Toomas Römer

Autoscaling Hadoop Clusters

Master’s thesis (30 EAP)

Supervisor: Satish Narayana Srirama
Contents

1 Introduction
1.1 Goals ... 5
1.2 Prerequisites 6
1.3 Outline ... 6

2 Background Knowledge
2.1 IaaS Software 7
2.1.1 Amazon Services 7
2.1.2 Eucalyptus Services 10
2.1.3 Access Credentials 11
2.2 MapReduce and Apache Hadoop 12
2.2.1 MapReduce 12
2.2.2 Apache Hadoop 13
2.2.3 Apache Hadoop by an Example 14

3 Results
3.1 Autoscalable AMIs 19
3.1.1 Requirements 19
3.1.2 Meeting the Requirements 20
3.2 Hadoop Load Monitoring 23
3.2.1 Heartbeat 24
3.2.2 System Metrics 24
3.2.3 Ganglia ... 25
3.2.4 Amazon CloudWatch 27
3.2.5 Conclusions 27
3.3 Generating Test Load 28
3.3.1 HDFS Synthetic Load Generator 28
3.3.2 Apache Hadoop Sort Benchmark 28
3.3.3 Identifying Relevant Metrics 28
3.3.4 Conclusions 28
3.4 Autoscaling Framework 29
3.4.1 Load Average Autoscaling 30
3.4.2 Amazon AutoScaling 30
3.4.3 Custom Scaling Framework 30
3.4.4 Scaling the Cluster Down 31
3.4.5 Apache Hadoop and Cluster Changes 32
Chapter 1

Introduction

“Cloud Computing refers to both the applications delivered as services over the Internet and the hardware and systems software in the data centers that provide those services”[15]. Cloud Computing provides simple provisioning of computing systems empowered by virtualization technologies[12] like XEN[16], KVM/QEMU[17], VMware[14].

Cloud Computing can be divided into three layers. IaaS (Infrastructure as a Service), PaaS (Platform as a Service) and SaaS (Software as a Service) as illustrated in figure 1.1. These services make up a cloud. Clouds can be further divided into public and private clouds. Public clouds are clouds that are made available to the general public and private clouds are clouds that are internal to an organization and not available to the general public.

In this thesis we will try to build an autoscaling PaaS for the MapReduce programming model that can be deployed both in a public and a private cloud.

![Figure 1.1: Three Layers of Cloud Computing](image)

4
"MapReduce is a programming model and an associated implementation for processing and generating large data sets"[21]. Users specify two functions, a map function that processes key/value pairs and produces intermediate key/value pairs and a reduce function that merges those intermediate values.

The advantage of MapReduce is that the processing of the map and reduce operations can be distributed and very often they can run in parallel. This means means that one can dynamically increase the processing power of the underlying system by adding more nodes and thus get results faster.

There are many implementations of MapReduce. One of them is the Apache Hadoop project that develops open source software for reliable, scalable, distributed computing[8]. It includes an implementation of the MapReduce programming model, a distributed file system and other subprojects to help run MapReduce jobs in a cluster of machines.

Running Hadoop on a cloud means that we have the facilities to add or remove computing power from the Hadoop cluster within minutes or even less by provisioning more machines or shutting down currently running ones. This gives us the elasticity to have only the needed hardware for the job and not to waste CPU cycles on idling.

We will prototype a system where this scaling is done automatically based on some rules and without any human intervention. We will present the full software stack of this autoscaling framework, starting from the machine images to the autoscaling prototype.

1.1 Goals

Our main goal is to build a dynamic MapReduce cluster using the Hadoop implementation. The cluster will scale itself based on the load of the cluster. The cluster can be run both in a public and a private cloud. We also want to monitor and debug the cluster in real time to find out a good autoscaling strategy or to tune it. Our prototype system and framework will consist of:

- Control panel or a dashboard to monitor a Hadoop cluster in real-time and debug for possible problems.
- Virtual machine images for the Hadoop nodes. The images are preconfigured Linux operating systems that automatically start Hadoop software on boot. The nodes will automatically join a Hadoop cluster and report performance metrics to the Control Panel.
Identifying and collecting system metrics of the running nodes to the Control Panel to make assessments of the load and health of the cluster.

Providing an autoscaling strategy to scale the cluster horizontally based on the monitored performance metrics of the cluster.

We will refer to all of these together as an autoscaling Hadoop cluster. The results will be deliverables of different types. All the relevant custom configuration files and scripts are in our version control repository at svn://dougdevel.org/scicloud/trunk/enter/.

1.2 Prerequisites

This thesis requires the user to have some basic understanding of cloud computing, MapReduce and computer networks. These concepts are described in more detail in chapter 2. If one is familiar with these concepts she can skip to chapter 3.

1.3 Outline

We will build and prototype the autoscaling cluster step by step, from building the machines, configuring Hadoop, extracting metrics and collecting them. We need to analyze the performance metrics and then build the actual autoscaling framework.

Chapter 2 describes all the background knowledge that we will use in building the cluster. It will explain the IaaS services that we will be using for both the public and private clouds, the architecture of the Apache Hadoop Project and also some limitations that we need to consider when building our cluster.

Chapter 3 describes the technical details of our cluster. Building the virtual machines, configuring the software, monitoring the performance metrics and building our autoscaling framework.

Chapter 4 outlines the future work that can be done based on this thesis and results. We have built an autoscaling Hadoop cluster but there are many aspects that we did not give enough attention and the framework we developed was more of a proof of concept than an actual product.
Chapter 2

Background Knowledge

We chose Amazon Web Services (AWS)[6] as our public cloud provider and the Eucalyptus private cloud software running at the Scientific Computing on the Cloud (SciCloud)[33] at the University of Tartu as our private cloud provider, which is studying the scope of establishing private clouds at universities[32].

We chose the Apache Hadoop project as the MapReduce implementation because it is open source software, platform agnostic and there is plenty of documentation available for installing, configuring, debugging and running a Hadoop installation.

2.1 IaaS Software

The AWS provides many different services of which we will be using just a few. As we are also targeting the private cloud we cannot choose all the services from the AWS stack as there are many that do not have an equivalent service in Eucalyptus[29], our private IaaS software stack. Eucalyptus tries to be AWS compliant in terms of the services they provide and also the APIs they provide.

2.1.1 Amazon Services

Amazon EC2

In 2006 Amazon announced a limited beta of Amazon Elastic Compute Cloud (EC2)[7]. The service allows users to rent virtual computers (servers) and run the desired operating systems and applications on top of them. They also provide web services through which users are able to boot, configure\(^1\) and terminate these machines. End users are paying for the service based on how many hours a server is running.

\(^1\)There are AWS services that can be attached to currently running instances.
To boot a server the user needs to create an Amazon Machine Image (AMI). AMI is a compressed, encrypted, signed and split file system2 that can be booted into a running instance on the Amazon Elastic Compute Cloud. A large preconfigured boot disk that is split into pieces before boot. One can start as many AMIs she wishes and terminate them whenever she sees fit. Instances of the AMIs do not have any persistent storage and all state is lost upon stopping an instance. AMIs do not come with a kernel but instead they reference a kernel supported by the Amazon infrastructure. An AMI can be run with almost any of the approved kernels available.

Amazon S3

Amazon S3 (Simple Storage Service) is an online storage offered by Amazon and provides unlimited storage via a web service interface. Users can issue HTTP PUT and GET requests to query and store objects in the storage. Amazon S3 is reported to store more than 102 billion objects as of March 20105.

Amazon S3 is built with a minimal feature set that includes writing, reading and deleting objects containing from 1 byte to 5 gigabytes of data each. Each object is stored in a bucket (like a folder) and the bucket can be stored in one of the available geographical regions to minimize latency, costs or address regulatory requirements.

AMI files can be stored in the Amazon S3. Booting an AMI means querying the S3 to fetch the splits of the compressed, encrypted and signed file system and then booting the re-assembled pieces. Storing an AMI in the S3 is a matter of creating a bucket and uploading the splits as objects into the bucket.

Amazon EBS

Amazon Elastic Block Store (EBS) provides block level storage volumes for use with Amazon EC2 instances. “Amazon EBS volumes are off-instance storage that persists independently from the life of an instance”9.

An EBS volume can be created of almost arbitrary size (1 GB to 1 TB) and then attached to a running instance of an AMI. For the operating system an EBS volume looks like a regular block device which can be partitioned in any ways necessary and then formatted with a desired file system.

2The file system image is split into n smaller pieces and all the pieces are stored instead of the one large image file.
The EBS volumes can also be used as boot partitions for amazon AMIs. This provides support for larger AMI sizes (up to 1 TB) and also faster boot times. This means that the AMI is not stored in S3 as a split file system but instead as block storage.

Amazon CloudWatch

Amazon CloudWatch[3] provides monitoring for cloud resources. For EC2 instances it is possible to get CPU, disk and networking metrics in real-time of the running instances and also historical data is made available to learn about usage patterns.

The key metrics that CloudWatch monitors are:

- CPU utilization, the percentage of the CPU(s) that are currently in use.
- The number of bytes received and sent on all network interfaces.
- Completed write and read operations to all disks to identify the rate at which the instance is writing/reading to disks.
- The number of bytes written and read from all disks to identify the volume of the data the instance is writing/reading to disks.

These metrics are read at an interval (every minute is the maximum frequency) from the nodes and besides just aggregating the raw data, CloudWatch also provides the minimum, maximum, sum, average and samples of the data for any given period that the service has been active.

Amazon AutoScaling

Amazon offers a simple autoscaling[2] API to automatically horizontally scale your EC2 instances based on some predefined conditions. The API is called Auto Scaling. This means that Amazon will monitor the system metrics (using Amazon CloudWatch) and based on some conditions of the metrics will boot more instances or terminate some of the running instances.

The Amazon AutoScaling introduces couple of concepts that are used when defining an autoscaling cluster.

AutoScalingGroup represents an application on the cloud that can horizontally scale. The group has the minimum and maximum number of instances defined. It also has a *Cooldown* defined which is the amount of time after a scaling activity completes before any further autoscaling can happen.
Launch Configuration defines the EC2 instance that will be used to scale the AutoScalingGroup. It is a combination of an AMI and the configuration of the instance (CPU, RAM, etc.).

Trigger mechanism has defined metrics and thresholds that initiate scaling of the AutoScalingGroup. A Trigger consists of a Period and a BreachDuration. The Period controls how often Amazon CloudWatch measures the metrics and BreachDuration determines the amount of time a metric can be beyond its defined limit before the Trigger fires.

Tools

Amazon cloud services are exposed as a collection of web services. They are accessed over the HTTP using REST (REpresentational State Transfer) and SOAP[23] protocols. Amazon offers libraries for many different programming languages and platforms. The bare minimum package is called ec2-tools and those shell commands are sufficient to manage a cluster (boot and terminate instances, manage storage, networking etc.).

There are numerous tools out there that gives users the functionality of provisioning computing power and managing their storage with a click of a button instead of running multiple commands in the command line interface. Either browser plugins or command-line tools, they are front-ends to the public web services.

2.1.2 Eucalyptus Services

Eucalyptus is an open source software framework for cloud computing. It was first introduced in 2009 and one of the main reasons behind the creation of it was that all main cloud providers were and are still closed systems with open interfaces. The tools for researchers interested in pursuing cloud-computing infrastructure were mostly missing.

“The Eucalyptus software package gives the users the ability to run and control entire virtual machine instances deployed across a variety physical resources”[29]. Compared to other open offerings (Usher[27], Enomalism[10]) Eucalyptus was designed to be as easy to install and as non-intrusive as possible to resource needs. Small scale experiments can be run off of a laptop.

Eucalyptus Equivalent Services

Eucalyptus machine images are quite similar to Amazon AMIs. They are compressed, encrypted, split file systems containing the operating system. They do need different
kernel modules as the underlying IaaS system is different from AWS but the changing of modules can be achieved by mounting the machine image and making appropriate changes to them.

“The Eucalyptus cloud computing system has implemented exactly the same interface as Amazon EBS based on the ATA over Ethernet[19] (AoE) technology”[4]. This makes data transmission over the network quite efficient as AoE runs directly on Ethernet and no TCP/IP overhead incurs. This approach does require that the disk volume server and the node using the volume both to be in the same LAN or at least in the same VLAN.

Walrus is a storage service bundled with Eucalyptus that is interface compatible with Amazon’s S3. This means that one can use Amazon tools or other Amazon compliant tools to interface with Walrus. We will be using Walrus to store our private cloud AMI files.

There is no CloudWatch equivalent in the Eucalyptus software stack. We emulated this via custom metrics gathering explained in section 3.2.2 and for visualization of metrics used a generally available monitoring tool called Ganglia[26] which is used for monitoring high-performance systems such as clusters and grids(this is explained in more detail in section 3.2.3).

There is no AutoScaling equivalent in the Eucalyptus software stack. We emulated this by hard coding the minimum and maximum number of nodes into our custom autoscaling framework. We did borrow the concepts of period and breach duration and cooldown in our custom autoscaling framework.

Our experience shows that most tools that work with AWS are not feature complete when using them with Eucalyptus services. We stumbled upon many occasions where only a very specific version of a tool would work with Eucalyptus and then with limited functionality. Also while Amazon web services have GUIs for most tasks then with Eucalyptus you need to use the command line interfaces.

2.1.3 Access Credentials

There are three types of access credentials that can be used to authenticate client’s requests to the AWS and Eucalyptus services. We will be using two of them.

Access keys are to make secure REST requests to any AWS/Eucalyptus service APIs. The access key consists of an Access Key ID and a Secret Access Key. All requests include the Access Key ID in a readable format and it identifies the person
making the request. The Secret Access Key should be kept in private and is only known to the AWS/Eucalyptus and to the person making the request. All requests are signed with this Secret Access Key and AWS/Eucalyptus checks the signature on every request.

Key Pair is a pair of a public and a private key that are associated with a name. This key pair is required to connect to the EC2 instances via SSH. When creating an AMI, the public key is put in there by AWS/Eucalyptus and only the holder of the private key has access to that machine initially.

2.2 MapReduce and Apache Hadoop

2.2.1 MapReduce

The MapReduce programming model to support distributed computing on large data sets on clusters of computers is patented by Google Inc. and was first published in 2004, the patent was granted in 2010[20]. In this programming model users specify a map function that iterates key/value pairs to produce a set of intermediate key/value pairs and also a reduce function that will merge all intermediate values associated with the same intermediate key.

Programs written in this manner can easily be run in a special MapReduce runtime in such a way that partitioning input data, scheduling execution across the cluster, handling machine failures and inter-machine communication are all managed and provided by the runtime and is hidden from the developer of the algorithm.

The advantage of MapReduce is that the processing of the map and reduce operations can be distributed and very often they can run in parallel. This means that one can dynamically increase the processing power of the underlying system by adding more nodes and thus get results faster.

Today there are many implementations of MapReduce, both commercial and open source. The original Google framework was written in C++, todays implementations include Java, Ruby, Python, Erlang and many others. There is an implementation of MapReduce that runs on GPUs[24] instead of CPUs.

In 2004 when the paper on MapReduce was published, already hundreds of programs had been implemented in this fashion and thousands of MapReduce jobs were executed on Google’s clusters every day[21]. In 2008 Yahoo! announced launching the world’s
largest Hadoop production application with more than 10 000 CPU cores[1]. From the same year Facebook stated to have multiple Hadoop clusters, the biggest having 2500 CPU cores and 1 PB of disk space.

2.2.2 Apache Hadoop

Apache Hadoop is an implementation of MapReduce. Google licensed the patent of MapReduce to the Apache Software Foundation and it was made public on one of Apache’s mailing lists in April 2010[11].

The project consists of multiple sub-projects of which we will be using just a few. They are (listed from [8]):

Hadoop Common consists of the common utilities that support the other Hadoop sub projects.

MapReduce is a software framework for distributed processing of large data sets on compute clusters.

HDFS is a distributed file system that provides high throughput access to application data.

A simple Hadoop cluster consists of $n \geq 1$ machines running the Hadoop software. The cluster is a single master cluster with varying number of slave nodes. All slave nodes besides computing MapReduce jobs also act as data replication stores. This follows the approach that it is more cost-effective and time-efficient to move computing closer to data than moving data closer to the computation.

Hadoop MapReduce

The Hadoop master runs a daemon called **JobTracker**. Users submit their MapReduce jobs to this daemon. The **JobTracker** redistributes these jobs to the slave nodes where a daemon called **TaskTracker** runs. The **JobTracker** tries to make sure that it pushes the work to the **TaskTrackers** that are closest to the data of that task to avoid unnecessary IO operations.

Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity hardware[18]. HDFS is highly fault-tolerant, provides high throughput access to application data and is suitable for applications that have large data sets.
HDFS runs two system daemons. The NameNode and the DataNode. There is a single NameNode that manages file system namespace and regulates access to files by clients. Internally all files are split into blocks of data and these are stored in DataNodes. By default all blocks are replicated to 3 different DataNodes. The NameNode is responsible that all operations like opening, closing, renaming of files and folders are replicated to the DataNodes to make sure that the data is consistent. A DataNode also runs on the machine that runs the NameNode. The responsibilities of these nodes and their interactions are illustrated on figure 2.1.

Figure 2.1: HDFS NameNode and DataNodes

HDFS is in no way limited to running MapReduce jobs. This file system can be used by any other application out there that requires a distributed file system.

2.2.3 Apache Hadoop by an Example

To better understand MapReduce, Hadoop and HDFS we will walk through a small example. We will be using a demo application that comes bundled with the Hadoop distribution, called WordCount. The application reads text files and counts how often all the words in the file occur.

We will not give the full explanation of the commands used nor the full source code of the application but instead show you the process in terms of a command line session and explanations of the Java implementations of the map and reduce methods for this example.
We will start off by creating a folder on the HDFS by issuing a command `hadoop dfs -mkdir our-input-folder`. This will create a folder `our-input-folder` on the HDFS and it will get replicated to multiple nodes on the cluster. We will copy some files from the local file system to the HDFS by issuing `hadoop dfs -copyFromLocal my-books our-input-folder`. This will copy the folder `my-books` to the HDFS folder `our-input-folder`. Our `map` and `reduce` jobs will read the data from the HDFS and the folder `our-input-folder` will contain the necessary books in which we want to count all the words.

Implementing the Map and Reduce Methods

Next we will implement the actual `map` and `reduce` methods. In listing 2.1 we have the Java implementation of the `map` method. Once the method is called with a `key` and `value`, the `key` is disregarded and the `value` is split based on delimiters. The split values are put into a key/value map, the keys will be the strings produced by the split and the value will be a constant 1.

```
Listing 2.1: Map Method

Text word = new Text();
// value − input to the Map method
String line = value.toString();
// will tokenize based on delimiter character
// set, which is  "\t\n\r\f". Delimiter characters
// will not be tokens
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
    word.set(tokenizer.nextToken());
    // output is a Map of keys and values
    // one is a constant 1
    output.collect(word, one);
}
```

There will be running multiple `map` function in parallel on different nodes. They will be reading the input data from a close-by HDFS `DataNode` (preferably from the one that is running on the same node) and writing output to local storage as illustrated in figure 2.2.

In listing 2.2 we have the Java implementation of the `reduce` method. The `reduce` method is invoked with key/value pairs where the `key` is a word that was produce by the
split from listing 2.1 and value is a list of all those values from listing 2.1.

Listing 2.2: Reduce Method

```java
int sum = 0;
// values – a list of all the values that
// are under the same key
while (values.hasNext()) {
    sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
```

Behind the scenes Hadoop has sorted the whole output of the listing 2.1 and grouped by the key and now invokes the reduce method with the key and the list as the value. The instances of the reduce method are run in parallel and they write output data to our-output-folder. Figure 2.3 illustrates this process.

Running the Job

A MapReduce job besides having the map and reduce implementations also has some meta information associated with the job. For example the default input and output folders should be defined for the job. The WordCount example uses parameters from the command line for that purpose. We now run hadoop jar hadoop-0.20.0-examples.jar wordcount our-input-folder our-output-folder. The our-output-folder will be created automatically by Hadoop for us. We can see the output of the command in listing 2.3.
The results of Map Phase have been sorted by the key and provided to the reduce function as key/value (value is a list of 1s in our example).

Node 1
split 1 of our-input-folder

Node ...
split ... of our-input-folder

Node n
split k of our-input-folder

Output is written to our-output-folder

Figure 2.3: The Reduce Phase

Listing 2.3: Hadoop Output

```
01:52:55 INFO input.FileInputFormat: Total input paths to process : 1
01:52:56 INFO mapred.JobClient: Running job: job_201005210147_0001
01:52:57 INFO mapred.JobClient: map 0% reduce 0%
01:53:06 INFO mapred.JobClient: map 100% reduce 0%
01:53:18 INFO mapred.JobClient: map 100% reduce 100%
01:53:20 INFO mapred.JobClient: Job complete: job_201005210147_0001
01:53:20 INFO mapred.JobClient: Counters: 17
01:53:20 INFO mapred.JobClient: Job Counters
01:53:20 INFO mapred.JobClient: Launched reduce tasks=1
01:53:20 INFO mapred.JobClient: Launched map tasks=1
01:53:20 INFO mapred.JobClient: Data-local map tasks=1
01:53:20 INFO mapred.JobClient: FileSystemCounters
01:53:20 INFO mapred.JobClient: FILE_BYTES_READ=14350
01:53:20 INFO mapred.JobClient: HDFS_BYTES_READ=18424
01:53:20 INFO mapred.JobClient: FILE_BYTES_WRITTEN=28732
01:53:20 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=12405
01:53:20 INFO mapred.JobClient: Reduce input groups=483
01:53:20 INFO mapred.JobClient: Combine output records=483
01:53:20 INFO mapred.JobClient: Map input records=169
01:53:20 INFO mapred.JobClient: Reduce shuffle bytes=0
01:53:20 INFO mapred.JobClient: Reduce output records=483
01:53:20 INFO mapred.JobClient: Spilled Records=966
01:53:20 INFO mapred.JobClient: Map output bytes=21591
01:53:20 INFO mapred.JobClient: Combine input records=995
```
To work with the actual results we need to copy a file created in the our-output-folder to local disk and then read it. To find out the name of the file we can issue a hadoop dfs -ls our-output-folder that will print the contents of the folder and then issue hadoop dfs -cat our-output-folder/filename to quickly inspect it.
Chapter 3

Results

Our main goal is to build a dynamic MapReduce cluster using the Hadoop implementation. The cluster will scale itself based on the load of the cluster. The cluster can be run both in a public and a private cloud. We also want to monitor and debug the cluster in real-time to find out a good autoscaling strategy or to fine-tune one.

We chose Amazon Web Services (AWS) as our public cloud provider and the Eucalyptus private cloud software running at the Scientific Computing on the Cloud (SciCloud) at the University of Tartu as our private cloud provider.

We chose the Apache Hadoop project as the MapReduce implementation because it is open source software, platform agnostic and there is plenty of documentation available for installing, configuring, debugging and running a Hadoop installation.

Our results will be of production quality on the AWS and of testing quality on the SciCloud. This is mainly due to the fact that SciCloud Eucalyptus cluster is still in beta phase and it was easier to fine tune our AMIs in a production level IaaS. It was also possible to provision more machines at a time in AWS than currently available in the SciCloud infrastructure.

3.1 Autoscalable AMIs

3.1.1 Requirements

To run a Hadoop cluster we will need at least two AMI files. One to act as the Hadoop master and one to act as a Hadoop slave. We require that only one Hadoop master is running at a time and that is always started before a single Hadoop slave has been booted.
We do not require any human intervention to run the Hadoop cluster but we do want to monitor the status of the cluster. We also might need to start the first master instance manually when there are no instances running yet. For these reasons we define a web service that we call the Control Panel. The Control Panel is running on a separate machine and is only accessible to the cluster via HTTP. We presume that the Control Panel is constantly running.

Our architecture requires all AMI instances to start their Hadoop daemons (slaves start slave daemons, master starts master daemons) on boot time and then inform the Control Panel of their status. We also require them to send a heartbeat to the Control Panel to have an overview of the size of the cluster and its load.

We require that our Hadoop cluster is dynamic, e.g whenever a new Hadoop slave node is booted, it joins the already running cluster after boot without any human intervention.

We require that all instances have ample disk space at their disposal. First option would be to make our AMIs large enough for the Hadoop data but this would also slow down the booting of the AMIs significantly. The storage needs to be external to the AMIs.

We also require that the AMIs do not depend on a specific AWS or Eucalyptus user and the cluster can be set up by any user by just configuring her access credentials (see section 2.1.3) at the Control Panel.

Our end goal is to have AMIs that require no human intervention to boot or terminate themselves. No human intervention shall be required to even create or join the Hadoop cluster. All is managed by the startup procedures of the AMIs and we can monitor the success of this from the Control Panel.

3.1.2 Meeting the Requirements

The Master and Slave AMIs

We chose Linux as for the underlying operating system. On the AWS we built our images using Debian 5.0 and on the Eucalyptus we chose Ubuntu 9.0. On Eucalyptus we chose Ubuntu instead of Debian because of the easier setup of Ubuntu in the Eucalyptus environment.

We are running the latest Hadoop stable release which is 0.20.2 at this moment. We
are using Java HotSpot 1.6.0.20 for running Hadoop. Our machines have 1.7 GB of RAM and are single CPU core units. Besides Hadoop we have a minimal set of services running and most of the resources are for Hadoop to use.

We constructed two AMIs for both Eucalyptus and AWS. One being the Hadoop master and the other one the slave image. Hadoop wise the differences are the number of services that are running. The different services on master and slave nodes are outlined in table 3.1.

Dynamic Scaling of a Hadoop Cluster

Hadoop has two types of slave configurations. One is to specify all slave IPs in a file on the master instance. This provides a single location to add and remove slaves and also control the life cycle of the slave daemons in one central place. A single command on the master server can stop or start all the slaves of the cluster.

The other approach is more dynamic and requires the slave to know the IP of the master server. Once the **TaskTracker** and **DataNode** daemons are started on the slave node they connect to the master node and let her know of their existence. The dynamic approach does not provide a single location to control all the slave nodes but it does have the feature of adding or removing slave nodes without making any configuration changes to the master node.

In our configuration we chose the latter. This requires us to know the IP of the master server before starting the slave instance. We achieve this by requiring that a master instance is running before a single slave machine is started.

Once the master server starts it will report its IP to the Control Panel. Control Panel will save this IP as the master IP. During boot time of the slave nodes, the slave nodes will query the Control Panel for the master IP. The slave nodes will take this IP
update its system configuration to reflect that this is the IP of the master and then start the Hadoop services. This is illustrated in figure 3.1.

We implemented this IP sharing by using a host, named master in all our Hadoop configuration files and then updated the IP of that host in the /etc/hosts file. During the booting of the slave machine it queries the Control Panel for the IP address of the master Hadoop instance and upon receiving the IP it writes a line to its /etc/hosts file and then start the Hadoop services.

![Figure 3.1: Startup of Master and Slave Instances](image)

Ample Disk Space

To keep our AMIs as small as possible we will be using external storage to facilitate the needs of data storage. For the storage we will be using EBS volumes. The creating and managing of the EBS volumes will be handled by the Control Panel and instances will talk to the Control Panel via web service to request the volume.

When an instance boots it will notify the Control Panel that it is in need of external storage. The Control Panel will then create the volume and attach it to the instance that requested the volume. The instance will poll the Control Panel until it gets notified that the volume has been successfully created and attached. Figure 3.2 illustrates the process.

The instance will then mount the attached disk, format it with a file system and then create the necessary folder structure for Hadoop. Once all this is done, Hadoop services are started.

We used this approach only at the SciCloud due to the size limitations to the AMI files (at the time of experimenting it was 2 GB). At AWS we used 20 GB EBS AMI files and did not implement the attaching of external storage.
Conclusions

While building our AMI files we were able to meet the requirements that we had set. We created 4 AMI files altogether, 1 master and slave pair for the AWS and one pair for the Eucalyptus. The Eucalyptus AMIs running Ubuntu Linux and AWS AMIs run Debian Linux.

On boot the master instance notifies the Control Panel of its IP before starting the Hadoop services. The slave machines on the other hand request the Control Panel for the IP of the master and only then are the Hadoop services started. This approach will guarantee that the slaves will be able to join the Hadoop cluster automatically on boot.

We solved the problem of having enough disk space by supporting the automatic creation and attaching of EBS volumes. We took this approach only for the Eucalyptus images due to the current limitations of the SciCloud and used larger EBS images on AWS and did not enable this feature there.

Our AMIs do not contain any access credentials of any users. Instead of letting the AMIs find out the master IP by doing AWS API calls or creating and attaching storage themselves we have delegated all API calls to the Control Panel. Control Panel has the required access credentials to create and attach volumes, boot and terminate instances.

3.2 Hadoop Load Monitoring

The size and the load of our Hadoop cluster can be very dynamic. Depending on the jobs that Hadoop is running the load of the nodes can change. Depending on the actions
of our autoscaling framework the size of the cluster can change. We want to monitor the size and the performance metrics of our cluster.

We started out by requiring all the nodes to send a heartbeat every minute to the Control Panel. This gives an overview of the number of slaves in the cluster and also the IP of the current master.

We wanted to keep the heartbeat and the gathering of system performance metrics separate. This lets us replace one of the systems without changing the other. We started reporting the metrics that were monitored in The Blind Men and the Elephant: Piecing Together Hadoop for Diagnosis[31].

After collecting the metrics we realized that this is not enough. We need to visualize the data, store historical data, run comparisons and monitor the cluster loads in real-time. We upgraded our reporting to the Ganglia system. Now we were able to monitor our cluster near real-time with automatic history and with graphs of the metrics gathered.

3.2.1 Heartbeat

We setup all our nodes to run a `wget` against our Control Panel every minute via `cron`. The IP of the node and a boolean flag if this node is a master or not are embedded into the request as GET parameters. At the Control Panel the request is logged and the IP is entered with the master flag into a database. We say that the node is down if the Control Panel has not heard a heartbeat from the node for 3 minutes.

3.2.2 System Metrics

We decided to gather the metrics that were gathered in [31]. In that thesis the metrics were used to identify resource hogs, application hangs and also localize the fault to a subset of slave nodes in a Hadoop cluster. The metrics were:

<table>
<thead>
<tr>
<th>metric</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>user</td>
<td>% CPU time in user space</td>
</tr>
<tr>
<td>system</td>
<td>% CPU time in kernel space</td>
</tr>
<tr>
<td>iowait</td>
<td>% CPU time waiting for I/O</td>
</tr>
<tr>
<td>ctxt</td>
<td>context switches per s</td>
</tr>
<tr>
<td>runq-sz</td>
<td># of processes waiting to run</td>
</tr>
<tr>
<td>plist-sz</td>
<td>total # of processes and threads</td>
</tr>
<tr>
<td>ldavg-1</td>
<td>load average in the last min</td>
</tr>
<tr>
<td>bread</td>
<td>total bytes read from disk /s</td>
</tr>
<tr>
<td>bwrtn</td>
<td>total bytes written to disk /s</td>
</tr>
<tr>
<td>eth-rxbyt</td>
<td>network bytes received /s</td>
</tr>
<tr>
<td>eth-txbyt</td>
<td>network bytes transmitted /s</td>
</tr>
<tr>
<td>pgpgin</td>
<td>KBytes paged in from disk /s</td>
</tr>
</tbody>
</table>
To extract these metrics we used the the `sar` utility from the `sysstat`[22] package. We wrote a Python daemon wrapper around the tool to report the metrics from the node, accompanied by the IP of the node to our Control Panel. The metrics are sent every 30 seconds. The Control Panel saves all this information into a database with a timestamp for later inspection.

After running tests (see section 3.3.1 and 3.3.2) on the cluster we extracted the system metrics from the Control Panel and used everyday tools such as Microsoft Excel to understand which metrics correlated to the cluster load and changes in the cluster size.

Hadoop is a complex piece of software and the MapReduce jobs vary a lot in CPU and data needs that making assumptions based on these black box metrics weather to add or remove nodes is a difficult task. Although running the same tests multiple times on the same vanilla cluster we were not getting deterministic results.

We decided that we need to visualize the metrics in real-time to better understand the load of the cluster while the tests are running. We moved on to Ganglia for the performance metric analysis.

3.2.3 Ganglia

Ganglia is an open source software tool that monitors high-performance systems such as clusters and grids. It consists of `gmond`, `gmetad` and a web front end. `Gmond` is a multi-threaded daemon that runs on all the nodes and reports back information to `gmetad`. `Gmetad` gathers the metrics, archives them and generates reports. It uses internally the `rrdtool`[30] for data logging and graphing. The data is visualized by the web front end bundled with Ganglia.

Ganglia offers a complete solution for monitoring, visualizing and archiving the system metrics. It offers the monitoring of over 30 metrics out of the box without any special coding. A screenshot of Ganglia reporting for our Hadoop cluster is illustrated in figure 3.3.
Figure 3.3: Screenshot of Ganglia
3.2.4 Amazon CloudWatch

Amazon also offers a service for monitoring the performance of an EC2 instance as explained in section 2.1.1. We did not consider this as an option because there is no equivalent in the Eucalyptus software stack and we would like to target both platforms with the minimum number of software tools and APIs.

3.2.5 Conclusions

The nodes of our cluster send heartbeats to the Control Panel every minute. This helps us to determine the size of the cluster and log and update the IP address of the master node. We also log different performance metrics of each node every 30 seconds via custom Python script into a database with the IP of the machine. To visualize the data we use a third reporting system called Ganglia. We did not use the AWS CloudWatch service due to the fact that there is no CloudWatch API compliant service for Eucalyptus. Overview of the architecture is illustrated in figure 3.4.

The reason for 3 services instead of one is that we wanted to keep the heartbeat and gathering of performance metrics separate so that we could replace one of them when we feel the need. Ideally we would want to run 2 services at most, a heartbeat and gathering of performance metrics. We see that the correct approach to take here currently is to disable the gathering of custom metrics and rely solely on Ganglia. We cannot do that until we are able to programmatically (not just visually) extract the data from the `gmetad`.

Ideally we would like to see a AWS CloudWatch API compliant subsystem for Eucalyptus so that we could have one API for both AWS and Eucalyptus but until then we think Ganglia is the best tool for the job.

![Monitoring Architecture](image-url)
3.3 Generating Test Load

To observe real world system metrics and test our cluster we need to run real world MapReduce jobs on it to generate load and disk utilization. We chose to use the HDFS Synthetic Load Generator and the sort example both bundled with the Apache Hadoop project.

3.3.1 HDFS Synthetic Load Generator

The Synthetic Load Generator (SLG) is designed for testing NameNode behavior under different client loads. In our tests we used the default settings to generate the directory structure and the random files. Then we ran the load generator and collected system metrics. This test provides only HDFS level load generation, CPU is not involved and it is mainly either disk IO or network IO.

3.3.2 Apache Hadoop Sort Benchmark

The Apache Hadoop Sort Benchmark consists of two steps. The first is to generate random data. The default settings are to generate 1 TB of data. In our examples we tweaked that to be 5 GB instead. This way we were able to run more tests in the same time frame and we did not have to increase the storage size. The generating of 5GB data on a 4 node cluster takes about 10 minutes. The second step is to sort the data.

This benchmark gives a significant load to the cluster. Even on a small cluster (10 Hadoop Nodes) the load spiked as high as 20 on some nodes. It also introduces real world like data transfer between the nodes and we were able to monitor different system metrics of the nodes.

3.3.3 Identifying Relevant Metrics

Through our testing we recorded 15 000 entries from 80 different IP addresses in the metrics table. We did not run any statistical analyzes on the data as we were not able to get even similar cluster average loads when running the same MapReduce job on the same data. We did choose the load average to be the metric to continue with in our experiments and defining our autoscaling strategy.

3.3.4 Conclusions

We have configured our AMIs to be single CPU units that have 1.7 GB of RAM (the AWS Small Instance) and 20GB of storage. The Hadoop configuration lets a single node
run up to 4 tasks, 2 map tasks and 2 reduce tasks.

Our observations show that an average load\(^1\) for this kind of node, when all task slots are utilized is 10. This is large and we should decrease the number of slots per node or increase the CPUs of the node.

Hadoop optimizes the jobs for highest efficiency, meaning that when it sees that a machine has 2 map task slots and 2 reduce task slots, it will use all of those when scheduling jobs. It is up to us to configure the proper number of tasks that are suitable to the hardware that we are running.

In table 3.2 we can see that these high loads do not produce consistent results. Multiple processes waiting for CPU\(^2\) time can have negative effects on the outcome due to thread thrashing\(^3\).

Once we increased the number of nodes to 4 we did not see the sorting going any faster, it ran actually slower. After 2 more runs we were able to get the time to be 24 minutes which is 6 minutes faster than a single node run. Then we ran the same test with 10 nodes and observed a healthy decrease in time it took.

We also ran the same tests with instances that had 2 CPU cores. The outcome did not differ much. A single run finished in 24 minutes, 4 node run was a little bit faster and without the thrashing side effects. The 11 node run was just 1 minute faster than compared to the 1 CPU core run. Our analysis of the results tells us that with proper configuration of number of slots we can get more deterministic results and that there is a point from which we cannot go any faster even if we increase the processing power by two.

3.4 Autoscaling Framework

We built AMIs that on boot start the Hadoop services, we also configured the Hadoop installations in a way that on start they join a cluster. On each node we also have configured metric gathering to assess the load of the cluster from a central location. Now we will put these all together into a autoscaling framework.

\(^1\)Average number of processes waiting for the CPU or IO. Idle computer has a load 0, each waiting process adds a 1.

\(^2\)We say CPU bound because we had defined 4 times more task slots than CPUs.

\(^3\)Program makes little progress because of the excessive context switching.
3.4.1 Load Average Autoscaling

We chose to scale our cluster based on the average load. The period during which the average load has to surpass the threshold is 10 minutes and the threshold is also 10. Also once the autoscaling framework has taken action we want to introduce a cooldown period. During this period our framework should not make any changes in the size of the cluster. This time is meant for the new nodes to join the cluster and wait to be utilized.

3.4.2 Amazon AutoScaling

Defining the autoscaling with Amazon AutoScaling has been made relatively easy. We need to define a `AutoScalingGroup` with our custom Hadoop AMIs and the hardware specification (in our case the `Small Instance`) and then create a `Trigger` on CPU utilization that is over 1000% with a `Period` of 1 minute and `BreachDuration` 10 minutes. Also we need to define the minimum and maximum number of instances that we are willing to use.

Amazon AutoScaling will start monitoring the CPU utilization of the whole cluster every 1 minute. Once it observes that the CPU utilization has been 1000% for 10 minutes it will start up another instance.

The cons of the Amazon AutoScaling is that it is not supported in Eucalyptus and it depends on Amazon CloudWatch which is not supported in Eucalyptus either.

3.4.3 Custom Scaling Framework

Our custom scaling framework is a PHP script that analyzes the performance metrics gathered by our Python script described in section 3.2.2. This PHP script runs at the Control Panel and is invoked every minute via `cron`.

The script identifies all alive slave instances that have been up for at least 10 minutes and calculates the average load for the cluster by taking the arithmetic mean of the reported
ldavg-1. If this value is greater than 10 we will launch 3 more instances but not exceeding our defined maximum which is 10 in our case. For the next 15 minutes there will be a cooldown period when our PHP script will not take any action. This will give time for the new instances to boot and join the cluster and start working. The logic is illustrated in figure 3.5.

![Flowchart Illustrating Autoscaling Logic](image)

Figure 3.5: Autoscaling Logic

3.4.4 Scaling the Cluster Down

So far we have only looked at increasing the size of the cluster and we have not mentioned scaling down. We do not want waste resources and it is a logically step to scale our clusters down when there is not enough load.

Our naive approaches of shutting down slave nodes after a period of low load of the cluster resulted in inconsistent data in the HDFS. This was due to the fact that each node holds a piece of the data and the default configuration is to have 3 replicas of each block. Once the 3 nodes holding those replicas are shutdown the data is lost.

The safest way is to turn off instances one by one and after every turned off instance notifying the **NameNode** about the decommissioned node. There is also an administrative tool **balancer** provided with the Apache Hadoop project that can be used to re-balance a changed cluster.
3.4.5 Apache Hadoop and Cluster Changes

We ran the same tests as described in section 3.3.4 with a dynamic cluster. The cluster was already running and had 4 nodes. The nodes were sorting 5 GB of data and all the map tasks had already finished. Our autoscaling framework added 3 nodes to the cluster that had already for 11 minutes been sorting data.

We observed that the moment the 3 nodes had joined the cluster there were 7 reduce tasks running on the 4 nodes. Hadoop started copies of the same running reduce tasks on the new nodes to utilize the new nodes.

This shows how inefficient it is to autoscale a Hadoop cluster based on the load. Now we had 7 nodes of which 5 were running the same reduce tasks competing with each other. This also shows that there is room for tweaking the strategies of MapReduce implementations on how to act to cluster size changes. The new nodes can be used for jobs in the queue instead of competing with each other.

3.4.6 Conclusions

We decided to scale our cluster based on the average load of the cluster. If the average load of the cluster exceeds a limit for a duration of some time the cluster will resize by \(n \) number of nodes and then wait for a period of time before taking any further action to give the cluster time to start to utilize the newly added nodes.

It is really difficult to efficiently scale a Hadoop cluster based on the average load or even based on any other black box performance metric. Hadoop will schedule its jobs for maximum efficiency of the cluster. This means that even when the size of the cluster is increased Hadoop will divide the computations for a larger set of nodes and will make sure that all of them are fully utilized.

More important to efficient scaling are the white box metrics of a Hadoop cluster. In this thesis we have not gathered them but when running the tests we have observed them and seen that knowing the queue size of the cluster can greatly benefit the decision made by an autoscaling framework. For example if the load of the cluster is 10 but there are only 5 reduce tasks running and the size of the cluster is also 5 our framework will launch 3 more instances. If we knew that there are no more jobs in the queue we would not start those 3.

Scaling down a Hadoop cluster is not an easy task as all nodes also hold a portion of the data in the HDFS and we do not want to introduce data loss. There is no easy
way to scale down by terminating multiple instances at a time but there are ways to scale
down the cluster by taking nodes offline one by one and then between the steps forcing
data replication to other nodes.
Chapter 4

Future Work

4.1 Hadoop Autoscaling as a Scalr Module

Scalr[13] is an open source framework that scales web infrastructure. One can define a website that she wants to scale then describes the infrastructure that she is willing to use to run that website. The she can choose between different scaling options.

- Scaling based on the time and day of the week
- Scaling based on bandwidth usage
- Scaling based on load averages
- Scaling based on SQS queue size
- Scaling based on RAM usage.

Scalr will use the chosen strategy to autoscale the website. The metrics will be extracted from the load balancer instance that is in front of the website using the AWS CloudWatch service.

We think that it is relatively easy to add Hadoop support into Scalr. We have already created the necessary autoscaling AMIs that Scalr needs to boot and terminate. We still would need to enhance Scalr to use other performance metrics providers than just CloudWatch and then define Hadoop specific strategies for the scaling. Supporting Eucalyptus IaaS instead of just AWS would make this software stack fully open source and free of charge for a private cloud.

We also think that the combination of this software stack (Eucalyptus + Scalr + Ganglia + Hadoop + Scaling framework) can be offered as a product to companies that use
MapReduce to analyze their data. It will provide an easy management of the platform and can make more effective use of the underlying resources.

4.2 White Box Metrics

In this thesis we only looked at black box metrics and did not consider any white box metrics from the running Hadoop processes. Hadoop offers out of the box different metrics of the running processes, they are organized into contexts. The contexts are:

jvm context contains basic JVM stats. Memory usage, thread counts, garbage collection, etc.

dfs context contains NameNode metrics of the file system. The capacity of the file system, number of files, under-replicated blocks, etc.

mapred context contains JobTracker and TaskTracker counters such as how many map/reduce operations are currently running or have run so far. How many jobs have been submitted, how many completed, etc.

These metrics can also be valuable to working out Hadoop specific autoscaling strategies. Ganglia has a Hadoop extension that lets Hadoop feed these metrics into the Ganglia system. This gives an easy way to monitor and visualize these metrics without any significant changes to the AMI files.
Conclusions

We have presented our framework for autoscaling Hadoop clusters based on the performance metrics of the cluster. The framework will gather heartbeats, performance metrics and based on the data start more instances. Hadoop will start using the new instances and jobs get executed faster.

We have created and configured AMI files that are full featured Linux installations ready to run on either a public cloud infrastructure (AWS) or on a private cloud infrastructure. The AMIs setup the heartbeats, metric reporting, Hadoop startup and cluster joining automatically during boot time.

We have also created a set of web services called the Control Panel that handle metric logging, help Hadoop nodes join the cluster, attach external storage and provide an overview of the cluster.

As future work we see that proper autoscaling for a Hadoop cluster is not based on a black box performance metric but based on a combination of white box metrics and black box metrics. Hadoop exposes many metrics that can be used to predict the work load of a cluster and thus make better adjustments to the size of the cluster to facilitate the increasing or decreasing demand.

We also see that the open source software stack Eucalyptus, Hadoop, Ganglia and Scalr in combination can be commercialized into a product. Scalr would serve as front-end for end users to configure their cluster size and type and also the required scaling strategy. Eucalyptus would provide the IaaS services running Hadoop. Ganglia would be handling all the metric extraction.
Autoscaling Hadoop Clusters

Toomas Rõmer

Magistritöö

Kokkuvõte

Google nimetas oma lähenemist MapReduceks. Tänaseks on tekkinud mitmeid implementatsioone selle platvormile.

Antud töös me ehitame ise sklaleeruva MapReduce platvormi, mis baseerub vabalähtekoodiga tarkvara Apache Hadoop projektil. Antud platvorm skaleerib end ise, vastavalt serverite koormatuusele käivitat uusi servereid, et kiirendada arvutusprotsessi.

Tööga on kaasas nii Amazon kui ka Eucalyptus pilve teenustele sobivad Linuxi installatsioonide tömmised, mis on konfigureeritud automaatselt raporteerima enda koormust ning ühinema juba olemasoleva MapReduce arvutusvõrguga. Kõik relevantsed konfiguratsiooni failid ning skriptid on kättesaadavad versioonihalduse repositooriumist aadressil svn://dougdevel.org/scicloud/trunk/enter/hadoop/trunk/.
Bibliography

