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Implementation of affine arithmetic in Haskell

Abstract:
Interval arithmetic and affine arithmetic are methods in numerical analysis that deal with
ranges of numerical values. Affine arithmetic is often used instead of interval arithmetic
since it can result in smaller errors. The result of this thesis is an affine arithmetic library
written in Haskell. This library is written in a way that makes it more difficult to make
errors when using it. The library was tested using certain mathematical properties of
affine arithmetic.
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Afiinse Aritmeetika implementatsioon Haskellis
Lühikokkuvõte:

Intervalliaritmeetika ja afiinne aritmeetika on meetodid numbrilises analüüsis, mis
võimaldavad läbi viia arvutusi arvuvahemikega. Kuna intervallarvutustega kaasnevad
ebatäpsused, on võetud kasutusele afiinne aritmeetika, mis paljudel juhtudel annab
täpsema vastuse. Töö käigus valmis Haskellis teek, mis võimaldab kasutada afiinset
aritmeetikat teistes Haskelli programmides. Uus teek on loodud nii, et kasutajal on
võimalikult keeruline selle kasutamisel vigu teha. Programmi korrektsuse tagamiseks
kirjutati afiinse aritmeetika matemaatiliste omaduste põhjal testid.
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1 Introduction
Haskell is a purely functional programming language. It offers advantages when com-
pared to other programming languages such as strong static typing, which helps the
programmer avoid mistakes. However since Haskell is not as popular as some other
languages, it can lack some more specific libraries.

Affine arithmetic is an improvement on interval arithmetic. Interval arithmetic is used
to perform calculations on ranges of numerical quantities. Affine arithmetic has uses
in many fields ranging from scientific calculations to ray-casting in computer graphics.
There has been a surge of interest in using affine arithmetic to predict the behavior of
electrical grids. The methods used in affine arithmetic were developed in the 90s and
currently there are many implementations of affine arithmetic in C++ and various other
languages. At the time of writing this thesis there are however only a few very limited
implementations for Haskell. The result of this thesis is the Hafar affine arithmetic
library for Haskell. This library aims to be easy to use and reasonably efficient and
extensible.

Section 2 will give an overview of interval arithmetic and affine arithmetic. It will give
the formal definitions and theorems that are necessary to reason about the implementation.
This part should be understandable to anyone with some basic mathematical background.

Section 3 will describe the design and implementation of the Hafar affine arithmetic
library. It will also give a brief overview of some of more advanced language features
of Haskell that are used in the library. The last part of the thesis assumes knowledge of
basic Haskell and functional programming in general.
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2 Interval and affine arithmetic
Interval arithmetic (IA) is a model for numerical computation where each quantity is
represented by an interval of numbers [SDF97, 15].

Let I denote the set of intervals where each interval is defined by its lower and upper
bound e.g. [−30, 5]. Intervals can be thought to be representing an ideal value – usually
some real number – between the upper and lower bound of that interval [Tup96, 23]. For
example π can be represented by the interval [3.14, 3.15].

2.1 Operations in interval arithmetic
The following notation is used by Tupper [Tup96, 23,24]. Let i− and i+ denote the lower
bound and the upper bound of our interval respectively. Then that interval is denoted by
the pair [i−, i+] and the width of that interval is defined as

i|| ≡ i+ − i−.

The empty interval is denoted by ∅.
Every n-ary interval operation gI which corresponds to the ideal operation gR on real

numbers has to satisfy the inclusion property:

∀i ∈ In ∀x ∈ i : gR(x) ∈ gI(i).

This means that any interval that we get as the result of applying the function to some
tuple of intervals must contain the value that we get when applying the same operation to
the ideal values that those intervals represent.

We will now look at some operations in interval arithmetic. These operations are
defined by Stolfi and de Figueiredo [SDF97, 22–28].

Negation of an interval gives an interval, where both endpoints are negated and then
switched around:

−[a, b] = [−b,−a].

Addition is done simply by adding the infima and suprema of the two intervals:

[a, b] + [c, d] = [a+ c, b+ d].

Subtraction is defined as adding the negation of the second interval to the first
interval:

[a, b]− [c, d] = [a, b] + (−[c, d]) = [a− d, b− c].
Multiplication can be defined by multiplying the endpoints of the first interval with

the endpoints of the second interval and then finding the minimum and maximum of
those products.

[a, b] · [c, d] = [minA,maxA],
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where
A = {ac, ad, bc, bd}.

This method of multiplying might not be the most efficient, since we only use two of the
four calculated values. We can save some calculations by handling the multiplication
case-by-case and calculate only the values that are necessary [SDF97, 26]:

1 def mul(x : I,y : I):I
2 if x = ∅ or y = ∅ then
3 return ∅
4 else if x = [0, 0] or y = [0, 0] then
5 return [0, 0]
6 else if x− ≥ 0 then
7 if y− ≥ 0 then
8 return [x− · y−, x+ · y+]
9 else if y+ ≤ 0 then

10 return [x+ · y−, x− · y+]
11 else
12 return [x+ · y+, x− · y−]
13 else if x+ ≤ 0 then
14 if y− ≥ 0 then
15 return [x− · y+, x+ · y+]
16 else if y+ ≤ 0 then
17 return [x+ · y+, x− · y−]
18 else
19 return [x− · y+, x− · y−]
20 else
21 if y− ≥ 0 then
22 return [x− · y+, x+ · y+]
23 else if y+ ≤ 0 then
24 return [x+ · y−, x− · y−]
25 else
26 let a = min(x− · y+, x+ · y−)
27 let b = min(x− · y−, x+ · y+)
28 return [a, b]

2.2 Limitations of interval arithmetic
Interval arithmetic suffers from certain limitations. In longer computation chains IA
tends to overestimate the error as the relative accuracy of the intervals may decrease at an
exponential rate after each sequential application of a function [SDF97, 37]. This problem
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can be mitigated somewhat by subdividing the intervals, doing the same calculations
on those intervals and combining the results, but this reduces the error only in a linear
fashion (see Figure 1). That is to say, in order to reduce the error by a factor of n the
interval has to be partitioned into n sub-intervals.

Figure 1. Subdivision of intervals on f(x) = x
ex

. Light gray area shows the result of
evaluating with a single interval [0.5, 4.5] and the dark gray boxes show the result of
evaluating with three smaller subdivisions of that interval.

2.3 Introduction to affine arithmetic
Affine arithmetic (AA) is an improvement of interval arithmetic. Using this method,
it is possible keep track of correlations between different quantities. The quantities in
affine arithmetic are called affine forms. In this thesis we will use Rump and Kashi-
wagi’s [RK15, 1102] definitions and notation. We define the set of all affine forms as
A :=

⋃
{Ak : k ∈ N0}, where Ak is a set of pairs {〈c; γ〉 : c ∈ R, γ ∈ Rk}.

An affine function ψC can be assigned to every affine form C := 〈c, γ〉 ∈ Ak such
that

ψC(ε) := c+
k∑

i=1

εiγi,

where ε ∈ Uk and U = [−1, 1]. When we apply this function to a tuple of values, it can
be thought of as fixing the noise terms in order to get an ideal value.
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The quantity c is called the midpoint of the affine form and the coefficients γi are
called error terms. We can define the range of the affine form as:

range(C) :=

{
c+

k∑
i=1

γiεi : ε1, . . . , εk ∈ [−1, 1]

}
.

This set can be thought of as the interval which corresponds to the affine form C.
Affine arithmetic is closely related to interval arithmetic. We can see that if a is

an ideal value represented by 〈c; γ〉 then it is clear that the value is in the interval
[c− r, c+ r], where r =

∑k
i=1 |γi| [MMS15, 296]. For instance we can represent π with

the affine form 〈3.1; 0.1〉. The quantity r is called the radius or half-width of the affine
form [SDF97, 33–34].

It is possible to visualize the interdependence of two affine forms. For any affine
forms C and D we can construct the set {(ψC(ε), ψD(ε)) : ε ∈ Uk}, where k is the
number of terms of the longer affine form. If the two affine forms are of a different
length, we can use a natural embedding of that affine form, meaning that we pad the
coefficients vector with enough zeroes to make the lengths match. When this set is
plotted on a cartesian plane, it produces a zonotope (Figure 2) [RK15, 1102]. A similar
set with intervals would produce a rectangle.

Figure 2. Zonotope produced by plotting two affine forms on a cartesian plane. The
rectangle surrounding the zonotope shows the cartesian product of the ranges of these
affine forms [RK15, 1102].

When we start defining operations in affine arithmetic we have to make sure that
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these operations satisfy the fundamental invariant of affine arithmetic:

Proposition 1 (Fundamental invariant of affine arithmetic). [SDF97, 43–44] At any
stable instant in an AA computation, there is a single assignment of values from U to
each of the noise variables in use at the time that makes the value of every affine form
equal to the value of the corresponding quantity in the ideal computation.

This property will also be important later when testing our implementation of affine
arithmetic with random tests.

2.4 Affine operations
An operation is an affine operation if it can be applied to affine functions ψC and ψD of
affine forms C and D so that the result is the affine function of some affine form [SDF97,
50].

The following operations are defined in S. Rump and M. Kashiwagi’s paper Imple-
mentation and improvements of affine arithmetic [RK15, 1102–1103].

Negation is an example of an affine operation. It is also one of the few exact operations
on IEEE 735 floating point numbers, since negation is just a matter of flipping the sign
bit. We can easily find the negation of an affine form C := 〈c; γ〉:

−C = 〈−c;−γ〉.

Addition can also be defined as an affine operation. Let C := 〈c; γ〉 and D := 〈d; δ〉.
Then

C +D = 〈c+ d; γ + δ〉.

Here we can think of γ and δ as vectors, so γ + δ is simply vector addition.
Subtraction can be defined through negation and addition:

C −D = C + (−D) = 〈c; γ〉+ 〈−d;−δ〉 = 〈c− d; γ − δ〉.

2.5 Non-affine operations
Some operations do not directly result in affine forms. In such operations we have to
choose some affine function that approximates the function reasonably well. It must be
guaranteed that the function is never underestimated, because that would contradict the
fundamental invariant of affine arithmetic. There are many ways to measure how good an
approximation is. We will take a look at two ways to come up with such approximations.
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2.5.1 Chebyshev approximation

There are n+ 1 degrees of freedom in the choice of our affine approximation for γ ∈ Rn.
In general it would be more reasonable to limit ourselves to just having to pick a few
coefficients. Let us only consider approximations to ψA that take the form

ψA(ε) = αψC(ε) + βψD(ε) + ζ,

where C and D are the input affine forms of the function we are approximating and α,
β, ζ are the coefficients that we need to find [SDF97, 54]. That limits our degrees of
freedom to n+ 1 for any n-ary function.

Let us now look at the Chebyshev approximation, also known as minimax approxi-
mation, which aims to minimize the absolute error of the approximation [SDF97, 56].
The following definition is useful for formally reasoning about affine approximations:

Definition 1. [RK15, 1103] We say that a triplet [[p, q,∆]] ∈ R3 represents f : D ⊂
R→ R on I ∈ I, I ⊆ D, if

∀x ∈ I : |px+ q − f(x)| ≤ ∆.

Now we can find the triplet which corresponds to the Chebyshev approximation of
our ideal function f :

Theorem 1. [RK15, 1103] Suppose f is convex or concave on I = [a, b] with a 6= b.
Define

p =
f(b)− f(a)

b− a
.

By mean-value theorem let ζ ∈ I such that f ′(ζ) = p. Define

q =
f(a) + f(ζ)− p(a+ ζ)

2
, ∆ =

∣∣∣∣f(ζ)− f(a)− p(ζ − a)

2

∣∣∣∣ .
Then [[p, q,∆]] represents f on I .

We can use the triplet to define an approximation function F , which satisfies the
following property:

Theorem 2. [RK15, 1104] Let C = 〈c; γ〉 ∈ Ak and let [[p, q,∆]] represent f(x) : R→
R on range(C). Let F : Ak → Ak+1 be defined as

F (C) = 〈pc+ q; pγ,∆〉.

Then
∀ε ∈ Uk ∃ε′ ∈ U : f(ψC(ε)) = ψF (C)(ε̄)

for ε̄ := (ε, ε′).
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Here the commas after vectors pγ and ε are used to denote that the value is appended
to the vector. Notice that the approximation function F returns an affine form with one
extra error term ∆. This term has to be large enough so that whenever we apply the
ideal function f to the ideal values of our affine forms, the resulting value must be within
the range of our approximated affine form. This is in accordance with the fundamental
invariant of affine arithmetic (Proposition 1).

2.5.2 Min-range approximation

Another way to approximate an affine operation is to use the min-range approximation.
As the name hints, it minimizes the range of the resulting affine form.

Theorem 3. [RK15, 1103] Let I ∈ I and twice differentiable f : I → R be given.
Suppose f is convex or concave on I and f ′(x) 6= 0 on I . Let p = f ′(a) if f ′(x)f ′′(x) ≥ 0
and p = f ′(b) otherwise. Then [[p, q,∆]] represents f on I with

q =
f(a) + f(b)− p(a+ b)

2
,∆ =

∣∣∣∣f(b)− f(a)− p(b− a)

2

∣∣∣∣ .
Figure 3 shows the difference of the minimax and min-range approximations on the

function exp(x).

Figure 3. Chebyshev (left) and min-range (right) approximations of the exponential
function [SDF97, 68].

Let us apply the min-range approach to estimate the reciprocal of an affine form.
Let C := 〈2; 1〉, range(C) = [1, 3]. Our function is f(x) = 1

x
and hence f ′(x) = − 1

x2 ,
f ′′(x) = 2

x3 .
Next we will find the values p, q and ∆. Note that f ′(x)f ′′(x) is negative since

range(C) contains only positive values. Therefore, by Theorem 3:
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p = − 1

32
, q =

1
1

+ 1
3
− (−0.11)(1 + 3)

2
, ∆ =

∣∣∣∣ 11 − 1
3
− (−0.11)(3− 1)

2

∣∣∣∣ .
Our estimate for 1

x
in [1, 3] is

F (C) = 〈pc+ q; pγ,∆〉 = 〈2
3

;−1

9
,
2

9
〉

and the corresponding interval is

range(F (C)) =

[
1

3
, 1

]
.

The multiplication of two affine forms is a non-affine operation. Let C = 〈c, γ〉 and
D = 〈d, δ〉, then

C ·D = 〈cd; cδ + dγ, ||γ||1||δ||1〉,
where ||x||1 :=

∑n
i=1 xi, x ∈ Rn [RK15, 1104].

This follows naturally from multiplying the affine functions of the two affine forms.
The terms which contain products of error coefficients are added together to become the
error term of the new affine form.

2.6 Representations of affine forms
In computer memory it might not always be reasonable to represent the affine forms
as they are represented in the mathematical definitions. Messine [Mes02] compared
different representations of affine forms in Extensions of Affine Arithmetic: Application
to Unconstrained Global Optimization. We will take a look at two of the representations
discussed in that paper.

Let us first look at the standard affine form AF. Such affine forms are represented by:

C = 〈c; γ〉.
Because we need to add a new term each time after performing a non-affine operation,
AF tends to grow unnecessarily large. This is not very practical when storing affine
forms in computer memory.

One alternative to this is the first affine form AF1. First affine forms are represented
by

C = 〈c; γ, γe〉,
where the εe term represents all the errors due to non-affine operations. The error term
γe, which we will call the anonymous error term, must be positive and chosen in such a
way that it does not contradict the fundamental invariant of affine arithmetic (1). Such
representation allows us do an arbitrary number of compositions of non-affine operations
while maintaining a fixed number of terms. In our implementation of affine arithmetic
this anonymous error term also accounts for round-off errors.

12



2.7 Subdividing affine forms
One way to improve the quality of an enclosure is to divide the original range of the
variables into smaller intervals and considering the union of those smaller intervals. It is
possible to apply branch-and-bound algorithm to the affine form to minimize the error.

Moscato, et al. [MMS15, 302 – 303] describe a method which requires two func-
tions: a subdivide function that splits an affine form into two smaller affine forms
and a combine function, which combines two affine forms into a larger one. Given an
expression and a starting interval, the algorithm finds the resulting affine form when
applying the expression to the original range. Every iteration the algorithm subdivides
the interval that has the smallest precision and applies the expression to each of the new
subdivisions. The algorithm stops when it recurses to some specified depth or when all
the intervals have a sufficiently high precision.

Subdivision was used to benchmark different representations of affine forms in
Messine’s paper [Mes02]. Currently subdivision is not implemented in the Hafar library
but this may change in the future.

2.8 Limitations of affine arithmetic
In some cases affine arithmetic can have a disadvantage over interval arithmetic. For
instance let C := 〈2; 1〉, then C · C = 〈4; 4, 1〉 and range(C · C) = [−1, 9]. However
when calculating the same product in interval arithmetic, we get a much tighter range:

A := range(C) = [1, 3], A · A = [1, 9].

A remedy to this problem is to use the mixed IA/AA model as described by Rump and
Kashiwagi [RK15, 1105 – 1106]. This means we run the same calculations on both the
affine forms and their corresponding intervals. We then can find the range by finding the
intersection of the resulting interval and the range of the resulting affine form.

2.9 Handling edge cases
In implementing affine arithmetic, there arises a question about what to do when the
programmer attempts to take the reciprocal of an affine form containing zero or the
logarithm of a negative affine from. In such cases it is difficult to decide what the
program should do. In the C++ YalAA [Kie12] library this problem has been solved using
policy objects. These would be stored within the affine form objects and would specify
whether to ignore any invalid operations or to throw an exception.

Currently Hafar throws an exception when the user attempts to apply a function to
an affine form where some of the values in the ranges are not within the domain of that
function. In the future it can be reasonable to implement error handling in a way similar
to YalAA.
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2.10 Applications of affine arithmetic
Affine arithmetic has found uses in many fields. In computer graphics it has been
used to render implicit surfaces[KHK+09] and to find polygonal approximations of
implicit curves[dCNPDFS14]. Affine arithmetic is useful for modeling power inputs of
microgrids which utilize variable energy sources. [VPB19]

3 Implementation of affine arithmetic in Haskell
This section will give an overview of Haskell and the implementation of the Hafar library.
The full source code for Hafar is available on the GitHub repository [J2̈0a]. The Hafar
module with documentation is also available on Hackage [J2̈0b].

3.1 Overview of Haskell
Haskell is a pure language, which means that programs written in Haskell operate on
immutable data and there are no variables like in most imperative languages. It also means
no function call is dependent on the state of the program and the result of the function
call only depends on the parameters given to the function [Has14]. This pure approach
to programming has a couple of advantages when compared to impure languages, for
example it is generally much easier to reason about code, since pure functions have no
side effects.

Pure programming languages also benefit from lazy evaluation, which ensures that
values only get calculated once they are actually needed [Wad95].

The following explanation of monads is based on Wadler [Wad95]. Since all the data
flow in pure languages has to be expressed explicitly, there tends to be a lot of code that
only deals with moving data from its point of creation to its point of use. In impure
languages such logistics can usually be done using global variables or other features
utilizing side effects. In order to allow side effects in a pure language, Haskell uses a
concept from category theory called monads.

3.2 Implementation of the Hafar library
In Hafar an affine form is defined as the following data structure:

1 data AF s a = AF a [a] a

Here the structure takes two type parameters s and a. Parameter a defines the type
of the coefficients and parameter s is used to encapsulate the affine form inside the
AFM monad described in Sec 3.3. The AF constructor takes three parameters. The first
parameter is the midpoint of the affine form, the list contains all the coefficients x1 . . . xn
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and the last parameter is the anonymous error term coefficient xn+1 as used in the AF1
representation.

3.3 The AFM monad
Monads are a concept from category theory. It can be useful to think of monads as
composable computations. In Haskell monads are implemented as the Monad typeclass.
Every monad must implement the return and bind functions. The return x function
returns a monad which simply evaluates to x. Monads can be combined using the bind
function (>>=). For our implementation we are specifically interested in the State
monad, which allows us to access a global state when composing computations with
affine arithmetic.

Whenever we create a new noise symbol, we have to ensure that it does not correspond
to any previous noise symbol. To make sure this does not happen, we use the State
monad to keep track of the array index of the last noise symbol. Since every function in
Haskell is pure, meaning its value only depends on the parameters, we need to pass the
state to the function explicitly. However it might be cumbersome to constantly keep track
of the state, so we could use a state monad instead. The State monad comes with the
functions get and put. These functions allow us to access and modify the state within
the monad. Both functions return a state monad which we can then bind with other state
monads to create a more complex computation. When we evaluate the state monad, we
only need to supply it with an initial state and from there on everything is handled inside
the monad.

In order to simplify managing stacks of monads, Haskell uses the concept of monad
transformers. A monad transformer is a monad with an extra type parameter which
stands for the monad that the transformer is modifying. Monad transformers can be
stacked to create new monads with more complex capabilities [OGS08].

With that in mind, we define a new monad transformer AFMT as follows:

1 data AFMT t m a = AFMT {runAFMT :: AFIndex -> m (a,
AFIndex)}

2 type AFM t a = AFMT t Identity a
3 type AFIndex = Int

This monad is very similar to the StateT monad transformer defined in Haskell for
State monad except that we add a type variable t. This variable will be explained more
in-depth in Sec 3.4. To make the monad more convenient to use we also define the AFM
type synonym for a non-transformer version of the monad. AFMT is an instance of
Monad and MonadTrans classes. All the necessary functions are defined just as in the
StateT monad transformer.

It’s important to note that the creation of new affine forms could be done without a
monad. However, then it would be necessary to pass the previous state to each following
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calculation explicitly and this would be very inconvenient.

3.4 Encapsulating the affine form
We define functions newEps and newFromInterval for creating new affine forms with
previously unused noise symbols. The function newEps returns a new affine form with
midpoint at zero that has only the new previously unused error term coefficient set to
one. The newFromInterval returns an affine form with a fresh error term that has been
scaled and shifted to match the range of the interval parameter. The interval arithmetic
functions prepended with IA are from Kmett’s intervals library [Kme20].

1 newEps :: Num a => AFM t (AF t a)
2 newEps = do
3 idx <- get
4 put $ idx + 1
5 return $ AF 0 (replicate idx 0 ++ [1]) 0
6

7 newFromInterval :: ( Eq a
8 , Fractional a
9 , ExplicitRounding a)

10 => IA.Interval a
11 -> AFM t (AF t a)
12 newFromInterval i = do
13 eps <- newEps
14 -- Scale the AF to match the width of i
15 let mult = ((IA.width i) / 2) .* eps
16 -- Shift the AF to the midpoint of i
17 return $ (IA.midpoint i) .+ mult

Notice that the AFM and AF both share a type parameter t. To evaluate the AFM monad,
we use evalAFM:

1 evalAFM :: forall a b. (forall t. AFM t b) -> b
2 evalAFM (AFMT x) = fst . runIdentity $ x 0

We have defined the type of the function so that the type parameter t becomes bound on
the left side of the arrow. Now if the type b were to contain the type parameter that was
bound to this parameter t, it would now become a free variable and this would cause the
type checker to give an error.

This prevents us from evaluating the monad to an affine form:

1 evalAFM newEps -- TYPE ERROR

but we can still evaluate other types of values:

16



1 evalAFM $ interval =<< newEps -- OK

This makes sense, since the interval that we calculated from the affine form cannot be
changed back into the affine form itself, therefore it does not interfere with the state.
The runIdentity is defined in the Haskell identity monad implementation and simply
evaluates the underlying Identity monad of the AFMT monad transformer.

This method has been used in the ST monad to prevent the programmer from mixing
references from different threads [LJ95, 8–9]. Since the check is done by the type checker
the method does not have to do any checks at runtime.

In order to simplify the implementation of new operations, we defined the minrange
function. It takes three parameters: a function f of type a -> a, the derivative of f
and a data structure Curvature, which specifies whether f is convex or concave. It
then uses the min-range theorem (Theorem 3) to derive an approximation with the type
AF a -> AF a.

3.5 Testing with QuickCheck
Many programmers are familiar with unit tests, where the tester writes down test cases by
hand and then checks whether they give the expected result. In contrast, QuickCheck is a
library for random testing of program properties. It works differently from unit testing in
that rather than specifying the test cases by hand, the programmer writes down properties
and data generators. QuickCheck then uses these data generators to generate a large
number of test cases automatically.

In Hafar we use QuickCheck to check the soundness of operations on affine forms.

1 correctnessPropUnary :: ( Fractional a
2 , Ord a
3 , Show a
4 , ExplicitRounding a)
5 => (AF s a -> AF s a)
6 -> (a -> a)
7 -> [a]
8 -> AF s a
9 -> Property

10 correctnessPropUnary f g e x = withMaxSuccess 5000 $
counterexample str res

11 where af = f x
12 rhs = g (IA.midpoint $ fix x e)
13 rhs_lo = g (IA.inf $ fix x e)
14 rhs_hi = g (IA.sup $ fix x e)
15 res = rhs `IA.member ` interval af .&&.
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16 rhs_lo `IA.member ` interval af .&&.
17 rhs_hi `IA.member ` interval af
18 str = "-- RESULTS --\n"
19 ++ "- LHS -\n"
20 ++ "AF: " ++ (show af) ++ "\n"
21 ++ "INTERVAL: " ++ (show $ interval af) ++ "\n"
22 ++ "- RHS -\n"
23 ++ "MID: " ++ (show rhs) ++ "\n"
24 ++ "HI: " ++ (show rhs_hi) ++ "\n"
25 ++ "LO: " ++ (show rhs_lo) ++ "\n"

This test checks whether Theorem 2 holds for a given function. The function takes two
functions, a list of values in the interval [−1, 1] and an affine form as its parameters.
The parameters f and g correspond to the functions f : R → R and F : Ak → Ak+1

accordingly.
The fix function fixes all the noise symbols of an affine form to the values in the list,

except for the error term. It outputs an interval that is centered at the midpoint of the
affine form after fixing the noise symbols and has a half-width equal to the value of the
anonymous error coefficient of the affine form.

According to the theorem, when we fix the noise symbols in the affine form x and
then apply function g to the result, we should get a value rhs that is contained within
interval $ f x.

3.6 Handling round-off errors
In order to ensure that our affine forms give correct answers, we need to be able to control
the rounding of floating point values. There is no way to specify the rounding method
in the Haskell Prelude module. There are some external modules that allow the user to
control the rounding of floating point number, one of such modules being the rounded
module. Such libraries are usually wrappers around a C library.

In Hafar we define the ExplicitRounding class, so that data structures that are
instances of that class have to implement the function eps :: a -> a.

For Int, the eps function is simply defined as const 0, since all operations with
integers are exact. For single precision floats, this function is defined like so:

1 instance ExplicitRounding Float where
2 eps 0 = eps $ 2e-36
3 eps x = encodeFloat 2 (snd $ decodeFloat x)

The decodeFloat separates the mantissa and exponent of a floating point number and
returns them as a pair of integers. When we set the integer representing the mantissa to 2
and then encode the result as a floating point number, we get a relatively small number
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that still has an effect when added to or subtracted from the original value x. This method
does not work well with zero, so we define it to return the eps of an arbitrary small value
instead. Choosing an optimal value for eps is outside the scope of this thesis.

The ExplicitRounding class offers some useful functions such as next and prev,
which return the supremum and infimum of the set of values that the argument of those
functions can represent. It also offers some helper functions for doing rounded operations
on the data, e.g. +/ adds two values and rounds the result towards positive infinity while
+\ rounds the result towards negative infinity.

In the implementation of affine arithmetic operations, the rounding functions are used
to calculate the error due to round-off errors.

1 add :: (ExplicitRounding a, Num a, Ord a) => AF s a -> AF
s a -> AF s a

2 (AF x xs xe) `add ` (AF y ys ye) = addError af rnd
3 where zs = (uncurry (+)) <$> embed xs ys
4 af = AF (x + y) zs (xe +/ ye)
5 rnd = sumup $ (uncurry (+/)) <$> embed (eps <$> xs

++ [x]) (eps <$> ys ++ [y])

Here we estimate the round-off error by adding (rounded up) the eps values of all the
values used in the calculation of the sum. The embed function zips together two lists of
numbers, padding the shorter list with zeroes, and the sumup function works just like sum
but it rounds every addition towards positive infinity.

3.7 Using Hafar
Following is an example of using Hafar to calculate the difference of two affine forms:

1 import Numeric.AffineForm
2 import Numeric.Interval hiding (interval)
3

4 x1 = do
5 a <- newFromInterval $ 4...6
6 b <- newFromInterval $ 4...6
7 return . interval $ a - b
8

9 evalAFM x1

Here we see the do notation being used to compose a computation. We create two
new affine forms, both with range [4, 6]. Because we created the affine forms separately,
they do not share any noise terms and therefore when we evaluate the range of the
difference of a and b, we get the interval [−2, 2]. If we were to calculate the difference
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a - a instead, the range would evaluate to [0, 0]. When using floating point numbers,
the results will have a small margin to account for any round-off errors.

3.8 Comparison with similar libraries
At the time of writing this thesis, there were only a few implementations of affine
arithmetic. One of those libraries is the Levitate library [Cla19]. Levitate implements
basic arithmetic and controlled rounding of values. However affine forms in Levitate
only support double precision floating point values. It does not offer encapsulation of
affine forms, so it is possible to mix affine forms from different state threads.

Hafar library in comparison has support for many elementary functions and can
guarantee that threads will not be mixed. Hafar can be found from the Hackage repository.
As opposed to other affine arithmetic libraries, our implementation defined the affine
form as a polymorphic type, which means that the affine forms can be based on other
numerical systems such as rationals or fixed point numbers. This means that the affine
forms can be used with other numeric types, not just floating point numbers.
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4 Conclusion
This thesis has given a formal overview of interval and affine arithmetic. We have
used the fundamental invariant of affine arithmetic to derive the affine operations and
approximations to non-affine operations. In order to derive the non-affine operations we
have looked at the Chebyshev and min-range approximations.

These ideas were then implemented in Haskell as the Hafar library. The resulting
library allows the user to use affine arithmetic in their program without introducing
impurity into their code. We have also used the Haskell type system to prevent the user
from accidentally mixing the states of different affine computations.

Future research could look into extending the library with more elementary functions.
Another improvement that could be made to the library is to somehow allow the user to
choose a way to handle the edge cases described in Section 2.9. Because the affine form
implementation is type-polymorphic, it would also be interesting to see the library being
used with number systems other than floating point numbers.
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