee SP model. If MTee vocabulary and SentencePiece models are
used, we also use the MTee normalization script. An example of the data pre-processing
workflow is illustrated by Table 3.

Table 3. Example of data pre-processing workflow: first, the punctuations get normalized,
then the normalized text is encoded with SentencePiece (SP). Here we display the
whitespace escape symbol SentencePiece uses as an underscore, while it actually uses
the Unicode symbol U+2581.

ORIGINAL Neid platoosid nimetatakse sageli „viddedeks”.
NORMALIZED Neid platoosid nimetatakse sageli "viddedeks".
SP ENCODED _Neid _pla toos id _nimetatakse _sageli _" vid ded eks " .

4.4 Evaluation
chrF++1 (Popović, 2017) is used as the primary metric for translation quality, however,
chrF2 (Popović, 2015) is also reported in some cases for comparison with previous
works. The metric values are calculated using the standard SacreBLEU (Post, 2018)
implementation for both of the metrics.

COMET scores (Rei et al., 2020) are also provided for a selection of languages in
Section 5.1. Specifically, Unbabel/wmt22-comet-da model is used (Rei et al., 2022).

The main training experiments are repeated for 5 random seeds and we report
confidence intervals (p = 0.01, using Student’s t-distribution) for the metrics.

1sacreBLEU signature: nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:no|version:2.3.1
2sacreBLEU signature: nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1
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Additionally, a modified version of the Win Ratio (WR) is calculated. Win-ratio,
as applied to NMT evaluation by Zhang et al., 2020, measures for what proportion of
the translation directions a proposed solution outperforms the baseline in terms of a
translation quality metric. We incorporate significance testing into the metric and propose
the Win Ratio with Significance (WRS), where we report the percentage of directions
that the baseline is outperformed with significance (p = 0.01, one-sample t-test based on
5 seeds). Additionally, we provide WRS based on Paired Bootstrap Resampling t-test
(Koehn, 2004) at p = 0.01, calculated for a single seed. For the main experiments, we
also report the Win ratio over all models (WR/all), which shows on what percentage
of directions the model achieves the highest score over all models. WR/all is used for
additional insight and it does not necessarily mean that a given model is significantly
better than others.

All translations are acquired using beam search decoding with a beam size of 4. We
use the best checkpoint according to validation loss for final evaluations.

4.5 Training
Fairseq (Ott et al., 2019) is used for implementing the training and models. The model
implementation, along with usage instructions, is made public on GitHub3.

The models are trained for a total of 100k updates with a learning rate of 0.0005. If
2-stage training is used, the first will be with a learning rate of 0.0005 for 50k updates and
the second will be with 0.0001 for 50k updates. Mixed precision (fp16) is used during
training and inference. Inverse square root learning rate scheduler with 4000 warm-up
steps is used in all experiments, including 2-stage. Dropout and attention dropout of 0.1
are used. Adam (Kingma and Ba, 2015) optimizer is used.

The models were trained on 8 GPUs with a batch size of 4096 tokens per GPU (32768
tokens in total). For the main experiments, 4 AMD Instinct MI250X 128GB HBM2e
GPUs (acting as 8 GPUs) on LUMI supercomputer were used. Additional training
(Many-to-Ukrainian experiments) and evaluation was done using at the University of
Tartu HPC Center (University of Tartu, 2018) using NVIDIA Tesla V100-32GB and
NVIDIA A100-40GB GPUs. Gradient accumulation is applied to keep the batch size
consistent between experiments when less than 8 GPUs are used.

4.6 Writing
Grammarly4 is used to improve the grammatical correctness and readability of this thesis.
ChatGPT5 is also used for improving the readability of the written text in some cases. The

3https://github.com/TartuNLP/mix-and-match-nmt
4https://www.grammarly.com/
5ChatGPT is a large language model based chatbot created by OpenAI and accessible through

https://chat.openai.com/.
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following prompt is used "Improve the readability of the following text: <input text>",
where <input text> is the text written by the author (usually a paragraph). The output
might then be used to edit the author’s text to improve its readability.
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5 Results

5.1 Main Results

Table 4. Many-to-Estonian translation average chrF++ scores. For experiments involving
model training, the average of 5 random seeds are reported with confidence intervals
(p = 0.01). Average chrF++ and WR/all is reported for all directions and official EU
languages separately. WR/all (Win ration over all) reports what percentage of directions
achieve the maximal score over all models. WRS (Win ratio with significance, p = 0.01)
reports what percentage of directions outperform the baseline with both significance
based on t-test on 5 seeds and significance based on paired bootstrap resampling t-test
(PBR). † - Scores reported by NLLB Team et al., 2022.

Model
average chrF++ ↑ WR/all ↑ WRS ↑

full EU full EU t-test PBR

(1) NLLB-1B 40.2 46.7 0.0 0.0 - -
(2) NLLB-MoE† 43.0 49.6 22.9 4.3 - 99.5

Pivot, m2en: NLLB-1B
(3) en2et NLLB-1B 41.4 47.5 0.0 0.0 - 84.6
(4) en2et: MTee 43.4 50.2 44.3 13.0 - 100.0

Fine-tune NLLB-1B
(5) - 42.5 ± 0.1 50.1 ± 0.3 3.5 0.0 91.0 86.6
(6) freeze enc 43.0 ± 0.1 50.3 ± 0.2 6.5 0.0 98.0 98.5

Ours: NLLB-1B enc +
(7) rand dec 42.6 ± 0.3 50.2 ± 0.3 0.0 0.0 93.5 97.5
(8) MTee dec 42.5 ± 0.1 50.4 ± 0.1 0.0 0.0 92.0 89.1
(9) MTee dec, 2-stage 43.1 ± 0.1 50.9 ± 0.1 26.4 87.0 93.0 96.5

The main results are reported in Table 4 with the number of parameters and training
times of the models being reported in Table 5. NLLB-1B-distilled (referred to as NLLB-
1B) is used as a baseline. Additionally, results of the largest publicly available NLLB
model (NLLB-MoE) with 54.5B parameters reported by (NLLB Team et al., 2022) are
used for comparison. The table lists average chrF++ scores over all many-to-Estonian
translation directions and all official EU languages6. The EU language averages are

6Bulgarian, Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, German, Greek,
Hungarian, Irish, Italian, Latvian, Lithuanian, Maltese, Polish, Portuguese, Romanian, Slovak, Slovenian,
Spanish, and Swedish
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reported to highlight the translation quality for languages more closely related to Estonian
and also more frequently translated from. We analyze the quantitative results of pivoting,
fine-tuning, and our mixing and matching approach of combining the encoder and the
decoder of different pre-trained models.

Table 5. Parameters and training times of many-to-Estonian translation models reported
in Table 4. For 2-stage training, we report the parameters of both stages delimited by
/. For pivoting, the number of parameters takes into account two passes through the
translation model(s).

Model
Parameters Train. time

train total (hrs.)

(1) NLLB-1B - 1.37B -
(2) NLLB-MoE - 54.5B -

Pivot, m2en: NLLB-1B
(3) en2et NLLB-1B - 2.74B -
(4) en2et: MTee - 1.45B -

Fine-tune NLLB-1B
(5) - 1.37B 1.37B 22.3
(6) freeze enc 604M 1.37B 15.0

Ours: NLLB-1B enc +
(7) rand dec 51M 817M 4.4
(8) MTee dec 13M 817M 3.9
(9) MTee dec, 2-stage 13M/51M 817M 4.1

5.1.1 Pivoting

Pivoting is one of the simplest approaches to extending models with new translation
directions. Since English is often the most abundant language in training sets, we use
it as a pivot language. First, we pivot through English with only the NLLB-1B model,
meaning that we first translate to English and then from English to Estonian with the
same model. Even though NLLB was trained multilingually and with data balanced
to represent non-English languages, translating through English provides better results
than directly translating between two languages. NLLB-1B English pivoting for many-
to-Estonian translation results in an average 1.2 chrF++ point improvement across all
directions, as reported in Table 4 (3). It significantly outperforms the baseline NLLB-1B
model on 84.6% of directions according to the PBR t-test. Additionally, when NLLB-1B
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is used to translate to English and MTee is used for English to Estonian translation ((4) in
Table 4), the translation quality is improved by 3.2 chrF++ points compared to the baseline
(1), achieving a chrF++ score comparable to the largest NLLB model, which utilizes
significantly more parameters. This approach significantly outperforms the baseline on
all translation directions, according to the PBR t-test. These results demonstrate that
pivoting can enhance translation quality without additional training. However, pivoting
requires passing through two models, which increases the time required for translation
and reduces long-term cost efficiency.

5.1.2 Fine-tuning

Fine-tuning is most commonly applied for adapting pre-trained models to a given transla-
tion direction. In our research, we experimented with two different fine-tuning strategies:
full fine-tuning (5) and fine-tuning only the decoder of the baseline NLLB model with the
encoder frozen (6). We found that both approaches lead to significant improvements over
the baseline: 2.3 and 2.8 chrF++ points, respectively. However, the fine-tuning method
that involved a frozen encoder was faster to train and yielded a higher chrF++ score on
average. Moreover, this method exhibited superior performance compared to the baseline
across more language pairs, as confirmed by the t-test WRS scores: 98.0% for the frozen
encoder method vs. 91.0% for full fine-tuning. Overall, the findings suggest that the
fine-tuning technique with a frozen encoder could effectively and efficiently improve
pre-trained NMT models.

5.1.3 Mixing and Matching

We look at combining the NLLB-1B encoder and MTee decoder with adapter layers. It
can be observed that the NLLB enc + MTee dec model (8), which only trains the adapter
(13M parameters) and freezes the pre-trained components, outperforms the baseline in
92.0% of the directions with p = 0.01 according to the t-test (89.1% according to PBR),
with an average improvement of 2.3 chrF++ points. Among the trained models, the
two-stage training approach (9) – training the adapter first (13M parameters), followed by
training the adapter with the decoder (51M parameters) – achieved the best results. This
method outperforms the baseline by 2.9 chrF++ points on average across all directions
and achieves similar average chrF++ scores to the 54B parameter NLLB model. It is
only slightly behind the best-performing pivoting model in terms of average chrF++
scores. Additionally, we observed that the two-stage training approach significantly
(with p = 0.01) outperforms the baseline on 93% of the language pairs according to
the t-test (96.5% according to the PBR). However, the fine-tuning method with a frozen
encoder showed significant improvements over the baseline in 5% more directions than
our approach, indicating room for further improvement. It also achieves the highest score
on 26.4% of language pairs compared to all the other models without taking significance
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into account (WR/all).
We also evaluated a decoder that was randomly initialized with the same architecture

(including vocabulary and input/output embeddings) as MTee (experiment (7)), and
trained it in a single stage with a frozen encoder, only training the adapter and decoder.
It outperformed the baseline by 2.4 chrF++ points on average. We observed that this
method performs similarly to the initialized model with no decoder training. Although
it is still slightly outperformed by the two-stage model with the pre-initialized decoder
in terms of the average chrF++ score, it can be useful when a high-quality pre-trained
model for the decoder is not available.

When we look at the EU languages, our best model achieves the highest scores for
87.0% of these languages. For EU languages, NLLB-enc+MTee-dec, 2-stage (9) achieves
the highest average chrF++ score and outperforms the baseline by 4.2 chrF++ points.
This shows that our method achieves the best result for more closely related languages,
whereas for more distant languages, the pivoting approach of combining two models
was better. This could be because our training data was composed of EU languages.
Furthermore, the pre-trained decoder was also trained on two EU languages and Russian,
which could contribute to the high performance on EU languages.

Table 6. Many-to-Estonian translation chrF++ scores for selected directions. Confidence
intervals are based on 5 random seeds. † - Scores reported by NLLB Team et al. (2022).
Language abbreviations following NLLB Team et al. (2022).

Model eng_Latn deu_Latn rus_Cyrl zho_Hans arb_Arab

NLLB-1B 52.6 48.5 46.6 40.2 45.8
NLLB-MoE† 56.1 51.8 49.5 43.8 49.1
MTee 56.9 52.2 49.9 - -

Pivot, m2en: NLLB-1B
en2et NLLB-1B 52.6 48.7 47.2 42.4 46.8
en2et: MTee 56.9 52.4 49.8 45.5 49.5

Fine-tune NLLB-1B
- 56.6 ± 0.3 52.3 ± 0.5 50.1 ± 0.2 44.5 ± 0.2 48.8 ± 0.2
freeze enc 56.2 ± 0.4 52.3 ± 0.3 50.1 ± 0.2 44.6 ± 0.2 48.8 ± 0.2

Ours: NLLB-1B enc +
rand dec 56.1 ± 0.4 52.0 ± 0.5 49.8 ± 0.5 44.1 ± 0.3 48.6 ± 0.3
MTee dec 56.7 ± 0.5 52.4 ± 0.4 49.9 ± 0.3 43.5 ± 0.3 48.6 ± 0.2
MTee dec 2-stage 57.3 ± 0.3 52.8 ± 0.2 50.4 ± 0.3 44.6 ± 0.4 49.1 ± 0.3
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In Table 6, we present the chrF++ scores for translations from a selection of languages
to Estonian, serving as an example. It also shows the comparison with the MTee
model for the languages supported by the pre-trained MTee model. The mix-and-match
models (ours) achieve similar performance to the MTee model, with the two-stage model
outperforming it slightly. It can also be seen that for Chinese and Arabic, our approach is
outperformed by pivoting with NLLB and MTee. Full chrF++ evaluation results for the
best-performing model (NLLB enc + MTee dec 2-stage) and the baseline are available in
Appendix I. Table 16.

Table 7. Many-to-Estonian translation COMET scores for selected directions. Underlined
results indicate a significant gain over the baseline NLLB-1B with p = 0.01 according
to Paired Bootstrap Resampling t-test. † - Scores calculated from translations reported
by NLLB Team et al. (2022). Language abbreviations are following NLLB Team et al.
(2022).

Model eng_Latn deu_Latn rus_Cyrl zho_Hans arb_Arab

NLLB-1B 0.8967 0.8805 0.8700 0.8435 0.8492
NLLB-MoE† 0.9144 0.9031 0.8904 0.8826 0.8781
MTee 0.8916 0.8908 0.8819 - -

Pivot, m2en NLLB-1B
en2et NLLB-1B 0.8967 0.8808 0.8705 0.8673 0.8583
en2et MTee 0.8916 0.8899 0.8782 0.8788 0.8615

Fine-tune NLLB-1B
- 0.8954 0.8878 0.8825 0.8775 0.8631
freeze enc 0.8974 0.8912 0.8812 0.8772 0.8552

Ours: NLLB-1B enc +
rand dec 0.9001 0.8902 0.8793 0.8688 0.8561
MTee dec 0.9049 0.8953 0.8831 0.8659 0.8586
MTee dec 2-stage 0.9060 0.8929 0.8857 0.8724 0.8607

We also provide the COMET scores for the same set selected of directions in Table 7
to provide a more reliable metric to evaluate the results. These support the same conclu-
sions with a few exceptions. Firstly, it can be seen that the NLLB-MoE model is always
the best-performing model, whereas, with the chrF++ evaluation, it was sometimes
outperformed. This casts doubt on whether any of the proposed models outperform
NLLB-MoE. However, these results still show the proposed methods’ superiority over
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NLLB-1B. We also see less improvement in English scores over the baseline NLLB
model compared to the chrF++ results – only the mix-and-match models with the MTee
decoder outperform it significantly.

5.1.4 Efficiency

NLLB-1B enc. + MTee dec. reduces the number of parameters by 40% compared to the
baseline model and the default fine-tuning approach (see Table 5). Even though we add
13M trainable parameters to the encoder (adapter layers), we use a significantly smaller
decoder than NLLB-1B, leading to fewer trained and total parameters. This makes
the training time of our method (NLLB-enc+MTee-dec, 2-stage, 4.1 hours) 5.4 times
faster than the full fine-tuning (22.3 hours). We also found that inference with NLLB-
enc+MTee-dec is approximately 6.5 times faster than with NLLB-1B (and methods
fine-tuning it). This implies that our method’s translation speed gains are even larger
relative to the pivoting methods that are using NLLB-1B. This demonstrates that our
approach offers a more efficient and cost-effective alternative that delivers comparable or
better translation quality, with the added benefit of faster training, fewer parameters, and
faster inference.

5.2 Estonian-to-many Translation
To test the Estonian-to-Many capability of this method, we used the pre-trained MTee
encoder as the encoder, pre-trained NLLB-1B as the decoder, and trained only the adapter.
This yielded an average chrF++ score of 33.5 – a result 4 points worse than the NLLB-1B
baseline model (37.5 chrF++ points). It suggests that adapting a smaller monolingual
encoder to a large multilingual does not yield good results. It is possible that this would be
more feasible with a larger, more multilingual encoder, more training data and/or further
training of pre-trained components, and we leave it for future research to investigate.
This leads us to suggest creating a system of a strong multilingual encoder and multiple
language-specific decoders with a mix-and-match method, similar to how Chen et al.,
2022 extend their approach to multiple languages. This would yield a many-to-few
system with modular language-specific decoders. We explore this approach further by
creating a Ukrainian decoder in Section 5.4.

5.3 Ukrainian-Estonian Translation
Recent events have created an increased need for Ukrainian-Estonian machine translation,
with many Ukrainian refugees arriving in Estonia. We demonstrate that our method can
be used to rapidly develop competitive NMT models with limited or no data, which
could be important in crises. As a comparison, we use previous work by Bergmanis
and Pinnis, 2022, and for compatibility with them, we report chrF scores. Additionally,
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Table 8. Ukrainian (Cyrillic) to Estonian (Latin) translation chrF scores on FLORES-101
devtest. NLLB-1B model was used for all experiments, except for NLLB-MoE (54B). † -
reported by Bergmanis and Pinnis, 2022. ‡ - calculated from translations reported by
NLLB Team et al., 2022.

Model chrF ↑

NLLB-1B 50.9
NLLB-MoE‡ 54.0

NLLB-MTee EN pivot 54.5

NLLB-enc+MTee-dec 54.6 ± 0.2
NLLB-enc+MTee-dec, 2-stage 55.0 ± 0.1

Bergmanis and Pinnis (2022)† 53.5
e-translate† 53.6
Google† 56.2

we also compare our system to online machine translation system scores reported by
them. Our best models from the main experiments (NLLB-enc+MTee-dec models)
outperform the system trained by Bergmanis and Pinnis, 2022 judging by chrF scores
(see Table 8). Our models also outperform NLLB models – both the baseline NLLB-1B,
the NLLB-MoE model – and also the pivoting approach between NLLB and MTee.
When compared to public systems, our method outperforms e-translate, however, it
underperforms Google Translate (both reported by Bergmanis and Pinnis, 2022). We can
also see that the two-stage training method only slightly outperforms the single-stage
model, which leaves the pre-trained components unchanged. These results demonstrate
that even without Ukrainian data in our training set, we can develop competitive NMT
models. This method could also be used in future crises when it is necessary to achieve
high-quality NMT without having time to gather significant resources for training from
scratch. It should be noted, however, that this comparison is limited by a single test set
and automatic evaluation.

5.4 Estonian-Ukrainian Translation
We also tried training a Ukrainian decoder for the NLLB encoder, first with Estonian-
Ukrainian CCMatrix subset consisting of 2M sentences and secondly additionally in-
cluding English-Ukrainian CCMatrix data (20M sentences). The Ukrainian decoder
consists of 6 layers (transformer-base, i.e. 512 embedding dim. / 2048 feed-forward
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dim.). We additionally add the dimension adapter and 4 adapter layers in the encoder
like in previous experiments. During training the NLLB encoder remains frozen. We
compare our results to Bergmanis and Pinnis, 2022 similar to the previous section.

Training with only the 2M Estonian-Ukrainian data, our model (NLLB-enc + rand-
dec (ET-UK)) achieves 49.1 chrF points which is slightly more than the pre-trained
NLLB-1B model’s 48.7 (see Table 9), however, it still uses fewer parameters. The score
is improved by 1.7 chrF points when we additionally use English-Ukrainian CCMatrix
data for training (NLLB-enc + rand-dec (ET,EN-UK)). This demonstrates a way to use
available multilingual data - we see that the positive effect of additional 20M English-
Ukrainian sentences transfers to Estonian-Ukrainian translation quality. The model
(NLLB-enc + rand-dec ET,EN-UK) also outperforms the baseline model reported by
Bergmanis and Pinnis, 2022, however, it is outperformed by NLLB-MoE model.

Table 9. chrF scores for translation into Ukrainian. † - reported by Bergmanis and
Pinnis, 2022. ‡ - calculated from translations reported by NLLB Team et al., 2022.
Underlined scores are significantly higher than the NLLB-1B baseline according to the
Paired Bootstrap Resampling test with p = 0.01. Note that scores reported by Bergmanis
and Pinnis (2022) are not tested for significance.

Model
chrF ↑

ET-UK LV-UK LT-UK

NLLB-1B 48.7 48.7 47.8
NLLB-MoE‡ 51.3 51.5 50.7

single ET-UK model 46.2 - -
universal ET,EN-UK model 46.6 - -

NLLB-enc + rand-dec (ET-UK) 49.1 49.1 47.5
NLLB-enc + rand-dec (ET,EN-UK) 50.8 51 49.5

Bergmanis and Pinnis (2022) baseline† 49.5 47.6 49.4
Bergmanis and Pinnis (2022) BT† - - 50
e-translate† 50.6 53 49.1
Google† 52.4 51.4 50.8

We also train a single-directional transformer model with Estonian-Ukrainian data,
and a universal transformer model with English-Ukrainian and Estonian-Ukrainian data to
investigate how much the pre-training of the encoder helped. Both follow the transformer
base architecture (6/6 encoder/decoder layers, 512 embed. dim., 2048 feed-forward dim.,
16 attention heads). We see that using English-Ukrainian data has helped improve the
translation quality compared to only Estonian-Ukrainian data. It can also be seen that
both are outperformed by the models that initialize the encoder from NLLB which leads
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us to conclude that the pre-trained encoder offers a significant benefit to the translation
quality. It is possible that the results of the single-directional and universal models
trained from scratch could be improved, given more exploration of hyperparameters and
additional filtering of data.

Since the new Ukrainian decoder can translate from all FLORES-200 languages
thanks to the multilingual encoder, we also evaluate the translation quality for other
Baltic languages. We can see that our models are quite competitive even though we
did not use any Latvian or Lithuanian data for training. For Latvian-Ukrainian, our
best-performing model (NLLB-enc + rand-dec ET,EN-UK) significantly outperforms
NLLB-1B. It also outperforms the model trained by Bergmanis and Pinnis, 2022 by 3.4
chrF points. For Lithuanian-Ukrainian NLLB-enc + rand-dec ET,EN-UK significantly
outperforms NLLB-1B but achieves similar results to Bergmanis and Pinnis, 2022
baseline system (which scored 0.1 points lower) and is outperformed by their system
using back-translated data by 0.5 points.

When looking at averages over all FLORES-200 directions (see Table 10 we find
that using the limited training data of Estonian-Ukrainian is insufficient to improve the
NLLB-1B over most directions, yielding 0.5 chrF++ points lower scores on average.
However, when also using the English-Ukrainian data, we improve on the baseline NLLB
model by 1.2 chrF++ points. We also see similar improvements when looking at the
official EU language averages.

Table 10. Many-to-Ukrainian translation average chrF++ scores on FLORES-200 (201
directions).

Model
chrF++ ↑
full EU

NLLB-1B 39.4 46.3
NLLB-enc + rand-dec (ET-UK) 38.9 46.0
NLLB-enc + rand-dec (ET,EN-UK) 40.6 48.1

This demonstrates the training of a new decoder can be a high-performing and
scalable approach for most cases since with the current configuration, each additional
language would increase the model size by about 51M parameters.

5.5 Ablation
5.5.1 Multi-stage Training

The main results section already discussed training only the adapter and training in 2
stages: first, the adapter, then the adapter, and the decoder. Here we explore additional
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strategies, both single-stage, and multi-stage (see Table 11). It can be seen that for both
single and 2-stage training, training configurations involving training the decoder yield
the best results. It is also apparent that training the encoder takes longer due to the
higher number of trained parameters and does not provide any benefits. This could be
because our training dataset includes four languages, however, we evaluate over 201
directions. Hence, the encoder could improve in these four languages and forget more
distant ones. It should be noted that encoder training might lead to different conclusions
when the training and test sets are from a different domain compared to the pre-trained
encoder. The best scoring model is achieved through a 2-stage training approach that
first trains the adapter and then the adapter and decoder. It is also the second-fastest after
the single-stage model that only trains the adapter. It can also be noted that initializing
the decoder randomly achieves a slightly worse score when compared to a pre-trained
decoder. However, this difference might not be significant.

Table 11. Comparison of training strategies’ many-to-Estonian translation chrF++ scores.
All models listed have 817M total parameters. Trained parameters are based on the last
stage and models follow the NLLB-1B+MTee mix-and-match model structure. The stage
column describes which parameters are trained. A - dim. adapter and adapter layers, D -
decoder, E - encoder.

Training setup Trained Time chrF++
dec. init. stage/trained modules params (hrs) avg

single
random A+D 51M 4.3 42.8
MTee A+D 51M 4.4 42.9
MTee A 13M 3.8 42.4

I II
random A+D E+A+D 817M 5.5 42.7
MTee A A+D 51M 4.0 43.2
MTee A E+A 779M 7.5 42.1
MTee A E+A+D 817M 7.2 42.8

5.5.2 The Effect of Adapter Layers

We explore the effect that using the adapter layers has on model training. We use the
NLLB-1B encoder and initialize the decoder randomly to only look at the effect of using
a decoder with smaller dimensionality (enabled by the adapter) instead of using a wider
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decoder following the pre-trained encoder’s architecture (without using the adapter). In
Table 12, it can be seen that training the model with a 6-layer decoder with a narrow
(smaller dimensionality) architecture leads to the best performance with the least training
time out of the explored models (MTee arch). It can be seen that the NLLB arch. (6) – a
model with six randomly initialized decoder layers, the same number as the MTee arch.
model – has over three times more trainable parameters, takes over 70% longer to train,
and achieves a slightly lower chrF++ score on average. NLLB architecture model (NLLB
arch (2)) with roughly the same number of trained parameters (decoder parameters) as
the MTee arch (achieved by using two decoder layers) achieves 4.6 chrF++ points lower
translation quality score on average. These results suggest that using the adapter, even
without pre-trained decoder, can speed up training and inference with achieving the same
or better translation quality. However, conclusively claiming that it provides a better
translation quality requires more investigation into the effects of the added layers in the
encoder, the used vocabulary, and training hyperparameters.

Table 12. Comparison of models with a randomly initialized decoder and frozen
NLLB-1B encoder. Average many-to-Estonian chrF++ is reported. MTee arch. -
encoder has the dim. adapter and 4 adapter layers, and the decoder follows MTee
architecture (6 layers). NLLB arch. - encoder has no adapter, decoder follows NLLB-1B
architecture (same vocabulary, embed. dim and ffn. dim. as encoder), the number in
parenthesis denotes the number of decoder layers, embeddings are shared with encoder
and frozen.

Decoder
Params. Time chrF++

trained total (hrs) avg

MTee arch. 51M 817M 4.3 42.8
NLLB-1B arch. (6) 151M 917M 7.4 42.5
NLLB-1B arch. (2) 50M 816M 5.8 38.2

5.5.3 The Effect of the Pre-trained Decoder

Given that the use of a pre-trained decoder yielded results comparable to a randomly
initialized decoder, this thesis also looks into the speed of model convergence and the
effect the amount of training data has on the results depending on the initialization.

To compare the convergence of models with different pre-trained decoder initial-
ization, we train a model with a randomly initialized decoder, a decoder initialized
from MTee, and also a variant of the latter with the decoder frozen. The encoder is
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initialized from NLLB and frozen. As illustrated in Figure 3, our findings reveal that the
adapter-only training approach with a pre-trained encoder and decoder had surprisingly
slow convergence for the first 2500 updates, even falling behind the randomly initialized
decoder and faster convergence after that. However, when the decoder is also trained, we
observed a faster convergence rate than with an uninitialized decoder.
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Figure 3. Average test chrF++ score for NLLB+MTee models for first 10,000 training
updates (evaluated every 1250 updates). Decoder and adapter (dimensional and layers)
are trained, with rest of the encoder frozen, except for MTee dec (frozen), where the
decoder is also frozen.

To compare the effect of the dataset size for various initialization of decoders, we
train a model with a randomly initialized decoder and a frozen MTee decoder. As with
the previous experiment, we use a frozen NLLB decoder. The models are trained with the
full dataset (53M sentence pairs in total), 1M sentence pairs sampled for each direction
(4M in total), and 500k sentence pairs sampled for each direction (2M in total). As
depicted in Figure 4, the model with a pre-trained encoder and a pre-trained decoder
(MTee dec (frozen)) was less impacted by the dataset size than the model with only the
encoder having been pre-trained. This is unsurprising as the MTee decoder has already
been trained on a significant amount of data and thus likely requires less training.

5.5.4 The Effect of Adapter Module Structure and the Number of Languages

We explore the effect the number of languages and adapter module structure has on the
results. Experiments were done with Europarl as the training set and the models were
trained for 20 epochs on 1 GPU.

We can observe that using a dimension adapter without added layers yielded worse
results than adding layers (experiments 1–6 in Table 13). We also experiment with an
MLP (multi-layer perceptron) dimension adapter, which is composed in a similar way
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Figure 4. Average test chrF++ score for NLLB+MTee models for three dataset sizes:
500k sentence pairs per direction (2M in total), 1M per direction (4M in total) and the
whole dataset (53M in total) trained for 100k updates. For MTee Dec model, only the
dimensional adapter and adapter layers are trained, while the pre-trained decoder and
encoder remain frozen.

to transformer feed-forward submodule – linear layer, activation (in our case ReLU),
followed by another linear layer – in our case, the first linear layer changes the dimension-
ality. It can be seen that the experiment with MLP dimension adapter transformation only
worked when no adapter layers were present. With adapter layers, training was unstable,
and the results were lower, with large variances and confidence intervals. Therefore, it
was better to use a linear dimension adapter.

We also investigated the impact of the dimension adapter position, but we did not ob-
serve any significant benefit from placing it before or between adapter layers (experiments
6 vs 7–8 in Table 13).

When considering the number of languages, we found that using four languages
resulted in a slightly better score than using two (experiments 8-10 in Table 13). However,
using six languages yielded no visible gain with the current dataset and configuration.

Regarding the number of adapter layers, we found that using four adapter layers
resulted in the best score, although the improvement was likely not significant (experi-
ments 9 and 11–13 in Table 13). It is worth noting that the results of determining how
many layers to use might differ with the amount of data. When more capacity is required,
a different number of layers may be necessary to achieve optimal results.

5.6 Using a Pre-trained Language Model
We additionally demonstrate the mix-and-match method with pre-trained language
models by combining a pre-trained encoder with NMT decoder. We combine XLM-
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Table 13. Many-to-Estonian translation chfF++ scores of ablation models trained on
Europarl evaluated on FLORES-200 devtest. DA - dimension adapter, AL - adapter layer,
DA + 2AL means dimension adapter followed by 2 adapter layers.

ID Model
chrF++ ↑

all EU

NLLB 600M baseline 36.6 43.7

NLLB-600M + MTee
adapter config DA type src langs

1 DA MLP en, de 35.7 ± 0.2 43.2 ± 0.2
2 DA linear en, de 34.6 ± 0.3 42.2 ± 0.1

3 DA + AL MLP en, de 35.7 ± 2.3 43.3 ± 2.5
4 DA + AL linear en, de 38.2 ± 0.3 46.1 ± 0.3

5 DA + 2 AL MLP en, de 38.0 ± 1.9 45.7 ± 2.2
6 DA + 2 AL linear en, de 38.7 ± 0.3 46.5 ± 0.3

7 2 AL + DA linear en, de 38.3 ± 0.9 46.2 ± 0.4
8 AL + DA + AL linear en, de 38.5 ± 0.2 46.4 ± 0.2

9 DA + 2 AL linear en, de, fr, pl 38.9 ± 0.1 46.7 ± 0.1
10 DA + 2 AL linear en, de, fr, pl, lv, fi 38.9 ± 0.1 46.7 ± 0.2

11 DA + 3 AL linear en, de, fr, pl 39.0 ± 0.1 46.8 ± 0.2
12 DA + 4 AL linear en, de, fr, pl 39.1 ± 0.1 46.8 ± 0.2
13 DA + 5 AL linear en, de, fr, pl 39.0 ± 0.2 46.7 ± 0.3
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Roberta (Conneau et al., 2019) with MTee decoder. XLM-Roberta (XLM-R) supports
fewer languages than NLLB, so we only evaluate the performance using European Union
languages (except Maltese).

XLM-R + MTee is trained using two-stage training: First, training the adapter, and
then the rest of the model. Here we don’t keep the encoder frozen in the second stage,
since it has not been trained for MT and is not as strong as the NLLB encoder for this
task.

XLM-R + MTee achieves a significantly better score for 20 language pairs (68.2% of
the directions) compared to the NLLB-1B baseline (see Table 14). However, on average,
the score for XLM-R + MTee is worse than the NLLB-1B baseline for the EU languages.
This could be potentially improved by adding more training data for the underperforming
languages since right now our dataset has 4 source languages. Overall, these results are
relatively good, considering the base model has not been trained for MT and has seen
limited data and languages.

Table 14. Many-to-Estonian chrF++ and WRS (Win Ratio with Significance) scores for
EU languages (except for Maltese). WRS - what percentage of directions have a better
chrF++ score compared to the NLLB-1B baseline with p = 0.01 significance based on
Paired Bootstrap Resampling t-test.

Model
EU directions

WRS avg chrF++

NLLB-1B - 46.6
NLLB+MTee, 2-stage 100.0% 50.8
XLM-R-large+MTee, 2-stage 68.2% 46.0

We leave investigating the usage of a pre-trained decoder language model with our
method for future work. Sun, Wang, and Li, 2021 has already investigated combining a
BERT-like model (encoder side) and a GPT-like model (decoder side), and we see no
obstacles in using their method of initializing part of the decoder from a GPT-like model.

5.7 Qualitative Evaluation
We also randomly choose sentences from the FLORES-200 test set to evaluate quali-
tatively. A brief look at some of the sentences reveals that all of the analyzed models
offer relatively high translation quality, and it is difficult to make conclusions about the
ranking of the models based on these translations without systematic human evaluation.
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We give an example translation to show the relative translation quality of the systems
and potential errors.

A translation from English to Estonian is given in Table 15. Firstly, it can be seen that
all of the systems translate the source in a more direct and less creative way compared
to the reference. Most of the translations are correct and very similar, however, the
three that are clearly incorrect are MTee, NLLB fine-tune and NLLB-1B. MTee and
NLLB fine-tune translated pacifism and isolation correctly, however, the meaning of the
sentence is not correct due to grammatical errors. The NLLB-1B translates pacifism
incorrectly and makes a grammatical mistake when translating isolation.

Table 15. Qualitative evaluation results.

Source
During the 1920s, the prevailing attitudes of most
citizens and nations was that of pacifism and isolation.

Reference
1920. aastatel oli suur osa kodanikest ja rahvastest
patsifistlikult ja isolatsionistlikult meelestatud.

NLLB-MoE
1920. aastatel oli enamiku kodanike ja rahvaste
valitsev hoiak patsifism ja isolatsioon.

NLLB-1B
1920ndatel oli enamiku kodanike ja riikide valitsev
suhtumine vaenlusele ja isoleerumisele.

MTee
1920. aastatel valitses enamiku kodanike ja rahvaste
suhtumine patsifismi ja isolatsiooni.

NLLB fine-tune
1920. aastatel valitses enamiku kodanike ja
rahvaste suhtumine patsifismisse ja isolatsiooni.

NLLB fine-tune decoder
1920. aastatel oli enamiku kodanike ja rahvaste
valitsev hoiak patsifism ja isolatsioon.

NLLB+MTee
1920. aastatel oli enamiku kodanike ja rahvaste
valitsevaks hoiakuks patsifism ja isolatsioon.

NLLB+MTee 2-stage
1920. aastatel oli enamiku kodanike ja
rahvaste valitsev hoiak patsifism ja isolatsioon.

Looking closely at other NLLB+MTee model translations also reveals that the model
will not know how to translate some symbols, since they are not part of the MTee
vocabulary, for example, "ğ" in "Erdoğan". A solution would be to add for example
further normalization for punctuation and transliteration of missing characters. For
example, "Erdoğan" could be written "Erdogan" to avoid the model ignoring the symbol
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or translating it as an unknown token symbol. Another option would be to add the
missing symbols to the vocabulary and embedding weights of the decoder model and
train the decoder ensuring that the desired symbols are also present in the training data.
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6 Discussion

6.1 Possible Applications
As shown with the Ukrainian example, the proposed approach allows us to create a
high-performing system in a matter of hours with limited data. This could be particularly
important in crisis situations, for example, a sudden influx of refugees.

This approach is efficient from an environmental standpoint as well since it allows
to reuse pre-trained models and avoids expensive re-training. It also helps to reduce the
long-time costs of the model inference, since in the case demonstrated in this thesis, the
number of parameters was reduced.

Furthermore, the proposed method also allows for a simple distributed way of training
a modular translation system as it allows to independently train decoders for target
languages or language groups and then combine them into one modular system while
the pre-trained parts or just the encoder remain unchanged. Existing modular systems
can be extended and combined as well through training adapter layers to unify the
representations of different models or training new decoders. Possibly any transformer-
based translation models could be combined with adapter layers to form a modular
system.

The results of this thesis also demonstrate that a high-quality decoder is crucial
in NMT. We have shown that even by training only the decoder and possibly a very
limited amount of added encoder layers, it is possible to improve the translation quality,
compared to a massively multilingual model.

6.2 Future Works
This work did not focus on training a one-to-many system and the few experiments that
were carried out did not yield successful results. It should be investigated if it is possible
to train such models with more available data and if there is any benefit from this kind
of method from a cost and translation quality standpoint. Furthermore, it should be
investigated if independently trained many-to-one decoder and one-to-many encoder
that share the frozen pre-trained encoder/decoder respectively are compatible with each
other. It is also an open question, how this method could be used to add translation from
languages unsupported by the multilingual encoder.

This thesis conducted smaller proof-of-concept experiments, however, it is likely
that they do not represent the ceiling of the performance with this method. It should
be applied in a scenario with a larger dataset and longer training times to see the true
potential of this approach. Furthermore, comparisons need to be made to the single,
modular, and universal models in terms of training efficiency, translation quality, and
inference times in a scenario with more resources.

38



The training efficiency of the proposed method also needs further comparisons to
other parameter-efficient fine-tuning methods. Furthermore, parameter-efficient training
methods could also be incorporated into the current approach: for example, instead of
adapter layers, adapter submodules could be used before the optional dimension adapter.
It also remains an open question of how will this approach perform on a domain different
from the pre-trained encoder domain when the encoder is frozen during training. The
parameter-efficient training of the encoder could also be a possible solution to this issue.

6.3 Limitations
One potential limiting factor of the proposed approach is the evaluation process. To
ensure accurate and fair evaluation of the models, it is necessary to possess knowledge
of the data on which the model was trained to avoid issues with leaky test data. The
evaluation of our results relied primarily on automatic metrics, and we mainly utilized
the FLORES-200 devtest due to the limited availability of test sets for Estonian and
non-English languages. Additionally, we were unable to confirm that other available test
sets were not part of the original models’ training data, so we could not use them for a
fair evaluation.

Moreover, the applicability of the mix-and-match method is dependent on the avail-
ability of pre-trained models in the target language. For instance, while Estonian models
were readily available, other languages may not have such models, rendering the pro-
posed method inapplicable. However, as an alternative, we proposed training the decoder
from scratch and demonstrated its competitive performance.

It should also be noted that the translation quality results for Estonian cannot be
generalized to all other languages. For example, English already exhibits high translation
quality in most multilingual pre-trained NMT models, hence our method may not signifi-
cantly improve performance as it would for Estonian. However, this limitation does not
detract from other positive aspects of our method, including reduced parameter count
and efficient training.
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7 Conclusion
This thesis proposed and successfully demonstrated a novel method of combining en-
coders and decoders of pre-trained NMT models that would otherwise be incompatible
with each other. The proposed method allows viewing encoders and decoders of pre-
trained NMT models as modules that can be combined. It was demonstrated that this
method of creating NMT models significantly improved translation quality judged by
chrF++ scores and also reduced the number of parameters by 40%. Due to the reduced
amount of parameters, this target-language-specific model requires less resources in the
long term than the large massively multilingual model. The proposed method displayed
high translation quality without the original parameters of the pre-trained models being
changed, however, there was a slight increase in chrF++ scores when the decoder was
allowed to continue training. The thesis additionally explored training new smaller
decoders for pre-trained NMT models, which outperformed the original model both in
terms of translation speed and quality. Furthermore, the thesis successfully showed the
ability of the proposed methods to work for the rapid development of NMT models with
limited data. It was also demonstrated that the proposed method would work with using
pre-trained language model encoders as well.
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Appendix

I. Full Results

Table 16. Full many-to-Estonian translation chrF++ scores for NLLB+MTee mix-
and-match model with 2-stage training and the baseline NLLB-1B-distilled model.
NLLB+MTee 2-stage scores are averages of 5 seeds with p = 0.01 confidence interval.

src lang NLLB-1B
NLLB+MTee

src lang NLLB-1B
NLLB+MTee

2 stage 2 stage

ace_Arab 26.4 26.5 ± 0.4 ace_Latn 35.1 37.4 ± 0.8
acm_Arab 44.8 47.4 ± 0.1 acq_Arab 45.7 48.2 ± 0.4
aeb_Arab 42.7 44.9 ± 0.2 afr_Latn 48.5 52.4 ± 0.2
ajp_Arab 46.0 48.9 ± 0.3 aka_Latn 33.5 34.6 ± 1.3
amh_Ethi 41.6 44.7 ± 0.1 apc_Arab 45.1 47.7 ± 0.3
arb_Arab 45.8 49.1 ± 0.3 ars_Arab 45.8 48.5 ± 0.2
ary_Arab 40.2 42.8 ± 0.3 arz_Arab 43.3 45.9 ± 0.2
asm_Beng 40.4 42.8 ± 0.3 ast_Latn 44.4 48.4 ± 0.2
awa_Deva 44.7 47.0 ± 0.3 ayr_Latn 25.9 26.7 ± 0.8
azb_Arab 33.9 34.2 ± 1.6 azj_Latn 41.1 43.9 ± 0.2
bak_Cyrl 44.0 46.6 ± 0.5 bam_Latn 30.0 30.0 ± 1.2
ban_Latn 41.1 44.0 ± 0.5 bel_Cyrl 41.8 44.4 ± 0.2
bem_Latn 36.1 39.5 ± 0.3 ben_Beng 43.1 46.1 ± 0.4
bho_Deva 42.1 44.2 ± 0.3 bjn_Arab 28.6 29.7 ± 0.4
bjn_Latn 41.6 44.6 ± 0.4 bod_Tibt 29.2 30.8 ± 0.4
bos_Latn 47.9 52.8 ± 0.4 bug_Latn 33.5 34.8 ± 0.8
bul_Cyrl 47.8 51.7 ± 0.1 cat_Latn 48.1 52.0 ± 0.2
ceb_Latn 44.1 47.9 ± 0.3 ces_Latn 47.3 52.0 ± 0.4
cjk_Latn 24.7 25.6 ± 0.4 ckb_Arab 40.9 43.9 ± 0.1
crh_Latn 45.0 47.5 ± 0.3 cym_Latn 47.2 51.1 ± 0.1
dan_Latn 48.6 53.4 ± 0.3 deu_Latn 48.5 52.8 ± 0.2
dik_Latn 23.4 23.6 ± 1.0 dyu_Latn 22.3 22.6 ± 0.8
dzo_Tibt 31.3 32.2 ± 0.6 ell_Grek 45.0 48.5 ± 0.4
eng_Latn 52.6 57.3 ± 0.3 epo_Latn 48.9 52.6 ± 0.3
eus_Latn 43.6 47.6 ± 0.3 ewe_Latn 30.8 32.5 ± 0.6
fao_Latn 41.3 42.9 ± 1.4 pes_Arab 45.0 48.4 ± 0.3
fij_Latn 32.9 35.1 ± 0.5 fin_Latn 46.6 50.9 ± 0.2
fon_Latn 25.9 24.6 ± 1.9 fra_Latn 47.3 51.8 ± 0.2
fur_Latn 46.6 50.5 ± 0.3 fuv_Latn 25.3 25.7 ± 0.9

The table continues on the next page.
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The table is continued from the previous page.

src lang NLLB-1B
NLLB+MTee

src lang NLLB-1B
NLLB+MTee

2 stage 2 stage

gla_Latn 39.9 42.7 ± 0.3 gle_Latn 43.2 47.2 ± 0.3
glg_Latn 47.5 51.2 ± 0.3 grn_Latn 36.1 38.1 ± 0.5
guj_Gujr 45.0 47.8 ± 0.2 hat_Latn 43.3 47.3 ± 0.3
hau_Latn 39.4 42.4 ± 0.3 heb_Hebr 46.4 50.7 ± 0.2
hin_Deva 45.3 48.2 ± 0.3 hne_Deva 45.6 49.1 ± 0.3
hrv_Latn 46.5 50.9 ± 0.2 hun_Latn 45.6 49.8 ± 0.3
hye_Armn 46.2 50.3 ± 0.3 ibo_Latn 37.3 40.1 ± 0.1
ilo_Latn 42.2 45.7 ± 0.3 ind_Latn 45.8 49.9 ± 0.1
isl_Latn 41.8 45.7 ± 0.4 ita_Latn 45.4 48.9 ± 0.2
jav_Latn 42.4 45.8 ± 0.2 jpn_Jpan 41.1 43.2 ± 0.3
kab_Latn 34.4 35.2 ± 0.3 kac_Latn 30.5 31.0 ± 1.6
kam_Latn 26.6 29.0 ± 0.4 kan_Knda 42.2 45.3 ± 0.3
kas_Arab 41.2 43.4 ± 0.2 kas_Deva 34.8 36.2 ± 0.2
kat_Geor 42.8 46.2 ± 0.2 knc_Arab 14.5 12.6 ± 1.6
knc_Latn 28.1 29.1 ± 0.2 kaz_Cyrl 44.7 47.9 ± 0.5
kbp_Latn 28.7 30.6 ± 0.6 kea_Latn 45.2 49.5 ± 0.2
khm_Khmr 41.3 43.6 ± 0.1 kik_Latn 33.1 37.2 ± 0.5
kin_Latn 39.4 42.7 ± 0.2 kir_Cyrl 39.5 42.8 ± 0.4
kmb_Latn 26.2 28.5 ± 0.1 kon_Latn 32.9 36.4 ± 0.3
kor_Hang 41.7 44.1 ± 0.2 kmr_Latn 37.7 40.0 ± 0.3
lao_Laoo 41.9 44.6 ± 0.3 lvs_Latn 45.8 50.6 ± 0.2
lij_Latn 45.7 49.9 ± 0.3 lim_Latn 44.1 47.0 ± 0.2
lin_Latn 37.2 40.0 ± 0.2 lit_Latn 45.0 49.1 ± 0.2
lmo_Latn 44.1 46.6 ± 0.3 ltg_Latn 46.3 49.8 ± 0.3
ltz_Latn 47.5 51.8 ± 0.3 lua_Latn 30.8 33.1 ± 0.3
lug_Latn 33.0 35.1 ± 0.2 luo_Latn 33.6 37.4 ± 0.3
lus_Latn 31.6 32.9 ± 0.2 mag_Deva 46.0 49.2 ± 0.2
mai_Deva 45.0 48.2 ± 0.2 mal_Mlym 43.2 46.3 ± 0.2
mar_Deva 44.0 46.9 ± 0.3 min_Latn 42.2 44.1 ± 0.3
mkd_Cyrl 47.4 51.7 ± 0.2 plt_Latn 40.9 44.6 ± 0.3
mlt_Latn 48.8 53.2 ± 0.3 mni_Beng 36.9 38.8 ± 0.2
khk_Cyrl 39.7 42.5 ± 0.2 mos_Latn 25.8 25.9 ± 1.3
mri_Latn 36.9 39.3 ± 0.2 zsm_Latn 45.5 48.7 ± 0.4
mya_Mymr 39.9 42.7 ± 0.3 nld_Latn 43.9 47.3 ± 0.2
nno_Latn 46.7 49.4 ± 0.3 nob_Latn 44.9 47.5 ± 0.3
npi_Deva 44.8 47.9 ± 0.2 nso_Latn 41.0 43.6 ± 0.3

The table continues on the next page.
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src lang NLLB-1B
NLLB+MTee

src lang NLLB-1B
NLLB+MTee

2 stage 2 stage

nus_Latn 29.4 30.2 ± 0.5 nya_Latn 36.8 40.1 ± 0.3
oci_Latn 49.1 53.5 ± 0.2 gaz_Latn 35.4 37.4 ± 0.2
ory_Orya 43.3 46.4 ± 0.4 pag_Latn 36.5 39.0 ± 0.2
pan_Guru 44.9 47.4 ± 0.1 pap_Latn 47.4 51.3 ± 0.4
pol_Latn 43.8 47.9 ± 0.4 por_Latn 48.5 52.4 ± 0.3
prs_Arab 45.3 47.5 ± 0.2 pbt_Arab 41.9 44.3 ± 0.1
quy_Latn 26.5 27.9 ± 0.6 ron_Latn 48.1 52.5 ± 0.3
run_Latn 37.1 39.8 ± 0.2 rus_Cyrl 46.6 50.4 ± 0.3
sag_Latn 27.2 28.2 ± 0.6 san_Deva 35.5 37.2 ± 0.5
sat_Olck 30.5 30.3 ± 0.5 scn_Latn 43.7 47.0 ± 0.1
shn_Mymr 36.0 37.8 ± 0.4 sin_Sinh 42.5 46.1 ± 0.1
slk_Latn 47.6 52.0 ± 0.2 slv_Latn 46.0 50.3 ± 0.3
smo_Latn 38.7 42.3 ± 0.2 sna_Latn 36.8 39.7 ± 0.2
snd_Arab 43.8 46.1 ± 0.3 som_Latn 38.4 40.2 ± 0.2
sot_Latn 42.4 46.0 ± 0.3 spa_Latn 44.5 47.6 ± 0.2
als_Latn 46.8 51.2 ± 0.2 srd_Latn 46.0 49.0 ± 0.1
srp_Cyrl 47.6 52.5 ± 0.2 ssw_Latn 35.9 40.2 ± 0.1
sun_Latn 43.4 46.1 ± 0.3 swe_Latn 48.3 52.7 ± 0.1
swh_Latn 43.9 47.9 ± 0.2 szl_Latn 47.2 51.6 ± 0.1
tam_Taml 42.2 45.1 ± 0.3 tat_Cyrl 43.5 47.4 ± 0.2
tel_Telu 43.5 46.9 ± 0.2 tgk_Cyrl 44.2 47.7 ± 0.2
tgl_Latn 45.8 49.1 ± 0.4 tha_Thai 41.4 44.7 ± 0.3
tir_Ethi 36.1 38.6 ± 0.3 taq_Latn 25.7 26.2 ± 0.7
taq_Tfng 20.9 18.9 ± 1.4 tpi_Latn 36.6 39.4 ± 0.4
tsn_Latn 37.5 40.8 ± 0.2 tso_Latn 38.8 42.0 ± 0.1
tuk_Latn 43.9 47.1 ± 0.3 tum_Latn 33.7 36.6 ± 0.3
tur_Latn 45.3 49.5 ± 0.1 twi_Latn 33.6 35.9 ± 0.3
tzm_Tfng 31.0 32.2 ± 0.3 uig_Arab 39.7 42.0 ± 0.2
ukr_Cyrl 47.0 51.0 ± 0.2 umb_Latn 25.7 27.3 ± 0.3
urd_Arab 43.5 46.5 ± 0.4 uzn_Latn 44.6 48.6 ± 0.2
vec_Latn 45.8 49.2 ± 0.3 vie_Latn 43.7 47.4 ± 0.2
war_Latn 44.6 49.2 ± 0.1 wol_Latn 30.4 30.9 ± 1.2
xho_Latn 40.5 43.8 ± 0.3 ydd_Hebr 44.6 47.1 ± 0.2
yor_Latn 32.6 34.2 ± 0.3 yue_Hant 39.8 44.1 ± 0.3
zho_Hans 40.2 44.6 ± 0.4 zho_Hant 38.3 43.4 ± 0.2
zul_Latn 41.7 45.4 ± 0.1
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II. Language Codes

Table 17. The language codes used in this thesis. We either use a shorter 2-letter code or
the code from NLLB (NLLB Team et al., 2022), which provides less ambiguity.

language script
code

2-letter NLLB

Estonian Latin ET est_Latn
English Latin EN eng_Latn
German Latin DE deu_Latn
Russian Cyrillic RU rus_Cyrl
Ukrainian Cyrillic UK ukr_Cyrl
Standard Latvian Latin LV lvs_Latn
Lithuanian Latin LT lit_Latn
Polish Latin PL pol_Latn
French Latin FR fra_Latn
Modern Standard Arabic Arabic AR arb_Arab
Chinese Han (Simplified) ZH zho_Hans
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