
UNIVERSITY OF TARTU

Institute of Computer Science
Computer Science curriculum

Andres Traks

.NET and C++ Interoperation

Master’s Thesis (30 ECTS)

Supervisor: Siim Karus, PhD

Tartu 2016

.NET and C++ Interoperation

Abstract: C# is a modern programming language aimed at code robustness and devel-
opment productivity, but it cannot compete with C++ in performance. The best of both
worlds can be had by interoperating between the two languages.

However, C# as a .NET language follows a different paradigm than C++ in many
ways. For example, .NET cleans up memory using automatic garbage collection while
C++ requires memory to be freed explicitly. Low-level memory access is natural in C++,
but is strictly controlled in .NET. Not to mention differences in naming conventions and
semantics.

This paper describes two approaches to creating an intermediate layer between .NET
and C++ (Platform Invoke and C++/CLI) by making a wrapper interface around C++
code, explains how to overcome memory management and performance issues and in-
troduces a framework for automatically generating the interface. By combining .NET
and C++, developers can build their application in a safe and productive manner without
sacrificing speed in performance-critical parts of the code.

Keywords: .NET, C++, wrapper, interface, intermediate layer

CERCS: P170 Computer science, numerical analysis, systems, control

Suhtlus .NET-raamistiku ja C++-i vahel

Lühikokkuvõte: Käesolev töö kirjeldab, kuidas realiseerida koostöö kahe erineva prog-
rammeerimiskeskkonna, .NET-raamistiku ja programmeerimiskeele C++ vahel.
.NET-raamistikku kasutades on arendaja produktiivsus suurem, kuid C++-is kirjuta-
tud programmidel on parem jõudlus. Seega on eesmärk kasutada tarkvara arendamisel
.NET-keeli (nt. C#), kuid jõudlus-kriitilistes kohtades kutsuda välja C++-koodi. Selleks
tuleb luua vahekiht kasutades tehnoloogiaid Platform Invoke või C++/CLI.
Töös kirjeldatakse vahekihi ülesehitust, selle loomise etappe ning tutvustatakse projekti,
mis loob vahekihi automaatselt. Vahekihi automaatne loomine aitab vähendab töökulu
ja parandada veakindlust. Lisaks analüüsitakse viise, kuidas korraldada mäluhaldust ja
parandada jõudlust.

Võtmesõnad: .NET, C++, ümbris, liides, vahekiht

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhti-
misteooria)

2

Contents
1 Introduction 5

1.1 Comparison of .NET and C++ . 5
1.2 .NET and C++ Interoperation . 5
1.3 Interface Generator . 6
1.4 Organization of the paper . 6

2 Platform Invoke Project Layout 7
2.1 Wrapper Class Layout . 8
2.2 Platform Invoke DllImport Attribute 10
2.3 Object Lifecycle Management . 11

2.3.1 The Dispose Pattern . 12
2.4 Object Hashing . 14
2.5 Class Templates . 15

3 C++/CLI Project Layout 16
3.1 Wrapper Class Structure . 17
3.2 Dispose Pattern in C++/CLI . 19

4 C++ Parsing 20
4.1 Ambiguous C++ Methods . 20

4.1.1 Arrays . 21
4.1.2 Parameter Marshaling Direction 22

4.2 Inferring Information from Doxygen Documentation 22

5 Data Marshaling 24
5.1 Basic Types . 24

5.1.1 Booleans . 25
5.2 Array Types . 25
5.3 Fields . 27
5.4 Marshaling Using .NET Struct Types 29

5.4.1 Passing Struct Parameters . 30
5.5 ICustomMarshaler Interface . 31
5.6 Over-aligned Data Structures for SSE 32
5.7 Callback Methods . 33
5.8 Overriding C++ Classes in Managed Code 34

6 Class Structure Transformations 36
6.1 Common Language Specification Compliance 36
6.2 Naming Conventions . 36

3

6.3 Wrapping Accessor Methods Using .NET Properties 38
6.4 Inline documentation . 39

7 Performance benchmarks 40

8 Automatic Interface Generator Project 43
8.1 Existing solutions . 43

8.1.1 Simplified Wrapper Interface Generator (SWIG) 43
8.1.2 xInterop C++ .NET Bridge . 43
8.1.3 CXXI . 43

8.2 Stages of the code generator . 44
8.3 Wrapper Generator Unit Testing . 45
8.4 Future . 45

9 Conclusion 46

4

1 Introduction
This paper describes various aspects of interoperation between .NET languages and
C++. Also, a software program is introduced to automatically generate the required
intermediate layer that acts as a .NET interface wrapping the C++ code. The purpose is
to provide a set of guidelines for how the interface should be constructed and to reduce
manual work required to build the interface. This makes the interface more performant
and reliable.

The guidelines are applied in the automatic interface generator. This generator is
different from others in several ways. Firstly, it supports C++/CLI, which performs
better on the Windows platform than the more traditional Platform Invoke. There are
other projects that support C++/CLI, but they are proprietary. Secondly, it creates a C
wrapper around C++ code, which makes the interface independent of the C++ runtime.

1.1 Comparison of .NET and C++
When developing software, it is often preferable to use two different programming lan-
guages. High-level languages such as C# simplify development and offer better produc-
tivity compared to low-level languages such as C or C++. On the other hand, low-level
languages tend to have better performance thanks to having more control over imple-
mentation details.

.NET programming languages such as C# also benefit from having a bytecode rep-
resentation of program code. The bytecode, also called common intermediate language
(CIL), can be compiled into machine code on any computer that supports the .NET
runtime, making programs written in .NET languages cross-platform. As compilers
are improved, there is also a possibility to further optimize a program even after de-
velopment was completed, because bytecode can be compiled again with an improved
compiler. For example, a short method in one .NET program can be inlined inside a
method in another program.

There are other benefits to C++ besides performance. For example, C++ has support
for inline assembly, which can be used to hand-optimize code for either speed or size.
Assembly language provides access to processor-specific instruction sets such as SSE,
AVR and others. The RDTSC assembly instruction is used here to get precise perfor-
mance measurements by reading the processor cycle count. C++ also provides direct
access to operating system APIs and other existing C++ software libraries.

1.2 .NET and C++ Interoperation
A software developer may prefer to write their application in a .NET language that has
high productivity and add a component written in C++ that implements performance-

5

critical operations. For example, a computer game written in C# may use a high-
performance physics engine written in C++.

There are two main methods for calling C++ code from .NET: Platform Invoke
(PInvoke) and C++ on Common Language Infrastructure (C++/CLI). C++/CLI is Mi-
crosoft’s programming language that extends the C++ language with CLI types [1].
PInvoke is a feature of the .NET runtime that allows calling functions from dynamically
linked libraries [?]. Both methods are described in more detail below in sections 2 and 3.
Both methods have pros and cons, so the automatic interface generator project supports
generating code for both.

The interface created using one of the above methods receives calls from a .NET
consumer, marshals (translates) these calls from managed mode to native mode and
calls the targeted C++ library. The interface should use semantics that are familiar to
a .NET developer and hide irrelevant C++ implementation details. For example, this
means providing non-deterministic memory management, using common .NET nam-
ing conventions and making sure that pointers to C++ objects are resolved into .NET
wrapper objects.

1.3 Interface Generator
The project described in this thesis is a .NET application that parses C++ header files
and generates PInvoke or C++/CLI code that allows the C++ code to be called from
.NET. The project was originally created to generate a .NET wrapper for the C++ Bullet
physics engine called BulletSharp, but the aim is to extend it for other wrapper projects.
Both the generator and the .NET wrapper are hosted on GitHub [2].

Not all C++ code constructs can be wrapped automatically, because C++ code can
sometimes be ambiguous. For example, pointer types carry no information about how
many objects they point to. In such cases, manual developer input is required. Am-
biguous constructs are discussed in section 4.1. In most other cases, automatic code
generation significantly reduces the time to create .NET wrapper libraries and helps to
avoid bugs that arise from writing repetitive and yet complex marshalling code.

1.4 Organization of the paper
Section 2 describes the first type of interoperation: Platform Invoke. Section 3 describes
the second type of interoperation: C++/CLI, also known as implicit Platform Invoke.
Section 4 explains how the automatic code generator parses C++ code. Section 5 ex-
plains how C++ constructs are expressed in the .NET interface. Section 6 shows what
kinds of transformations are done by the code generator to the C++ code model to cre-
ate the .NET code model. Section 7 measures the overhead of making calls through the
wrapper interface. Section 8 provides more details about what the code generator does.

6

2 Platform Invoke Project Layout

Figure 1: The Platform Invoke interface between a C++ library and a .NET consumer
of that library.

A PInvoke project consists of at least three parts: the original C++ library, a C
wrapper around the C++ library and a .NET library that marshals calls from .NET to the
C wrapper. The C++ library and the C wrapper can typically be linked into the same
dynamically linked library.

It is possible to skip the C wrapper layer and to use PInvoke to call functions from
a C++ library directly. However, there is no common specification for the application
binary interface (ABI) of C++ methods, making this kind of a solution platform- and
compiler-dependent. C++ compilers use name mangling to encode the types of param-
eters and return values of methods into exported symbol names. Since multiple symbol
names cannot be specified in a PInvoke call, this solution could only support one type
of C++ compiler.

Table 1: Names of methods as exported by different compilers.
Method Exported name (MSVC) Exported name (GCC 4)

/ / C++− s t y l e method
c l a s s Math
{
p u b l i c :

s t a t i c
i n t add (i n t a , i n t b) ;

}

?add@Math@@SAHHH@Z _ZN4Math3addEii

/ / C−s t y l e method
i n t math_add (i n t a , i n t b) ;

math_add math_add

/ / C e x t e n s i o n method
/ / f o r C++ method
i n t math_add (Math∗ obj ,

i n t a , i n t b)
{

obj−>add (a , b) ;
}

math_add math_add

7

A C wrapper solves this problem by assigning an unambiguous symbol name to
each method (see table 1). This comes at the cost of type safety in the ABI, since the
parameter and return types are no longer encoded in the name. This is not a concern
though, because type safety is still provided by the .NET library. There is a performance
hit associated with adding another layer, which is measured below.

In case of overloaded methods (when several methods have the same name, but dif-
ferent parameters), an index number can simply be appended to the name (see table 2).
The same approach can be taken for C++ methods that have optional parameters (see
table 3). For each optional parameter, there will be a C extension method that does not
take the optional parameter in addition to one that does.

Table 2: Names of overloaded methods in the C wrapper.
Method Exported names

/ / C++− s t y l e method
c l a s s Math
{
p u b l i c :

s t a t i c i n t add (i n t a , i n t b) ;
s t a t i c f l o a t add (f l o a t a , f l o a t b) ;
s t a t i c f l o a t add (double a , double b) ;

}

math_add
math_add2
math_add3

Table 3: Exported names of methods with optional parameters.
Method Exported names
c l a s s Math
{
p u b l i c :

s t a t i c i n t l o g (i n t a , i n t b = 10) ;
}

math_ log
math_log2

2.1 Wrapper Class Layout
A .NET wrapper class contains an opaque pointer (IntPtr) to the underlying C++ class
instance. The pointer can only be opaque, because .NET does not support type-safe
pointers to native C++ classes.

When a method of a wrapper object is called, the call is marshaled from managed
code to the unmanaged C wrapper and from there to the C++ code. Marshaling includes
converting method return values and parameter values from .NET types to their corre-
sponding C++ types. In the C wrapper, the first parameter of a method is a reference to

8

the C++ class instance (except for constructors and static methods, which do not require
an object reference).

The wrapper class can have public constructors that initialize the native pointer.
Additionally, if the unmanaged object is initialized by the C++ library, the wrapper class
can have an internal constructor, which initializes the native pointer with a given pointer.
Wrapper objects initialized directly via the internal constructor will not be responsible
for freeing the underlying unmanaged object.

C++ classes that are derived from other classes also have their own .NET wrapper
class. The public constructor creates a native object and passes it to the internal con-
structor of the base class. This makes C++ base class methods also available to the
derived class.

Figure 2: Class diagram showing native classes above and their respective .NET wrap-
per classes below.

Figure 2 shows a typical class layout for unmanaged classes and their respective
managed wrapper classes. btCollisionObject is an unmanaged class and btRigidBody
is an unmanaged class derived from btCollisionObject. The managed wrapper class
CollisionObject contains a pointer to the unmanaged btCollisionObject instance, which
could also be a btRigidBody instance.

When a managed RigidBody is initialized, the RigidBody constructor creates a new
native btRigidBody instance and passes the native pointer to the internal CollisionObject
constructor. As an example of how native instance methods are called, when the Mo-
tionState property is accessed, the accessor method calls _native->getMotionState() and
receives a btMotionState pointer. This pointer is used to initialize a managed instance
of the MotionState wrapper class by calling the internal constructor of the MotionState
class with the btMotionState pointer.

9

In general, C++ classes have a one-to-one mapping to their respective .NET wrapper
classes. The same is true for namespaces. An exception to this is nested classes, because
.NET discourages their use in general [3]. For example, if a Raycast.RaycastResult class
is nested in a Raycast class and the result is definitely required to complete the raycast,
then the nesting is discouraged. Instead, the RaycastResult class should be nested within
the same namespace and on the same level as the Raycast class.

Also note that the names of managed classes are different from those of unmanaged
classes. The “bt” prefix has been removed, because .NET discourages prefixes to show
where the class is in the hierarchy of classes and namespaces. Instead, classes should be
grouped into the appropriate namespaces. For example, physics-related classes in the
Bullet physics engine should be placed into the Bullet namespace instead of having a
prefix. So the native fully qualified name of btCollisionObject would be btCollisionOb-
ject while the managed fully qualified name would be Bullet.CollisionObject. See also
section 6.2 on naming conventions in .NET.

2.2 Platform Invoke DllImport Attribute
In .NET, the DllImport attribute is used in conjunction with a function declaration to
make a call from a managed application to an unmanaged dynamically linked library
(DLL). The DllImport attribute specifies the name of the DLL, the name of the function
to be called (if it doesn’t match the name given in the function declaration), the calling
convention and other marshaling options [4]. The Platform Invoke construct is used
to marshal calls from .NET into the C wrapper layer. The following code shows how
DllImport is used to make calls to constructors, static methods and instance methods.

1 p u b l i c c l a s s C o l l i s i o n O b j e c t / / . NET wrapper c l a s s
2 {
3 p r i v a t e I n t P t r _ n a t i v e ;
4

5 / / p u b l i c c o n s t r u c t o r
6 p u b l i c C o l l i s i o n O b j e c t () {
7 _ n a t i v e = b t C o l l i s i o n O b j e c t _ n e w () ;
8 }
9

10 / / s t a t i c method
11 p u b l i c s t a t i c f l o a t GetMargin () {
12 re turn b t C o l l i s i o n O b j e c t _ g e t M a r g i n () ;
13 }
14

15 / / i n s t a n c e method
16 p u b l i c vo id S i m u l a t e (f l o a t d e l t a T i m e) {
17 b t C o l l i s i o n O b j e c t _ s i m u l a t e (_ n a t i v e , d e l t a T i m e) ;
18 }
19

20 [DllImport (" p h y s i c s . d l l " , C a l l i n g C o n v e n t i o n = . . .)]

10

21 s t a t i c ex te r n I n t P t r b t C o l l i s i o n O b j e c t _ n e w () ;
22 [DllImport (" p h y s i c s . d l l " , C a l l i n g C o n v e n t i o n = . . .)]
23 s t a t i c ex te r n f l o a t b t C o l l i s i o n O b j e c t _ g e t M a r g i n () ;
24 [DllImport (" p h y s i c s . d l l " , C a l l i n g C o n v e n t i o n = . . .)]
25 s t a t i c ex te r n void b t C o l l i s i o n O b j e c t _ s i m u l a t e (I n t P t r i n s t a n c e ,

f l o a t d e l t a T i m e) ;
26 }

2.3 Object Lifecycle Management
An unmanaged object is allocated into unmanaged heap memory. The wrapper object is
usually responsible for managing the lifetime of the unmanaged object and is allocated
on the managed heap.

There are two ways in which a wrapper object can be initialised: 1) the wrapper ob-
ject initializes an unmanaged object by calling its constructor and becomes the owner of
that unmanaged object, 2) the wrapper class receives a pointer to an existing unmanaged
object, but the unmanaged memory is still owned by the C++ library.

In the first case, the wrapper object is also responsible for calling the destruc-
tor of the unmanaged object. What makes this complicated and dangerous is that
unmanaged memory is freed deterministically while managed memory is freed non-
deterministically.

Figure 3: Scenario where U1 may be destroyed while being used by U2.

Consider a scenario in which a managed wrapper object M1 allocates an unmanaged
object U1 and a reference to M1 is passed to another object M2 in a method call (see
figure 3). It is not known whether U2 will use the reference to U1 beyond the call to
the Action method. If M1 goes out of scope, the .NET garbage collector (GC) will call
the destructor of M1, which in turn calls the destructor of U1. Now U2 has an invalid

11

pointer to U1 and may crash if it tries to use that pointer. The solution to this is for the
wrapper object of U2 (M2) to maintain a strong reference to M1. This prevents M1 from
being garbage collected until M2 itself is freed.

In practice, it is difficult to know the exact dependencies between objects. If an
object is passed as a method argument to another object, it is not clear whether the
passed object will be used only for the duration of the method call or whether it will be
stored and used later.

In .NET, developers are instructed to explicitly free objects containing unmanaged
resources instead of relying on the garbage collector. When the developer forgets to do
so or when certain error cases occur, the GC should still be able to release resources
properly. The recommended way to release unmanaged resources is to use the Dispose
Pattern [5].

2.3.1 The Dispose Pattern

The Dispose pattern is the recommended way to free unmanaged resources in .NET
applications. A class that contains unmanaged resources should implement the IDis-
posable interface, which consists of a single method Dispose(). This method should
call the protected Dispose(bool disposing) method, which can be overridden in inher-
iting classes. The disposing parameter tells whether Dispose was called determin-
istically (disposing = true) or whether it was called by the garbage collector non-
deterministically (disposing = false). In the non-deterministic case, the Dispose method
should not reference any other managed objects, because they may have already been
destroyed. The following code shows a class implementing the IDisposable interface.

1 p u b l i c c l a s s C o l l i s i o n O b j e c t : I D i s p o s a b l e
2 {
3 p r i v a t e I n t P t r _ n a t i v e ;
4

5 p u b l i c C o l l i s i o n O b j e c t () {
6 _ n a t i v e = b t C o l l i s i o n O b j e c t _ n e w () ;
7 }
8

9 / / Implement I D i s p o s a b l e i n t e r f a c e
10 p u b l i c vo id Dispose () {
11 Dispose (t rue) ; / / d e t e r m i n i s t i c d e s t r u c t i o n
12 GC. S u p p r e s s F i n a l i z e (t h i s) ;
13 }
14

15 p r o t e c t e d v i r t u a l vo id Dispose (bool d i s p o s i n g) {
16 i f (d i s p o s i n g) {
17 / / F r ee any d e p e n d e n t I D i s p o s a b l e o b j e c t s
18 }
19 b t C o l l i s i o n O b j e c t _ d e l e t e (_ n a t i v e) ;
20 }

12

21

22 ~ C o l l i s i o n O b j e c t () { / / F i n a l i z e r
23 / / non−d e t e r m i n i s t i c d e s t r u c t i o n (u n e x p e c t e d)
24 Dispose (f a l s e) ;
25 }
26 }

GC.SuppressFinalize instructs the GC that deterministic destruction has already
been done, so the finalizer does not have to be called. Running the finalizer for no
reason can hurt performance by putting extra stress on the GC [6]. In case the unman-
aged object is owned by the C++ library, the wrapper class should be modified to not
free the unmanaged object when Dispose is called. If the unmanaged object is always
handled by the C++ library, any cleanup routines, including the Dispose pattern, can be
omitted entirely.

1 p u b l i c c l a s s C o l l i s i o n O b j e c t : I D i s p o s a b l e
2 {
3 p r i v a t e I n t P t r _ n a t i v e ;
4 p r i v a t e bool _ p r e v e n t D e l e t e ;
5

6 p u b l i c C o l l i s i o n O b j e c t () {
7 _ n a t i v e = b t C o l l i s i o n O b j e c t _ n e w () ;
8 }
9

10 i n t e r n a l C o l l i s i o n O b j e c t (I n t P t r n a t i v e) {
11 _ n a t i v e = n a t i v e ;
12 _ p r e v e n t D e l e t e = t rue ;
13 }
14

15 p u b l i c vo id Dispose () {
16 Dispose (t rue) ;
17 GC. S u p p r e s s F i n a l i z e (t h i s) ;
18 }
19

20 p r o t e c t e d v i r t u a l vo id Dispose (bool d i s p o s i n g) {
21 i f (! _ p r e v e n t D e l e t e) {
22 b t C o l l i s i o n O b j e c t _ d e l e t e (_ n a t i v e) ;
23 }
24 }
25

26 ~ C o l l i s i o n O b j e c t () {
27 Dispose (f a l s e) ;
28 }
29 }

13

2.4 Object Hashing
In .NET, all objects implement a GetHashCode method. The hash returned by GetHash-
Code is used in keyed collections such as dictionaries to determine the location of the
values stored in the collection. If two objects are equal, then their hash codes must also
be equal. If two objects are not equal, then the hash codes are typically different, but
do not necessarily have to be. The hash code should never change during the lifetime
of the object, because a changed hash will cause a keyed collection to retrieve an object
from another bucket (a slot in the hash table) [7].

All objects in .NET are derived from the Object class, which provides a default
implementation of GetHashCode. The default implementation may have poor perfor-
mance, because it uses reflection to read members of the object before computing the
hash. For wrapper objects, it is appropriate to use the native pointer as the source of
its hash code. In that case, the native pointer should not be cleared to a null pointer in
the finalizer. To prevent the native pointer from accidentally being changed, the pointer
field can have the readonly modifier, which allows the field to only be modified in its
declaration or within the object’s constructor.

A keyed collection needs to distinguish between objects that have the same hash,
because such objects are retrieved from the same bucket. For this purpose, the wrapper
class must also override the Equals method in addition to the GetHashCode method.

1 p u b l i c c l a s s C o l l i s i o n O b j e c t : I D i s p o s a b l e
2 {
3 p r i v a t e readonly I n t P t r _ n a t i v e ;
4

5 p u b l i c C o l l i s i o n O b j e c t W r a p p e r () {
6 _ n a t i v e = c o l l i s i o n O b j e c t _ n e w () ;
7 }
8

9 / / o v e r r i d e O b j e c t . GetHashCode
10 p u b l i c o v e r r i d e GetHashCode () {
11 re turn _ n a t i v e . GetHashCode () ;
12 }
13

14 / / o v e r r i d e O b j e c t . Eq ua l s
15 p u b l i c o v e r r i d e Eq ua l s (o b j e c t o b j) {
16 var co lO b j = o b j as C o l l i s i o n O b j e c t W r a p p e r ;
17 i f (o b j == n u l l)
18 re turn f a l s e ;
19 re turn t h i s == c o l Ob j ;
20

21 / / i n c o r r e c t !
22 / / r e t u r n _ n a t i v e == co lO b j . _ n a t i v e ;
23 }
24 }

14

While using the native pointer is appropriate for calculating the hash value, there is a
subtle bug that will be introduced by using native pointers to determine object equality.
If an unmanaged object is created and a wrapper class is placed into a dictionary, then
the object may be explicitly disposed while it is still in the dictionary. In that case,
the C++ runtime is free to allocate another unmanaged object into the same memory
location. If the new object is also placed into the dictionary, then the two objects will
be equal since they have the same native pointer value and retrieval from the dictionary
can fail. Therefore, reference equality (==) should be used instead.

2.5 Class Templates
C++ templates are a flexible way to define multiple classes that only differ by few pa-
rameters. For example, the Bullet physics library has a template called btAlignedObjec-
tArray<T> that can be specialized into an array-like container for any kind of type.

Templates cannot be directly exposed in .NET, because there is no exact equiva-
lent to them in .NET. .NET generics are similar to templates with type parameters, but
the types in templates are resolved at compile time whereas the types in generics are
resolved at runtime [8]. Because of this, generic classes cannot be used to wrap C++
templates. Instead, whenever a class template specialization is used in a C++ header, this
specialization should be wrapped by a concrete class in .NET. For example, instead of
wrapping the btAlignedObjectArray<T> class with a generic AlignedObjectArray<T>
class, each specialization has a separate wrapper class like AlignedObjectArrayVector3
and AlignedObjectArrayCollisionObject.

Figure 4: Wrapper classes for C++ template specializations.

.NET generics do not support non-type parameters (e.g. numbers) either, so a C++
template specialization such as btVector<3> must be wrapped by a concrete class like
Vector3.

15

3 C++/CLI Project Layout

In the C++/CLI programming language, both unmanaged C++ and managed .NET
wrapper code can be included within the same assembly (.dll or .exe file). This is called
implicit PInvoke [9] and it allows for some optimizations that are not available with ex-
plicit PInvoke, since the original C++ code is also available to the compiler. C++/CLI
therefore has slightly smaller overhead of marshalling (see performance benchmarks in
section 7).

A disadvantage of the implicit PInvoke approach is that C++/CLI is only imple-
mented for the Windows platform, while explicit PInvoke is also available for Linux
and BSD platforms.

C++/CLI can be more flexible than C# as it supports macros. In BulletSharp C++/CLI,
C++ macros are used to integrate with different graphics libraries. A differently targeted
version of the library can be compiled by changing the macro definitions.

1 # i f GRAPHICS_MOGRE
2 # d e f i n e Ma t r ix Mogre : : Ma t r ix4 ^
3 # e l i f GRAPHICS_OPENTK
4 # i f d e f BT_USE_DOUBLE_PRECISION
5 # d e f i n e Ma t r ix OpenTK : : Mat r ix4d
6 # e l s e
7 # d e f i n e Ma t r ix OpenTK : : Mat r ix4
8 # e n d i f
9 # e l i f GRAPHICS_SHARPDX

10 # d e f i n e Ma t r ix SharpDX : : M a t r i x
11 # e n d i f

In C++/CLI, types can also be aliased. For example, a managed library can switch
between using floats and doubles by changing a single preprocessor definition.

1 # d e f i n e BT_USE_DOUBLE_PRECISION 1
2 # i f BT_USE_DOUBLE_PRECISION
3 t y p e d e f double b t S c a l a r ;
4 # e l s e
5 t y p e d e f f l o a t b t S c a l a r ;
6 # e n d i f

C# does not support aliasing of types. It is possible to define an implicit conversion
operator to convert a type into the required type in the targeted graphics framework,

16

but this conversion has some overhead compared to the C++/CLI macro and typedef
approaches.

In the case below, when getting a vector value from a wrapper library, an intermedi-
ate Vector3 struct from the wrapper library is first allocated and then implicitly converted
to a Vector3 struct from XNA, which is the targeted graphics library.

1 p u b l i c s t r u c t Vec to r3 / / d e f i n e d i n t h e wrapper l i b r a r y
2 {
3 p u b l i c f l o a t X, Y, Z ;
4

5 p u b l i c Vec to r3 (f l o a t x , f l o a t y , f l o a t z) {
6 X = x ; Y = y ; Z = z ;
7 } ;
8

9 / / i m p l i c i t c o n v e r s i o n o p e r a t o r
10 p u b l i c s t a t i c i m p l i c i t operator M i c r o s o f t . Xna . Framework . Vec to r3 (

Vec to r3 va lue)
11 {
12 re turn new M i c r o s o f t . Xna . Framework . Vec to r3 (va lue . X, va lue . Y,

va lue . Z) ;
13 }
14 }

In C++/CLI, a macro can be used to initialize the required vector type directly without
overhead.

1 # i f GRAPHICS_XNA
2 # d e f i n e VECTOR3(x , y , z) M i c r o s o f t : : Xna : : Framework : : Vec to r3 (x , y , z)
3 # e l i f GRAPHICS_GENERIC
4 / / no t a r g e t l i b r a r y , use own v e c t o r s t r u c t
5 # d e f i n e VECTOR3(x , y , z) Vec to r3 (x , y , z)
6 # e n d i f
7

8 Vec to r3 C o l l i s i o n O b j e c t : : A n g u l a r V e l o c i t y : : g e t () {
9 re turn VECTOR3(

10 _ n a t i v e −>m _ a n g u l a r V e l o c i t y . x ,
11 _ n a t i v e −>m _ a n g u l a r V e l o c i t y . y ,
12 _ n a t i v e −>m _ a n g u l a r V e l o c i t y . z) ;
13 }

3.1 Wrapper Class Structure
The .NET wrapper class structure in C++/CLI is the same as in PInvoke. However, the
code layout is different. As is typical in C++, there is a header file and a source file. It is
useful to review the class structure here, because it is important that the automatic code
generator produces code that looks consistent for each wrapper class.

17

1 # i n c l u d e < b t C o l l i s i o n O b j e c t . h>
2

3 / / c l a s s d e c l a r a t i o n i n t h e h e a d e r f i l e
4 p u b l i c r e f c l a s s C o l l i s i o n O b j e c t
5 {
6 i n t e r n a l :
7 b t C o l l i s i o n O b j e c t ∗ _ n a t i v e ;
8

9 C o l l i s i o n O b j e c t (b t C o l l i s i o n O b j e c t ∗ n a t i v e) ;
10 ~ C o l l i s i o n O b j e c t () ; / / d e s t r u c t o r
11 ! C o l l i s i o n O b j e c t () ; / / f i n a l i z e r
12

13 p u b l i c :
14 C o l l i s i o n O b j e c t () ;
15

16 s t a t i c f l o a t GetMargin () ; / / s t a t i c method
17 void S i m u l a t e (f l o a t d e l t a T i m e) ; / / i n s t a n c e method
18 }

Note that in C++/CLI, access specifiers of destructors and finalizers of managed
classes (∼CollisionObject and !CollisionObject) are ignored, so they do not have to be
written out [10, 11].

As C++/CLI supports native C++, the DllImport construct is not necessary (although
it can be used). Instead, methods can be called directly on the instance pointer.

1 # i n c l u d e < C o l l i s i o n O b j e c t . h>
2

3 / / c l a s s d e f i n i t i o n i n t h e s o u r c e f i l e
4 C o l l i s i o n O b j e c t : : C o l l i s i o n O b j e c t (b t C o l l i s i o n O b j e c t ∗ o b j) {
5 _ n a t i v e = o b j ;
6 }
7

8 C o l l i s i o n O b j e c t : : C o l l i s i o n O b j e c t () {
9 _ n a t i v e = new b t C o l l i s i o n O b j e c t () ;

10 }
11

12 f l o a t C o l l i s i o n O b j e c t : : GetMargin () {
13 b t C o l l i s i o n O b j e c t : : ge tMarg in () ;
14 }
15

16 void C o l l i s i o n O b j e c t : : S i m u l a t e (f l o a t d e l t a T i m e) {
17 _ n a t i v e −>s i m u l a t e (d e l t a T i m e) ;
18 }

18

3.2 Dispose Pattern in C++/CLI
The Dispose Pattern is implemented differently in C++/CLI than in PInvoke, but the re-
sulting .NET assembly will be equivalent to the PInvoke version. Whenever a managed
class in C++/CLI has a destructor, the compiler will implement the IDisposable inter-
face automatically [12, 13] This means that the Dispose method cannot be explicitly
written and the “ : IDisposable” base interface does not have to be explicitly specified
by the programmer. The compiler itself inserts a Dispose() method, which first executes
the body of the destructor and then calls GC.SuppressFinalize at the end to prevent the
finalizer from being called. The following code shows a C++/CLI class implementing
the IDisposable interface.

1 p u b l i c r e f c l a s s C o l l i s i o n O b j e c t
2 {
3 b t C o l l i s i o n O b j e c t ∗ _ n a t i v e ;
4

5 p u b l i c :
6 C o l l i s i o n O b j e c t () {
7 _ n a t i v e = new b t C o l l i s i o n O b j e c t () ;
8 }
9

10 ~ C o l l i s i o n O b j e c t () {
11 / / f r e e any managed r e s o u r c e s h e r e
12 / / c a l l f i n a l i z e r t o f r e e unmanaged r e s o u r c e s
13 t h i s −>! C o l l i s i o n O b j e c t () ;
14 }
15

16 / / F i n a l i z e r
17 ! C o l l i s i o n O b j e c t () {
18 d e l e t e _ n a t i v e ;
19 }
20 }

Unmanaged resources are freed in the finalizer and the destructor can call the fi-
nalizer to do that. Managed resources can only be freed in the destructor and not the
finalizer. The reason is that in case of non-deterministic destruction, the GC calls the
finalizer, but dependent objects may then already have been destroyed, so they cannot
be referenced.

The destructor is always merged into the public Dispose() method and the finalizer
is always protected regardless of the access specifier written in the code.

19

4 C++ Parsing
The first step in automatically generating wrapper code is to parse the C++ code of
the target library and create a model of the library interface. In C++, header files (.h)
specify the interface of the library and the source files (.cpp) contain the implementation.
In order to generate wrappers for a C++ library, only the header files need to be parsed,
because the implementation does not contain any information that is directly relevant.

A C++ project can be parsed using a C++ compiler with a frontend that exposes the
program structure before final compilation into an executable. For instance, Clang is
a frontend for the LLVM compiler that has an API allowing access to the AST [14].
Clang is more suitable than GCC for parsing code, because it was designed from the
start to have a frontend API and it does not optimize the AST before exposing it [15].

Parts of the code that need parsing are class members such as methods, field, aliases
and nested classes [16]. The application recurses over the header files in the direc-
tories and subdirectories of the specified C++ library. Clang is then given the C++
compiler options that were used when compiling the target C++ library. The compiler
options include preprocessor directives (e.g. “-DNDEBUG”) and include directories
(e.g “-Isrc/Extras/Serialize”). Then the header files are preprocessed one by one.

Once preprocessing is complete, a special type of callback called a visitor method is
passed to Clang. Clang will call this method with an argument that is a cursor to the cur-
rent code segment. For each header file, there is a top-level code segment which is called
the translation unit. If the visitor method returns the value ChildVisitResult.Recurse,
then the visitor method is called again with cursors to child elements of the code seg-
ment. For example, if the cursor points to a class, then returning Recurse will cause
the method to be called again with a code segment cursor pointing to a field, method or
some other member of that class. Returning ChildVisitResult.Continue instead causes
the cursor to be moved past the end of the class, skipping the child segments. This
can be used to speed up parsing of segments that are known to not be useful later (e.g.
classes or methods that have been explicitly excluded).

The class structure is stored in-memory in a C++ code model (see figure 5). In the
next pass, this model is transformed into a .NET code model.

4.1 Ambiguous C++ Methods
In C++, there are some constructs that do not translate well to .NET because of ambigu-
ity and require manual input from the developer to be resolved. These include pointers
to arrays, which do not have a known size, and method parameters that have unknown
direction.

20

Figure 5: C++ code model.

4.1.1 Arrays

In C++, arrays of fixed size can be referenced by a pointer.

1 void i n i t (char (∗ a r r a y) [1 0]) ;

In many cases though, the size of an array is known only at run-time, so arrays are
referenced by a pointer, with the length of the array stored separately.

1 void i n i t (char∗ a r r a y , i n t l e n g t h) ;

This can lead to ambiguity in method calls. It is possible that the array pointer points
to an array of predetermined, but unspecified size and the length parameter may be
completely unrelated. The pointer might also point to a single value only and not an
array at all.

In .NET, arrays are objects and always have a Length property associated with them.
To pass a native C++ array to .NET, manual input is required for the automatic code
generator to know how to determine the length of the array.

21

4.1.2 Parameter Marshaling Direction

In C++, a const-qualified method parameter can only point to an input structure, because
it cannot be written to. On the other hand, a non-const pointer parameter could either
point to an input structure, an output structure or both at the same time.

The following example demonstrates why it is not possible to distinguish between
input-output and output-only parameters based on C++ method declarations.

1 void n o r m a l i z e V e c t o r (
2 c o n s t f l o a t ∗ v e c t o r , / / i n p u t−on ly
3 f l o a t ∗ n o r m a l i z e d) ; / / o u t p u t−on ly
4

5 void n o r m a l i z e V e c t o r I n P l a c e (
6 f l o a t ∗ v e c t o r) ; / / i n p u t−o t p u t

The normalized parameter holds the output of the normalizeVector method and is
never read from, but this cannot be automatically determined from the method signa-
ture. Interpreting all non-const parameters as input-output by default ensures correct
operation, but unnecessary parameter marshaling will decrease performance. If the pa-
rameter is output-only, then there is no need to marshal it to the callee. Likewise, if the
parameter is input-only, then there is no need to marshal it back to the caller.

To marshal such parameters without a performance hit, the marshaling direction has
to be manually specified for the interface generator. It must be kept in mind that an over-
ridden method may reinterpret a non-const output-only parameter as input-output [17].

4.2 Inferring Information from Doxygen Documentation
Doxygen is a C++ documentation tool that can provide hints about ambiguous method
declarations. For example, a method can document the direction of attributes with [in],
[out] or [in,out].

1 /∗ ∗
2 ∗ \ param [i n] v e c t o r i n p u t v e c t o r
3 ∗ \ param [o u t] n o r m a l i z e d o u t p u t v e c t o r
4 ∗ /
5 void n o r m a l i z e V e c t o r (c o n s t f l o a t ∗ v e c t o r , f l o a t ∗ n o r m a l i z e d) ;

1 /∗ ∗
2 ∗ \ param [in , o u t] v e c t o r v e c t o r t o n o r m a l i z e
3 ∗ /
4 void n o r m a l i z e V e c t o r I n P l a c e (f l o a t ∗ v e c t o r) ;

The \deprecated keyword in Doxygen hints to the library user that the method
should not be used in the future and could be removed [18].

22

1 /∗ ∗
2 ∗ \ d e p r e c a t e d Method w i l l be removed soon .
3 ∗ \ param [in , o u t] v e c t o r v e c t o r t o n o r m a l i z e
4 ∗ /
5 void n o r m a l i z e V e c t o r I n P l a c e (f l o a t ∗ v e c t o r) ;

The \deprecated keyword can be translated into a .NET ObsoleteAttribute. This
marks the method in the wrapper class also obsolete.

1 / / / <param name=" v e c t o r "> v e c t o r t o n o r m a l i z e < / param >
2 [O b s o l e t e A t t r i b u t e (" Method w i l l be removed soon . ")]
3 void N o r m a l i z e V e c t o r I n P l a c e (f l o a t [] v e c t o r) ;

23

5 Data Marshaling
This section describes how C++ code constructs can be expressed in .NET and how data
is passed from .NET to C++.

5.1 Basic Types
Basic types such as integers, floats and pointers (IntPtr) can generally be passed from
.NET to C++ without any special marshaling. The only thing that needs to be done is to
rename certain types from their C++ names to C# names, e.g. void m(unsigned int a)→
void M(uint a) (see table 4).

In any .NET language, there are two sets of basic type names that are aliases of
each other. One set comes from the particular .NET language used, which is familiar
to developers that may have experience with the non-.NET version of the language,
and another set of type names from the System framework, which is recognizable in
whatever language the .NET library is used [19] (see table 4).

Table 4: Basic C++ types and the corresponding type names in C# and .NET.
C++ type Corresponding C# type .NET framework type
unsigned long ulong ULong

unsigned i n t u i n t UInt32

unsigned s h o r t ushort UInt16

unsigned char byte Char

long long I n t 6 4

i n t i n t I n t 3 2

s h o r t s h o r t I n t 1 6

char s b y t e SByte

bool bool Boolean

f l o a t f l o a t S i n g l e

double double Double

When writing type names in C#, short is the preferred alias of the Int16 type in the
System namespace in the .NET framework. But in case of method names in public .NET
libraries, it is expected that the .NET framework names are used, which are common in
all .NET languages. For example, readShort()→ ReadInt16() (see table 5).

24

Table 5: Examples of C++ method signatures and corresponding signatures in .NET.
C++ method signature Corresponding .NET signature
void m(unsigned long a) ; void M(ulong a) ;

unsigned i n t r e a d _ u i n t () ; u i n t ReadUInt32 () ;

f l o a t r e a d F l o a t () ; f l o a t R e a d S i n g l e () ;

5.1.1 Booleans

Booleans have a different binary representation in .NET than they do in Microsoft’s
implementation of C++. The size of C++ booleans is 1 byte while .NET booleans are
4 bytes. To convert the return value of an unmanaged function from C++ to .NET, the
PInvoke signature must have the MarshalAs attribute as shown below [20].

1 [DllImport (. . .)]
2 [re turn : MarshalAs (UnmanagedType . I1)]
3 s t a t i c ex te r n bool b t C o l l i s i o n O b j e c t _ i s A c t i v e (I n t P t r o b j) ;

5.2 Array Types
There are two ways to marshal arrays between .NET and C++. One is to convert a
native array into a .NET array when reading it (and vice versa when modifying the
array). Whenever the array is accessed, the native array is copied into a managed .NET
array. This is quite inefficient if only part of the array needs to be accessed. It may also
be confusing to the library consumers, because any changes made to the .NET array
are not immediately reflected in the native array and changes to the native array are not
reflected in the .NET array. The reason is that a basic .NET array cannot be made to
point directly to a native C++ array. A .NET array is an independent object, so copying
the array data back and forth is the only way to access it.

The following is a C# property that wraps an unmanaged integer array using a .NET
array. Any changes made to the .NET array are only applied when the array is written
back in the set method.

1 p r i v a t e i n t _ l e n g t h ;
2

3 p u b l i c i n t [] Weights
4 {
5 g e t
6 {
7 i n t [] va lue = new i n t [_ l e n g t h] ;
8 Marsha l . Copy (Node_getWeights (_ n a t i v e) , value , 0 , _ l e n g t h) ;
9 re turn va lue ;

10 }
11

25

12 s e t
13 {
14 Marsha l . Copy (value , 0 , Node_getWeights (_ n a t i v e) , _ l e n g t h) ;
15 }
16 }

Another, more complicated way to marshal arrays is to define a wrapper object for
the array type. For example, the following is a wrapper class for signed integers, which
can access unmanaged memory directly and behaves semantically similarly to a .NET
array.

1 p u b l i c c l a s s I n t A r r a y {
2 p r i v a t e I n t P t r _ p t r ;
3 p r i v a t e i n t _ l e n g t h ;
4

5 i n t e r n a l I n t A r r a y (I n t P t r p t r , i n t l e n g t h) {
6 _ p t r = p t r ;
7 _ l e n g t h = l e n g t h ;
8 }
9

10 p u b l i c i n t t h i s [i n t i n d e x]
11 {
12 g e t
13 {
14 re turn Marsha l . Read In t32 (_ n a t i v e , i n d e x ∗ s i z e o f (i n t)) ;
15 }
16

17 s e t
18 {
19 Marsha l . W r i t e I n t 3 2 (_ n a t i v e , i n d e x ∗ s i z e o f (i n t) , va lue) ;
20 }
21 }
22 }

This wrapper class can then be returned from the get method of the required property
and the changes made to it are applied immediately. There is no need for a setter method
unless the entire array actually needs to be set. The IntArray instance can also be cached
to prevent it from being recreated on every access as shown below.

1 p u b l i c c l a s s Weigh tedObjec t {
2 p r i v a t e I n t P t r _ n a t i v e ;
3

4 p r i v a t e i n t _ l e n g t h ;
5 p r i v a t e I n t A r r a y _ w e i g h t s ;
6

7 /∗ I n i t i a l i z a t i o n , e t c . ∗ /
8

9 p u b l i c I n t A r r a y Weights
10 {

26

11 g e t
12 {
13 i f (_ w e i g h t s == n u l l) {
14 _ w e i g h t s = new I n t A r r a y (Node_getWeights (_ n a t i v e) , _ l e n g t h) ;
15 }
16 re turn _ w e i g h t s ;
17 }
18 }
19 }

The IntArray class can be made even more similar to a regular int[] array by imple-
menting the IList< T> interface. This interface exposes the Count of elements, methods
like Contains, CopyTo, IndexOf and also GetEnumerator for enumerating elements in
the array. Since the array has a fixed length, the IList methods Add, Remove, etc. should
throw a NotSupportedException.

5.3 Fields
Fields can be marshaled in two ways: by value and by reference. When marshaling by
value, accessor methods are created in the C wrapper for getting and setting the field.
Consider the following C++ class that has the field number of a basic integer type and
the field vec of struct type.

1 / / C++ code
2 s t r u c t Vec to r3 { f l o a t x , y , z ; } ;
3

4 c l a s s CppClass {
5 p u b l i c :
6 i n t number ;
7 Vec to r3 vec ;
8 } ;

1 / / Marsha l f i e l d number by v a l u e (C wrapper)
2 i n t CppClass_getNumber (CppClass ∗ o b j) {
3 re turn o b j . number ;
4 }
5

6 void CppClass_se tNumber (CppClass ∗ obj , i n t v a l u e) {
7 o b j . number = v a l u e ;
8 }
9

10 / / Marsha l f i e l d vec by r e f e r e n c e
11 Vec to r3 ∗ CppClass_ge tVec (CppClass ∗ o b j) {
12 re turn &obj−>vec ;
13 }

27

Since an integer type fits into a method parameter, which is typically 32 or 64 bits, it
makes sense to marshal it by value. The struct on other hand is larger and must be
passed by reference.

When marshaling by reference, it is not strictly necessary to provide a setter, be-
cause the reference to the field provided by the getter can be used to do the assignment.
However, a setter can make use of the copy assignment operator [21] in C++ to assign a
value to the entire field.

1 / / Marsha l f i e l d vec by r e f e r e n c e (C wrapper)
2 void CppClas s_se tVec (CppClass ∗ obj , Vec to r3 ∗ v a l u e) {
3 obj−>vec = ∗ v a l u e ;
4 }

1 / / . NET wrapper methods c a l l i n g t h e C wrapper
2 p u b l i c i n t GetNumber () {
3 re turn CppClass_getNumber (_ n a t i v e) ;
4 }
5

6 p u b l i c vo id CppClass_SetNumber (i n t va lue) {
7 CppClass_se tNumber (_ n a t i v e , va lue) ;
8 }
9

10 p u b l i c Vec to r3 GetVec () {
11 re turn new Vec to r3 (CppClass_ge tVec (_ n a t i v e)) ;
12 }
13

14 p u b l i c vo id CppClass_SetVec (Vec to r3 va lue) {
15 CppClas s_se tVec (_ n a t i v e , va lue . _ n a t i v e) ;
16 }
17

18 [DllImport (. . .)]
19 s t a t i c ex te r n i n t CppClass_getNumber (I n t P t r o b j) ;
20 [DllImport (. . .)]
21 s t a t i c ex te r n void CppClass_se tNumber (I n t P t r obj , i n t va lue) ;
22 [DllImport (. . .)]
23 s t a t i c ex te r n I n t P t r CppClass_ge tVec (I n t P t r o b j) ;
24 [DllImport (. . .)]
25 s t a t i c ex te r n void CppClas s_se tVec (I n t P t r obj , I n t P t r va lue) ;

28

5.4 Marshaling Using .NET Struct Types
For C++ structures with value semantics, a .NET wrapper class can be created that also
has value semantics.

1 / / C++ s t r u c t u r e
2 s t r u c t Vec to r3 { f l o a t x , y , z ; }

1 / / . NET wrapper s t r u c t
2 [StructLayout (LayoutKind . S e q u e n t i a l)]
3 s t r u c t Vec to r3 { f l o a t X, Y, Z ; }

Marshaling can be done using the Marshal.PtrToStructure method in the .NET frame-
work.

1 / / . NET wrapper
2 p u b l i c Vec to r3 Vec
3 {
4 g e t
5 {
6 re turn (Vec to r3) Marsha l . P t r T o S t r u c t u r e (CppClass_ge tVec (

_ n a t i v e) , t y p e o f (Vec to r3)) ;
7 }
8

9 s e t
10 {
11 Marsha l . S t r u c t u r e T o P t r (value , CppClass_ge tVec (_ n a t i v e) , f a l s e

) ;
12 }
13 }

Marshal.PtrToStructure and Marshal.StructureToPtr can be used if the unmanaged
and managed structures match exactly. These methods do a plain memory copy between
the managed and unmanaged heap. If the structure includes references to other objects,
then more complex marshaling is required, e.g. the ICustomMarshaler interface (see
below).

The .NET runtime is free to move around fields in structures for optimization pur-
poses. To make structs suitable for marshaling, the StructLayout attribute must be used
to order fields sequentially to match the layout of the unmanaged struct [22]. The Pack
field of the StructLayout attribute controls the alignment of fields in the struct.

Sometimes it is necessary to specify the exact location of fields in unmanaged mem-
ory. For example, to emulate C++ unions, two fields must have the same location. To
do that, the struct must have the LayoutKind.Explicit attribute and each field must have
a FieldOffset attribute.

29

1 [StructLayout (LayoutKind . E x p l i c i t)]
2 s t r u c t S t r u c t W i t h U n i o n {
3 [F i e l d O f f s e t (0)]
4 f l o a t R e g u l a r F i e l d ;
5

6 / / U n s i g n e d F i e l d and S i g n e d F i e l d form a un ion
7 [F i e l d O f f s e t (4)]
8 u i n t U n s i g n e d F i e l d ;
9 [F i e l d O f f s e t (4)]

10 i n t S i g n e d F i e l d ;
11 }

5.4.1 Passing Struct Parameters

Struct arguments can be passed either by value or by reference. Passing large structs
by reference is faster, because passing by value requires the entire struct to be copied.
However, it is not always possible to copy structs by reference. For example, while
properties act like fields, they are in fact methods, but it is not possible to obtain a direct
reference to the return value of the accesor method of a property.

In C# (PInvoke), it is possible to provide an overload to a method with struct param-
eters. This way the method can be passed either by value or by reference, if possible.

1 void Se tWor ldTrans fo rm (M at r i x va lue) {
2 / / b t C o l l i s i o n O b j e c t _ s e t W o r l d T r a n s f o r m (r e f v a l u e) ; / / f a s t e r
3 Se tWor ldTrans fo rm (r e f va lue) ; / / s i m p l e r
4 }
5

6 / / o v e r l o a d wi th r e f p a r a m e t e r
7 void Se tWor ldTrans fo rm (r e f Ma t r ix va lue) {
8 b t C o l l i s i o n O b j e c t _ s e t W o r l d T r a n s f o r m (r e f va lue) ;
9 }

10

11 Se tWor ldTrans fo rm (o b j . WorldTransform) ;
12 Se tWor ldTrans fo rm (r e f _wor ldTrans fo rm) ;

The problem with this approach is that some .NET languages such as C++/CLI do
not support overloading methods that differ only by the ref specifier of a parameter.
Also, if a C++/CLI program tries to call such an overloaded method in a library written
in C#, the compiler wil give an error that the method call is ambiguous. There is no way
to fix the ambiguity by specifying which overload was meant. CLS-complicance, which
is recommended for public .NET libraries, also dictates that such overloads should not
be used, even in C# libraries. See section 6.1 for more details about CLS-compliance.

Instead of overloading, another way to provide ref/non-ref methods is simply to ap-
pend “Ref” to the method name. For example, the signature void SetWorldTransform(ref

30

Matrix value) becomes void SetWorldTransformRef(ref Matrix value). This does not
work for constructors, which cannot be renamed. Also, accessor methods in properties
must be named get/set and they inherently pass parameters by value, so neither of the
solutions work there.

5.5 ICustomMarshaler Interface
For classes, arrays and boxed value types, the ICustomMarshaler interface can be used
to provide custom marshaling. The interface consists of methods to marshal objects in
both directions, cleanup methods and an unused (legacy) GetNativeDataSize method.
A class that implements the ICustomMarshaler interface must also implement a static
GetInstance method, which initializes the marshaler.

1 p u b l i c c l a s s D i s p a t c h e r M a r s h a l e r : ICus tomMarsha l e r
2 {
3 p u b l i c o b j e c t MarshalNat iveToManaged (I n t P t r p t r) {
4 re turn new D i s p a t c h e r (p t r) ;
5 }
6

7 p u b l i c I n t P t r MarshalManagedToNat ive (o b j e c t o b j) {
8 re turn (o b j as D i s p a t c h e r) . _ n a t i v e ;
9 }

10

11 p u b l i c vo id CleanUpNat iveData (I n t P t r p t r) {
12 D i s p a t c h e r _ d e l e t e (p t r) ;
13 }
14

15 p u b l i c vo id CleanUpManagedData (o b j e c t o b j) {
16 (o b j as D i s p a t c h e r) . D i spose () ;
17 }
18

19 p u b l i c i n t G e t N a t i v e D a t a S i z e () { re turn −1; }
20

21 p u b l i c s t a t i c ICus tomMarsha l e r G e t I n s t a n c e (
22 s t r i n g c o o k i e) {
23 re turn new D i s p a t c h e r M a r s h a l e r () ;
24 }
25 }

31

The marshaler type is specified in the PInvoke signature for either return values or
parameter values.

1 [DllImport (. . .)]
2 [re turn : MarshalAs (UnmanagedType . CustomMarshaler , MarshalTypeRef =

t y p e o f (D i s p a t c h e r M a r s h a l e r))]
3 s t a t i c ex te r n D i s p a t c h e r W o r l d _ g e t D i s p a t c h e r (I n t P t r p t r) ;
4

5 [DllImport (. . .)]
6 s t a t i c ex te r n void b t C o l l i s i o n W o r l d _ g e t D i s p a t c h I n f o (I n t P t r obj ,
7 [MarshalAs (UnmanagedType . CustomMarshaler , MarshalTypeRef = t y p e o f

(D i s p a t c h e r M a r s h a l e r))]
8 D i s p a t c h e r I n f o i n f o) ;

5.6 Over-aligned Data Structures for SSE
Streaming SIMD Extensions (SSE) is an instruction set for high performance comput-
ing on the x86 architecture. Code that makes use of SSE instructions must ensure that
parameters to SSE calls are aligned on 128-bit (16-byte) memory boundaries. This is
done to optimize data access inside the CPU. If data is not aligned to 16 bytes, then SSE
instructions will trigger an AccessViolationException in .NET. An AccessViolationEx-
ception indicates corrupted process state and so it cannot be handled in a try-catch block
by the user unless the HandleProcessCorruptedStateExceptions attribute is set for the
calling method [23, 24].

In C++, data can be aligned using the align keyword [25] and class instances can
be aligned using the __declspec(align(m)) specifier in the MSVC compiler. However,
these specifiers do not hold for memory allocated dynamically using the new construct,
because new cannot allocate aligned memory. In fact, the MSVC compiler will give
a warning if classes requiring alignment are allocated using new [26]. The solution is
to override the new and delete operators to use the _aligned_malloc and _aligned_free
functions [27].

Alignment is required when passing data to an unmanaged method that works with
SSE instructions. However, there is no explicit way to align data in .NET. A common
workaround for allocating n bytes of data aligned on an m-byte boundary is to allocate
n+m-1 bytes of memory (e.g. using the Marshal.AllocateHGlobal method in the .NET
framework) and then take the start of the next aligned 16-byte block from the returned
address [28].

1 c o n s t i n t n = 6 4 ; / / r e q e s t e d d a t a s i z e
2 c o n s t i n t m = 1 6 ; / / a l i g n m e n t , power o f 2
3 I n t P t r a l l o c A d d r = Marsha l . Al locHGloba l (n + m − 1) ;
4 I n t P t r a l i g n e d A d d r =
5 new I n t P t r ((a l l o c A d d r . ToIn t64 () + m − 1) & ~(m − 1)) ;

32

The allocated memory must be freed later using the original start address of the block.

1 Marsha l . F reeHGloba l (a l l o c A d d r) ;

If a method has an output parameter pointing to the result of an SSE instruction, the
wrapper class needs to allocate a temporary variable into an aligned location and copy
the final result using non-SSE instructions. In the following C wrapper code, a macro is
used to create a temporary variable that is aligned to 16 bytes. The temporary variable
is later written to the final variable using another macro.

1 void b t M o t i o n S t a t e _ g e t W o r l d T r a n s f o r m (b t M o t i o n S t a t e ∗ obj , b t S c a l a r ∗
w o r l d T r a n s)

2 {
3 TRANSFORM_DEF(w o r l d T r a n s) ;
4 obj−>ge tWor ldTrans fo rm (TRANSFORM_USE(w o r l d T r a n s)) ;
5 TRANSFORM_DEF_OUT(w o r l d T r a n s) ;
6 }

If a class contains members requiring alignment for SSE, then instances of that class
must be allocated to aligned memory. In wrapper class constructors, the unmanaged
class must be initialised with an aligned allocator. A wrapper class should not try to
instantiate an unmanaged C++ class if it has the __declspec(align(m)) specifier, but no
overloaded new and delete operators.

5.7 Callback Methods
C++ code may use callbacks, which can be marshaled from C++ to C#. In the code
below, cb is a native callback with the callback signature. A consumer can provide a
callback using the nativeSetCallback method. The callback is then called with a param-
eter.

1 t y p e d e f bool (∗ c a l l b a c k) (M∗ o b j) ;
2 c a l l b a c k cb ;
3

4 void n a t i v e S e t C a l l b a c k (c a l l b a c k f n P t r) {
5 cb = f n P t r ;
6 }
7

8 cb (new M()) ;

The callback can be set up in .NET by converting a delegate into a function pointer
and passing the pointer to the nativeSetCallback method. If the method signature in-
cludes types that cannot marshalled directly, then another method is required that ac-
cepts the native signature and marshals the parameters to the final managed method.
For example, the opaque IntPtr m needs to be converted into a managed object, so the
CallbackUnmanaged method is provided that marshals the call to Callback.

33

1 [UnmanagedFunctionPointer (C a l l i n g C o n v e n t i o n . Cdec l)]
2 d e l e g a t e bool Cal lbackUnmanagedDelega te (I n t P t r m) ;
3

4 bool CallbackUnmanaged (I n t P t r m) {
5 re turn C a l l b a c k (new MObject (m)) ;
6 }
7

8 bool C a l l b a c k (MObject m) {
9 Conso le . W r i t e L i n e (" C a l l e d wi th " + m) ;

10 re turn true ;
11 }
12

13 void S e t C a l l b a c k () {
14 var _ d e l e g a t e = new Cal lbackUnmanagedDelega te (C a l l b a c k) ;
15 I n t P t r f n P t r = Marsha l . G e t F u n c t i o n P o i n t e r F o r D e l e g a t e (_ d e l e g a t e) ;
16 n a t i v e S e t C a l l b a c k (f n P t r) ;
17 }
18

19 [DllImport (. . .)]
20 s t a t i c ex te r n void n a t i v e S e t C a l l b a c k (I n t P t r f n P t r) ;

5.8 Overriding C++ Classes in Managed Code
To override virtual methods in a C++ class with managed methods, a wrapper class must
be created over the C++ class that marshals the methods calls. In the code below, the
managed SpecialMotionState class overrides methods in the native MotionState class.
Whenever the abstract MotionState::getState method is called in unmanaged mode, the
call is handled by the MotionStateWrapper::getState override, which marshals the call
to the SpecialMotionState.GetState method.

1 / / C++ c l a s s
2 c l a s s M o t i o n S t a t e {
3 p u b l i c :
4 v i r t u a l i n t g e t S t a t e (i n t i n d e x) = 0 ;
5 } ;
6

7 / / S i g n a t u r e o f t h e v i r t u a l method
8 t y p e d e f i n t (∗ p _ g e t S t a t e) (i n t i n d e x) ;
9

10 / / C++ wrapper c l a s s
11 c l a s s Mot ionS ta t eWrappe r : M o t i o n S t a t e {
12 p _ g e t S t a t e _ g e t S t a t e ;
13

14 p u b l i c :
15 Mot ionS ta t eWrappe r (p _ g e t S t a t e g e t S t a t e)
16 : _ g e t S t a t e (g e t S t a t e) {}

34

17

18 v i r t u a l vo id g e t S t a t e (i n t i n d e x) {
19 _ g e t S t a t e (i n d e x) ;
20 }
21 } ;

In the .NET wrapper class, an instance of the GetState delegate is created. The
GetFunctionPointerForDelegate method creates a function pointer for the delegate that
can be called from native mode. This pointer is passed to the constructor of the C++
wrapper class. The reference to the delegate must be stored in a field so that it wouldn’t
get garbage-collected. Note that it is not required to have a separate GetStateUnman-
aged method, because there is no special marshaling required when going from native
to managed mode.

1 / / G e t S t a t e f u n c t i o n d e l e g a t e
2 [UnmanagedFunctionPointer (C a l l i n g C o n v e n t i o n . Cdec l)]
3 d e l e g a t e i n t G e t S t a t e D e l e g a t e (i n t i n d e x) ;
4

5 / / Managed c l a s s o v e r r i d i n g t h e n a t i v e c l a s s
6 p u b l i c c l a s s S p e c i a l M o t i o n S t a t e
7 {
8 G e t S t a t e D e l e g a t e _ d e l e g a t e ;
9

10 p u b l i c S p e c i a l M o t i o n S t a t e () {
11 _ d e l e g a t e = new G e t S t a t e D e l e g a t e (G e t S t a t e) ;
12 I n t P t r g e t S t a t e P t r = Marsha l . G e t F u n c t i o n P o i n t e r F o r D e l e g a t e (

_ d e l e g a t e) ;
13 _ n a t i v e = Mot ionSta teWrapper_new (g e t S t a t e P t r) ;
14 }
15

16 p u b l i c i n t G e t S t a t e (i n t i n d e x) {
17 Conso le . W r i t e L i n e (" C a l l e d wi th " + i n d e x) ;
18

19 / / Do work h e r e
20 re turn 0 ;
21 }
22 }
23

24 [DllImport (. . .)]
25 s t a t i c ex te r n void n a t i v e S e t C a l l b a c k (I n t P t r obj , I n t P t r g e t S t a t e P t r) ;

GetState can also be a virtual or even an abstract method, in which case SpecialMo-
tionState can be extended by other managed classes.

Another way to extend a C++ class is to directly modify its virtual method table
(VMT). This is the idea behind the CXXI project [29]. However, since the VMT is
compiler-specific, we would like to avoid this approach.

35

6 Class Structure Transformations
This section describes how the C++ code model created by the C++ parser is trans-
formed into a .NET code model.

6.1 Common Language Specification Compliance
In .NET, assemblies, classes and methods can be marked as Common Language Spec-
ification compliant (CLS-compliant). CLS-compliant APIs are those that are specified
using a subset of language features that are common to all .NET languages [30].

In public interfaces of .NET libraries, it is advisable to avoid non-compliant types
and features such as SByte, TypedReference, unsigned integer types (UInt16, UInt32,
UInt64, UIntPtr), boxed value types, Nullable types, unmanaged pointers and function
pointers. If unsigned integers need to be wrapped, then they can be changed to one size
larger (UInt16→ Int32) to accommodate the most significant bit.

Method names differing only by case are not CLS-compliant:

1 void I n i t () ;
2 void i n i t () ;

Structs can be passed by reference, but Visual Basic.NET and other CLS-compliant
languages do not distinguish between parameters passed by value and by reference, i.e.
the following method declarations are ambiguous:

1 void I n i t (Vec to r4 v) ;
2 void I n i t (r e f Vec to r4 v) ;

When such a class is exported to VB.NET, trying to call any of the methods results in an
ambiguous call compiler error, which cannot be resolved with any additional specifiers.
C# does support such overloads.

6.2 Naming Conventions
Public interfaces of .NET libraries have a number of requirements when it comes to
naming and organizing interface elements [31]. The automatic code generator should
convert from C++ conventions to .NET conventions. Some relevant .NET conventions:

1. Avoid abbreviations that are not commonly used.

2. Avoid underscores and Hungarian notation (type information in names).

3. Classes, methods and properties should use PascalCasing.

4. Method parameters should use camelCasing.

36

5. Use namespaces instead of common prefixes.

6. Method names should be verbs, property names should be nouns or adjectives.

Table 6 shows differences between Google’s C++ capitalization conventions [32]
and those in .NET.

Table 6: Differences in capitalization between C++ and .NET.
Google C++ Style Guide Corresponding C# naming convention

/ / c o n s t a n t
c o n s t i n t kDaysInAWeek = 7 ;

/ / c o n s t a n t
c o n s t i n t DaysInAWeek = 7 ;

/ / v a r i a b l e s
i n t p r i c e _ c o u n t _ r e a d e r ;
i n t t a b l e n a m e ;

/ / v a r i a b l e s
i n t p r i c e C o u n t R e a d e r ;
i n t tableName ;

/ / p r i v a t e v a r i a b l e
p r i v a t e :

i n t n u m _ e n t r i e s _ ;

/ / p r i v a t e v a r i a b l e
p r i v a t e i n t _numEnt r i e s ;

/ / namespace
namespace b u l l e t
{

. . .

/ / namespace
namespace B u l l e t
{

. . .

Some C++ libraries (such as the Bullet physics library) use prefixes instead of C++
namespaces to group classes. Since .NET does not allow prefixes by convention and
requires classes to be placed into namespaces, the prefixes should be removed and con-
verted into namespaces instead (see table 7).

Table 7: Converting C++ prefixes to .NET namespaces
Bullet physics library .NET (C#) wrapper for the library

c l a s s b t C o l l i s i o n O b j e c t
{

. . .
} ;

c l a s s b tRig idBody
{

. . .
} ;

namespace B u l l e t
{

c l a s s C o l l i s i o n O b j e c t
{

. . .
}

c l a s s RigidBody
{

. . .
}

}

37

6.3 Wrapping Accessor Methods Using .NET Properties
Once acessor methods for fields have been created, they can be further transformed
into properties. Properties in .NET are like smart fields [33]. A property has a getter
method and optionally a setter method that are used to get and set the value of the
property similarly to a field. The two methods can include additional logic that is applied
whenever the property is accessed.

The number and vec accessor methods described in section 5.3 can be transformed
into a property.

1 p u b l i c i n t Number
2 {
3 g e t { re turn CppClass_getNumber (_ n a t i v e) ; }
4 s e t { CppClass_se tNumber (_ n a t i v e , va lue) ; }
5 }

Figure 6: Wrapping C++ fields using .NET properties.

If the C++ code includes a field and also its setter with additional logic (e.g. set-
Number), then a property can combine the .NET getter of the field with the C++ setter.

Some getter methods should not be turned into properties [34]. Getters that have
side-effects can influence the behavior of the application when it is being debugged,
because a debugger will attempt to access properties and show their values. Also, getters
that take a long time to execute can make the debugger slower.

38

6.4 Inline documentation
Both C++ and C# support inline documentation for methods. Doxygen is a common
tool and specification for generating documentation based on annotations in C++ com-
ments. Doxygen also supports C#, but Microsoft’s own feature for this is called XML
Documentation Comments. The two approaches share similar annotations, but have
different syntax. Automatic conversion is straightforward.

C++ Doxygen documentation C# XML Documentation Comments
/∗ !
∗ \ b r i e f A d d i t i o n .
∗ \ d e t a i l s Adds two numbers .
∗ \ param a f i r s t t e rm
∗ \ param b second te rm
∗ \ r e t u r n s a+b
∗ /

i n t add (i n t a , i n t b)
{

re turn a + b ;
} ;

/ / / <summary> A d d i t i o n . < / summary>
/ / / < remarks >Adds two numbers . < / remarks >
/ / / <param name=" a "> F i r s t term </ param >
/ / / <param name=" b"> Second term </ param >
/ / / < r e t u r n s >a+b </ r e t u r n s >
i n t Add (i n t a , i n t b)
{

re turn a + b ;
} ;

39

7 Performance benchmarks
Here, the overhead of calling methods with various signatures is measured in Platform
Invoke and C++/CLI. Minimizing overhead is especially important in scenarios where
unmanaged code is called very frequently. For example, games that query the physics
engine for object locations several times per second.

The most accurate timer on the x86 platform is the timestamp counter, which is an
integer register that is incremented at every CPU clock cycle. It provides resolution
in the order of nanoseconds as opposed to microseconds for the managed Stopwatch
timer and the unmanaged QueryPerformanceCounter function [35]. This counter can
be accessed using the RDTSCP (Read Time-Stamp Counter) machine instruction [36].
RDTSCP is a serializing variant of the earlier RDTSC instruction, meaning that other
instructions near RDTSCP are not executed out-of-order. Out-of-order execution would
interfere with the measurement, because instructions that are being measured could be
executed in parallel with instructions that do the measurement.

The counter may also be affected by CPU frequency scaling technologies such as
Cool’n’Quiet on AMD platforms [37]. Therefore such technologies must be turned off
before making measurements. To prevent context switching from affecting measure-
ments, the code under test should be executed several times and the results statistically
aggregated to exclude any outliers. Some sources suggest the process should be run at
high priority and the processor affinity mask should be set such that only a single core
can run the code [38]. This prevents the processor from having to reload the cache in
case the process is moved to another core [39]. However, this proved to give inconsis-
tent results as there may be other processes that are set to run on that particular core.
Intel also recommends running tests in kernel mode, but there is no straight-forward
way to do this in .NET.

Since RDTSCP is an unmanaged instruction with no direct equivalent provided by
the .NET framework, the instruction must be called from native code. There are three
ways to do it, by using PInvoke or C++/CLI, or generating platform-specific bytecode
that returns the counter value. The bytecode solution could be used, because it is only a
small amount of machine code that needs to be created, but this is not appropriate as a
general purpose marshalling method.

Table 8: The most frequently occuring CPU cycle count among 1 million empty mea-
surements.

Method CPU cycles (AMD) CPU cycles (Intel)
Baseline (PInvoke) 176 76
Baseline (C++/CLI) 141 50
Baseline (bytecode) 161 60

These three methods are compared by looking at the difference between two con-

40

secutive measurements, which is equivalent to measuring no code at all. This will be
the baseline value that can be subtracted from the measurements that will be made af-
terwards. Table 8 shows the most frequently occuring CPU cycle count for 1 million
measurements.

The code for doing these measurements is available on GitHub [40]. The mea-
surements were made on 1) an AMD FX-6350 processor at 3.90 GHz with throttling
disabled and 2) an Intel Core i7-6700 processor at 3.40 GHz. Intel CPUs are designed
to have a higher IPC (instructions per cycle) than AMD, which explains the faster execu-
tion. Note however, that the results are relative to clock speed, so as the AMD processor
runs at a faster clock rate, the actual time taken to execute the calls is somewhat evened
out. The measurement method with the lowest overhead was C++/CLI, so it was used
to do the next measurements.

Tables 9 and 10 show the performance of making various types of method calls. The
delta value is the CPU cycle count with the baseline subtracted from it. The overhead
of a call is roughly 185 clock cycles for C++/CLI and 210 clock cycles for PInvoke on
an AMD processor, 75 clock cycles for C++/CLI and 90 clock cycles for PInvoke on an
Intel processor.

Table 9: Various types of method calls and their cost in CPU cycles (AMD).
Method C++/CLI C++/CLI Platform Invoke Platform Invoke

CPU cycles cycles delta CPU cycles cycles delta
Baseline (C++/CLI) 141 0 141 0
static empty method 182 41 211 70
static constant method 183 42 209 68
static identity method 183 42 210 69
class constructor 507 366 536 395
class construct and Dispose 744 609 804 663
empty method 182 41 212 71
constant method 188 47 212 71
identity method 186 45 212 71

41

Table 10: Various types of method calls and their cost in CPU cycles (Intel).
Method C++/CLI C++/CLI Platform Invoke Platform Invoke

CPU cycles cycles delta CPU cycles cycles delta
Baseline (C++/CLI) 50 0 50 0
static empty method 74 24 90 40
static constant method 74 24 88 38
static identity method 76 26 90 40
class constructor 246 196 270 220
class construct and Dispose 354 304 398 348
empty method 76 24 90 40
constant method 76 26 90 40
identity method 76 26 90 40

42

8 Automatic Interface Generator Project
The project is a .NET application that parses C++ header files and outputs a PInvoke or
C++/CLI wrapper for the C++ project [2].

8.1 Existing solutions
There are existing projects to generate interface code, but they all have some deficien-
cies.

8.1.1 Simplified Wrapper Interface Generator (SWIG)

SWIG is a program that can generate interface code not only for .NET, but also for
other platforms like Python and Java [41]. SWIG requires all method signatures to be
specified manually, which requires a lot of developer input. This is not convenient in the
case of large projects that can have thousands of classes. SWIG uses the GPL license,
which makes it difficult to write proprietary extensions to it, if this became necessary.

8.1.2 xInterop C++ .NET Bridge

xInterop C++ .NET Bridge is an advanced proprietary project for wrapping C++ code [42].
This project does not create a C wrapper over the C++ library, so the interface will be
C++ runtime specific. The project also cannot be extended, since it is proprietary. While
C++/CLI is supported, native C++ code can only dynamically linked, as opposed to the
project described in this thesis, which does support static linking.

8.1.3 CXXI

CXXI is an open-source framework for creating .NET wrappers [29], which seems to
be abandoned. It is part of the Mono project, which is a cross-platform .NET imple-
mentation. CXXI does not create a C wrapper over the C++ library, so it is not runtime-
agnostic, similarly to xInterop.

43

8.2 Stages of the code generator
1. Parse C++ headers.

(a) Use Clang to extract all of the code elements (classes, methods, etc.) into an
in-memory representation.

(b) Create an initial wrapper project configuration.

2. Apply default code transformations.

(a) Resolve all references to types, including forward references.

(b) Find all include files that are required to reference any used types.

(c) Look for abstract methods and mark entire classes as abstract if needed.

(d) Generate a concrete wrapper class for each class template specialization.

(e) Remove redundant methods such as those that only differ by const-ness.
Also remove constructors of abstract classes, since abstract classes are not
allowed to be extended by default.

(f) Generate default constructor if no explicit C++ constructor exists.

(g) Generate accessor methods (get/set) for fields.

(h) Detect property values that should be cached.

3. Apply target language specific transformations.

(a) Detect enums that are flags (each value is a power of two).

(b) Give each code element a name that conforms to .NET standards.

(c) Convert get/set methods into .NET properties where appropriate.

(d) Insert marshaling code for special data types.

4. Manual steps (changing the project configuration files)

(a) Review ambiguous methods.

(b) Exclude irrelevant classes and methods.

(c) Insert custom transformations and code.

5. Output files.

(a) Output C wrapper, PInvoke wrapper and C++/CLI wrapper.

(b) Output Visual Studio solution files.

(c) Output CMake build scripts.

(d) Overwrite the wrapper project configuration with user customizations.

44

8.3 Wrapper Generator Unit Testing
To protect against regressions, the wrapper generator has unit tests to check that the
interface code is generated correctly. The tests are written using the NUnit unit-testing
framework. The test suites are organized as follows:

1. Basic project structure tests (namespaces, headers, classes).

2. Symbol mapping tests (header, class, method names).

3. Generating field accessor methods and .NET properties.

4. Generating class template specializations.

5. Default constructor and method override tests.

8.4 Future
To make the code generator more widely useable, it should be tested with libraries other
than Bullet. Other libraries may contain language constructs not supported in the current
version of the generator.

It is feasible to generate a minimal subset of the wrapper library by looking at the
types used in the consuming application using .NET reflection.

45

9 Conclusion
This paper provided a set of guidelines for how to create a wrapper interface around
C++ code. More common C++ constructs were discussed, but some were not, such as
bit fields. The automatic interface generator can generate most of the code for the Bul-
letSharp project, but as expected, some manual input is needed from the developer and
other projects have not been tested. There are benefits over existing wrapper generators.
We also determined the overhead of making calls from .NET into C++.

There is potential for improvements like adding support for more C++ constructs
and testing with more C++ libraries.

46

References
[1] H. Stutter, “A Design Rationale for C++/CLI.” "http://www.gotw.ca/

publications/C++CLIRationale.pdf”. February 2006 [Online].

[2] Andres Traks, “BulletSharpGen, a code generator for BulletSharpPInvoke.”
"https://github.com/AndresTraks/BulletSharpPInvoke/
tree/master/BulletSharpGen". GitHub [Online].

[3] Microsoft, “Recommendations on Nested Classes in Components.”
"https://msdn.microsoft.com/en-us/library/s9f3ty7f(v=
vs.71).aspx". Microsoft Developer Network [Online].

[4] Microsoft, “Using the DllImport Attribute.” "https://msdn.microsoft.
com/en-us/library/aa984739%28v=vs.71%29.aspx". Microsoft
Developer Network [Online].

[5] Microsoft, “Cleaning Up Unmanaged Resources.” "https://msdn.
microsoft.com/en-us/library/498928w2%28v=vs.110%29.
aspx". Microsoft Developer Network [Online].

[6] Microsoft, “Dispose Pattern.” "https://msdn.microsoft.com/en-us/
library/b1yfkh5e%28v=vs.110%29.aspx". Microsoft Developer Net-
work [Online].

[7] Microsoft, “Object.GetHashCode Method ().” "https://msdn.microsoft.
com/en-us/library/system.object.gethashcode%28v=vs.
110%29.aspx". Microsoft Developer Network [Online].

[8] Microsoft, “Differences Between C++ Templates and C# Generics (C# Program-
ming Guide).” "https://msdn.microsoft.com/en-us/library/
c6cyy67b.aspx". Microsoft Developer Network [Online].

[9] Microsoft, “Using C++ Interop (Implicit PInvoke).” "https://msdn.
microsoft.com/en-us/library/2x8kf7zx.aspx". Microsoft Devel-
oper Network [Online].

[10] Ecma International Standard ECMA-372, “C++/CLI Language Specifica-
tion, 19.13.1 Destructors.” "http://www.ecma-international.org/
publications/files/ECMA-ST/ECMA-372.pdf". December 2005].

[11] Ecma International Standard ECMA-372, “C++/CLI Language Specifica-
tion, 19.13.2 Finalizers.” "http://www.ecma-international.org/
publications/files/ECMA-ST/ECMA-372.pdf". December 2005.

47

http://www.gotw.ca/publications/C++CLIRationale.pdf
http://www.gotw.ca/publications/C++CLIRationale.pdf
https://github.com/AndresTraks/BulletSharpPInvoke/tree/master/BulletSharpGen
https://github.com/AndresTraks/BulletSharpPInvoke/tree/master/BulletSharpGen
https://msdn.microsoft.com/en-us/library/s9f3ty7f(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/s9f3ty7f(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/aa984739%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/aa984739%28v=vs.71%29.aspx
https://msdn.microsoft.com/en-us/library/498928w2%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/498928w2%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/498928w2%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/b1yfkh5e%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/b1yfkh5e%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.object.gethashcode%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.object.gethashcode%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.object.gethashcode%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/c6cyy67b.aspx
https://msdn.microsoft.com/en-us/library/c6cyy67b.aspx
https://msdn.microsoft.com/en-us/library/2x8kf7zx.aspx
https://msdn.microsoft.com/en-us/library/2x8kf7zx.aspx
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-372.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-372.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-372.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-372.pdf

[12] Microsoft, “How to: Define and Consume Classes and Structs (C++/CLI)
- Destructors and finalizers.” "https://msdn.microsoft.com/en-us/
library/ke3a209d(v=vs.110).aspx#Anchor_9". Microsoft Devel-
oper Network [Online].

[13] CodeProject, Nish Nishant, “Deterministic Destruction in
C++/CLI.” "http://www.codeproject.com/Articles/7965/
Deterministic-Destruction-in-C-CLI". CodeProject [Online].

[14] The Clang Team, “Clang documentation, Introduction to the Clang AST.” "http:
//clang.llvm.org/docs/IntroductionToTheClangAST.html".
Clang 3.9 documentation [Online].

[15] The Clang Team, “Comparing Clang to other open source compilers.” "http:
//clang.llvm.org/comparison.html". [Online].

[16] Microsoft, “Class Member overview.” "https://msdn.microsoft.com/
en-us/library/10cwk72y.aspx". Microsoft Developer Network [On-
line].

[17] Bart Demeyere, “C++ in out parameters.” "http://users.telenet.be/
bart.demeyere/C++InOutParameters.html". [Online].

[18] Doxygen, “Doxygen Manual: Special Commands.” "https://www.stack.
nl/~dimitri/doxygen/manual/commands.html". Doxygen Manual,
Dec 30 2015 [Online].

[19] Microsoft, “Built-In Types Table (C# Reference).” "https://msdn.
microsoft.com/en-us/library/ya5y69ds.aspx". Microsoft
Developer Network [Online].

[20] Microsoft, “CA1414: Mark boolean P/Invoke arguments with Marsha-
lAs.” "https://msdn.microsoft.com/en-us/library/ms182206.
aspx". Microsoft Developer Network [Online].

[21] cppreference.com, “Copy assignment operator.” "http://en.
cppreference.com/w/cpp/language/copy_assignment". C++
reference [Online].

[22] Microsoft, “StructLayoutAttribute.Pack Field.” "https://msdn.
microsoft.com/en-us/library/system.runtime.
interopservices.structlayoutattribute.pack%28v=vs.
110%29.aspx". Microsoft Developer Network [Online].

48

https://msdn.microsoft.com/en-us/library/ke3a209d(v=vs.110).aspx#Anchor_9
https://msdn.microsoft.com/en-us/library/ke3a209d(v=vs.110).aspx#Anchor_9
http://www.codeproject.com/Articles/7965/Deterministic-Destruction-in-C-CLI
http://www.codeproject.com/Articles/7965/Deterministic-Destruction-in-C-CLI
http://clang.llvm.org/docs/IntroductionToTheClangAST.html
http://clang.llvm.org/docs/IntroductionToTheClangAST.html
http://clang.llvm.org/comparison.html
http://clang.llvm.org/comparison.html
https://msdn.microsoft.com/en-us/library/10cwk72y.aspx
https://msdn.microsoft.com/en-us/library/10cwk72y.aspx
http://users.telenet.be/bart.demeyere/C++InOutParameters.html
http://users.telenet.be/bart.demeyere/C++InOutParameters.html
https://www.stack.nl/~dimitri/doxygen/manual/commands.html
https://www.stack.nl/~dimitri/doxygen/manual/commands.html
https://msdn.microsoft.com/en-us/library/ya5y69ds.aspx
https://msdn.microsoft.com/en-us/library/ya5y69ds.aspx
https://msdn.microsoft.com/en-us/library/ms182206.aspx
https://msdn.microsoft.com/en-us/library/ms182206.aspx
http://en.cppreference.com/w/cpp/language/copy_assignment
http://en.cppreference.com/w/cpp/language/copy_assignment
https://msdn.microsoft.com/en-us/library/system.runtime.interopservices.structlayoutattribute.pack%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.runtime.interopservices.structlayoutattribute.pack%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.runtime.interopservices.structlayoutattribute.pack%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.runtime.interopservices.structlayoutattribute.pack%28v=vs.110%29.aspx

[23] Andrew Pardoe, “CLR Inside Out - Handling Corrupted State Exceptions.”
"https://msdn.microsoft.com/en-us/magazine/dd419661.
aspx#id0070035”. Microsoft Developer Network [Online].

[24] Microsoft, “HandleProcessCorruptedStateExceptionsAttribute
Class.” "https://msdn.microsoft.com/en-us/
library/system.runtime.exceptionservices.
handleprocesscorruptedstateexceptionsattribute%28v=
vs.110%29.aspx". Microsoft Developer Network [Online].

[25] Microsoft, “Microsoft developer network align (C++).” "https://msdn.
microsoft.com/en-us/library/83ythb65.aspx". [Online].

[26] Microsoft, “Compiler Warning (level 3) C4316.” "https://msdn.
microsoft.com/en-us/library/dn448573.aspx". Microsoft
Developer Network [Online].

[27] Clark Nelson, “Dynamic memory allocation for over-aligned data.”
"http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2016/p0035r1.html". C++ Standards Committee Papers, 20 Dec 2015[On-
line].

[28] Microsoft, “WindowsProtocolTestSuites on GitHub - WindowsProto-
colTestSuites/IntPtrUtility.cs.” "https://github.com/Microsoft/
WindowsProtocolTestSuites/blob/master/ProtoSDK/Common/
IntPtrUtility.cs". Microsoft Developer Network [Online].

[29] Novell, Inc, “mono/cxxi: C++ interop framework.” "https://github.com/
mono/cxxi". GitHub [Online].

[30] Microsoft, “Language Independence and Language-Independent Components.”
"https://msdn.microsoft.com/en-us/library/12a7a7h3%
28v=vs.110%29.aspx". Microsoft Developer Network [Online].

[31] Microsoft, “Naming Guidelines.” "https://msdn.microsoft.com/
en-us/library/ms229002(v=vs.110).aspx ". Microsoft Developer
Network [Online].

[32] Google, “Google C++ Style Guide.” "https://google.github.io/
styleguide/cppguide.html". [Online].

[33] Microsoft, “Properties Overview.” "https://msdn.microsoft.com/
en-us/library/65zdfbdt.aspx". Microsoft Developer Network
[Online].

49

https://msdn.microsoft.com/en-us/magazine/dd419661.aspx#id0070035
https://msdn.microsoft.com/en-us/magazine/dd419661.aspx#id0070035
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.handleprocesscorruptedstateexceptionsattribute%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.handleprocesscorruptedstateexceptionsattribute%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.handleprocesscorruptedstateexceptionsattribute%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.runtime.exceptionservices.handleprocesscorruptedstateexceptionsattribute%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/83ythb65.aspx
https://msdn.microsoft.com/en-us/library/83ythb65.aspx
https://msdn.microsoft.com/en-us/library/dn448573.aspx
https://msdn.microsoft.com/en-us/library/dn448573.aspx
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0035r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0035r1.html
https://github.com/Microsoft/WindowsProtocolTestSuites/blob/master/ProtoSDK/Common/IntPtrUtility.cs
https://github.com/Microsoft/WindowsProtocolTestSuites/blob/master/ProtoSDK/Common/IntPtrUtility.cs
https://github.com/Microsoft/WindowsProtocolTestSuites/blob/master/ProtoSDK/Common/IntPtrUtility.cs
https://github.com/mono/cxxi
https://github.com/mono/cxxi
https://msdn.microsoft.com/en-us/library/12a7a7h3%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/12a7a7h3%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/ms229002(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms229002(v=vs.110).aspx
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://msdn.microsoft.com/en-us/library/65zdfbdt.aspx
https://msdn.microsoft.com/en-us/library/65zdfbdt.aspx

[34] Microsoft, “Choosing Between Properties and Methods.” "https://msdn.
microsoft.com/en-us/library/ms229054(v=vs.100).aspx".
Microsoft Developer Network [Online].

[35] Microsoft, “Acquiring high-resolution time stamps.” "https://msdn.
microsoft.com/en-us/library/windows/desktop/dn553408%
28v=vs.85%29.aspx". Microsoft Developer Network [Online].

[36] Intel, “How to Benchmark Code Execution Times on Intel R© IA-32 and
IA-64 Instruction Set Architectures.” "http://www.intel.com/
content/dam/www/public/us/en/documents/white-papers/
ia-32-ia-64-benchmark-code-execution-paper.pdf". Septem-
ber 2010.

[37] AMD, “AMD64 Architecture Programmer’s Manual Volume 3: General-
Purpose and System Instructions,” Tech. Rep. 24594, AMD, May 2013.
http://amd-dev.wpengine.netdna-cdn.com/wordpress/
media/2008/10/24594_APM_v3.pdf.

[38] Thomas Maierhofer, CodeProject, “Performance Tests: Precise
Run Time Measurements with System.Diagnostics.Stopwatch.”
"http://www.codeproject.com/Articles/61964/
Performance-Tests-Precise-Run-Time-Measurements-wi".
CodeProject 2010 [Online].

[39] Microsoft, “Process.ProcessorAffinity Property.” "https://msdn.
microsoft.com/en-us/library/system.diagnostics.
process.processoraffinity%28v=vs.110%29.aspx". Microsoft
Developer Network [Online].

[40] Andres Traks, “BulletSharpPerfTest, Performance testing of BulletSharp.”
"https://github.com/AndresTraks/BulletSharpPerfTest".
GitHub [Online].

[41] The SWIG Developers, “Simplified Wrapper and Interface Generator.” "http:
//swig.org/". SWIG [Online].

[42] xInterop Software, LLC, “xInterop C++ .NET Bridge.” "http://www.
xinterop.com/". [Online].

50

https://msdn.microsoft.com/en-us/library/ms229054(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/ms229054(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408%28v=vs.85%29.aspx
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2008/10/24594_APM_v3.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2008/10/24594_APM_v3.pdf
http://www.codeproject.com/Articles/61964/Performance-Tests-Precise-Run-Time-Measurements-wi
http://www.codeproject.com/Articles/61964/Performance-Tests-Precise-Run-Time-Measurements-wi
https://msdn.microsoft.com/en-us/library/system.diagnostics.process.processoraffinity%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.diagnostics.process.processoraffinity%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.diagnostics.process.processoraffinity%28v=vs.110%29.aspx
https://github.com/AndresTraks/BulletSharpPerfTest
http://swig.org/
http://swig.org/
http://www.xinterop.com/
http://www.xinterop.com/

Non-exclusive licence to reproduce thesis and make thesis public

I, Andres Traks,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public, includ-
ing for addition to the DSpace digital archives until expiry of the term of validity of
the copyright, and

1.2 make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until expiry of the term of validity of the
copyright,

.NET and C++ interoperation

supervised by Siim Karus

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 19.05.2016

51

	Introduction
	Comparison of .NET and C++
	.NET and C++ Interoperation
	Interface Generator
	Organization of the paper

	Platform Invoke Project Layout
	Wrapper Class Layout
	Platform Invoke DllImport Attribute
	Object Lifecycle Management
	The Dispose Pattern

	Object Hashing
	Class Templates

	C++/CLI Project Layout
	Wrapper Class Structure
	Dispose Pattern in C++/CLI

	C++ Parsing
	Ambiguous C++ Methods
	Arrays
	Parameter Marshaling Direction

	Inferring Information from Doxygen Documentation

	Data Marshaling
	Basic Types
	Booleans

	Array Types
	Fields
	Marshaling Using .NET Struct Types
	Passing Struct Parameters

	ICustomMarshaler Interface
	Over-aligned Data Structures for SSE
	Callback Methods
	Overriding C++ Classes in Managed Code

	Class Structure Transformations
	Common Language Specification Compliance
	Naming Conventions
	Wrapping Accessor Methods Using .NET Properties
	Inline documentation

	Performance benchmarks
	Automatic Interface Generator Project
	Existing solutions
	Simplified Wrapper Interface Generator (SWIG)
	xInterop C++ .NET Bridge
	CXXI

	Stages of the code generator
	Wrapper Generator Unit Testing
	Future

	Conclusion

