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Every Click Counts: Deep Learning Models for Interactive Segmen-
tation in Biomedical Imaging

Abstract:
The medical field of radiology is experiencing an unprecedented surge in demand, largely
driven by an aging population and consequent pressures on an already understaffed
workforce. These pressures have resulted in an increased demand for technological
advancements to manage the escalating workload. Although various machine learning so-
lutions have been implemented in some areas to alleviate this strain, significant challenges
remain. Notably, manually measuring tumours detected in computed tomography images,
a key task in the oncological diagnostic workflow, continues to be labour-intensive and
presents an opportunity for improvement. To this end, in this thesis, we explored the
potential of employing interactive deep-learning models to assist radiologists, thereby
improving diagnostic workflow. We experimented with techniques, such as RITM and
FocalClick, for the analysis of computed tomography images. This analysis facilitated
our primary contribution - the introduction of dynamic radius disk encoding, which adds a
new dimension to the click-based user input and substantially boosts model performance.
This innovation reduces the need for repeated interactions and enhances segmentation
quality with fewer clicks. Additionally, we present an improved augmentation strategy
and introduce a novel metric for evaluating interactive segmentation models. Our results
demonstrate the effectiveness of these deep learning methods, particularly when aug-
mented with dynamic radius disk encoding, in streamlining radiological diagnostics. The
findings represent a promising avenue for further research aimed at further optimising
these techniques for clinical application.

Keywords:
machine learning, deep learning, interactive segmentation models, RITM, FocalClick,
dynamic radius disk encoding, computed tomography segmentation, biomedical imaging,
tumour analysis, artificial intelligence in radiology, clinical decision support systems,
neural networks in healthcare, CT image processing, medical imaging AI, diagnostic
efficiency improvements, healthcare automation.
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Iga Klikk Loeb: Süvaõppemudelid Interaktiivseks Segmenteerimiseks
Biomeditsiinilises Pildistamises
Lühikokkuvõte:
Radioloogia valdkonnas valitseb erakordne nõudluse kasv, mis on suuresti tingitud
elanikkonna vananemisest ja sellest tulenevast survest niigi puudulikule tööjõule. Suure-
nenud on vajadus tehnoloogiliste uuenduste järele, mis aitaks tulla toime aina suureneva
töökoormusega. Mõnes valdkonnas on selle koormuse leevendamiseks rakendatud masi-
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nõpet, kuid mitmed kitsaskohad on siiski jäänud lahenduseta. Tähelepanuväärselt töö-
ja ajamahukas ülesanne on üks onkoloogilise diagnostika möödapääsmatu osa - kom-
puutertomograafiapiltidel tuvastatud kasvajate käsitsi mõõtmine. Käesolevas töös uuriti
võimalusi interaktiivsete süvaõppemudelite kasutamiseks radioloogide abistamiseks ning
seeläbi diagnostilise töövoo parandamiseks. Kompuutertomograafiapiltide analüüsiks
katsetati erinevaid tehnikaid, näiteks RITM ja FocalClick. Nende meetodide uurimisel
jõuti dünaamilise raadioplaadi kodeerimise kasutuselevõtuni, mis lisas klõpsupõhisele ka-
sutajasisendile uue mõõtme ja suurendas oluliselt mudeli jõudlust. See uuendus vähendab
vajadust korduvateks interaktsioonideks ja parandab segmenteerimise kvaliteeti vähemate
klõpsude abil. Lisaks pakutakse välja täiustatud augmentatsioonistrateegia ja tutvusta-
takse uudset mõõtemeetodit interaktiivsete segmentatsioonimudelite hindamiseks. Meie
saadud tulemused demonstreerivad interaktiivsete segmenteerimismeetodite ja nende dü-
naamilise raadoplaadi kodeerimisega kombineerimise tõhusust radioloogilise diagnostika
täiustamisel. Tulemused kujutavad endast paljulubavat suunda edasisteks uuringuteks
nende meetodite jätkuvaks optimeerimiseks kliinilise rakendamise eesmärgil.

Võtmesõnad:
masinõpe, süvaõpe, interaktiivsed segmenteerimismudelid, RITM, FocalClick, dünaa-
miline raadiusketta kodeerimine, kompuutertomograafia segmenteerimine, biomedit-
siiniline kujutamine, kasvajate analüüs, tehisintellekt radioloogias, kliiniliste otsuste
tugisüsteemid, neurovõrgud tervishoius, CT-pildi töötlemine, meditsiinilise kujutamise
AI, diagnostilise efektiivsuse parandamine, tervishoiu automatiseerimine.

CERCS: P176 – Tehisintellekt; T111 – Pilditehnika; B110 – Bioinformaatika, meditsii-
niinformaatika, biomatemaatika, biomeetrika;
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1 Introduction
In the late 20th and early 21st centuries, developed nations witnessed significant medical
advancements that contributed to increased life expectancy. Concurrently, urbanisation,
along with economic and environmental concerns, led to an increase in childless families,
therefore reducing average birth rates. These factors have resulted in an ageing population,
increasing pressure on healthcare systems [1, 2]. Furthermore, The growth of the
workforce capable of supporting this ageing population has not been able to keep up
the pace in recent years. In particular, radiology has been significantly affected. An
increasing number of patients, combined with a broader range of therapeutic options
available for treating most cancer forms, resulted in further increasing demand for
specialists who can analyse medical imaging, such as computed tomography (CT) scans.

Given the increased demand for radiology services, one of the most time-consuming
tasks is the visual analysis of the CT scans, which is crucial for most cancer treatment
decisions. The treatment of most tumours is often determined by the stage of the disease,
assessed using the TNM staging system. This system classifies cancer based on tumour
size (T), the extent of spread to lymph nodes (N) and the presence of metastasis (M).
Quick visual analysis of these parameters is challenging due to the detailed and precise
assessment required to accurately stage the cancer. Therefore, applying computer vision
techniques has the potential to streamline the visual inspection procedure, possibly at
least partially speeding up the entire diagnostic process.

Early-to-mid 2010s have seen significant advancements in computer vision with the
developments in convolutional deep neural networks [3, 4]. Initially, these innovations
led to concerns about machine learning methods replacing medical specialists. However,
it has become evident that rather than replacing, computer vision tools could augment
the work of radiologists instead. Studies as recent as 2023 [5] assure that the most
effective use of this technology is as supportive tools. Equipping radiologists with the
best equipment available can address the current crisis in this part of the healthcare
system.

Based on this, we have defined the goal of this master thesis - to explore the use of
machine learning tools to assist radiologists in accurately determining the size and struc-
ture of tumours, thereby streamlining the diagnostic workflow. Typically, radiologists
spend a significant amount of time detecting, measuring, and reporting all lesions present
in any CT scan they examine [6]. To tackle this issue, we focus on speeding up tumour
segmentation, leaving the critical task of their detection to radiologists. Recent works
have shown that it is possible to prompt a deep neural network to segment lesions in CT
imaging slices [7]. However, machine learning solutions, in general, are commonly not
robust enough to perform consistently well across diverse and unseen data. Therefore, we
aim to enhance the precision of tumour segmentation through interactive segmentation
techniques. Applying methods like RITM [8] and FocalClick [9], proven in other visual
domains, has the potential of not only generating but also refining tumour segmentations.
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We do not only apply these techniques on CT images but also propose adjusting how
the user input is encoded in these architectures, leading to measurable improvements in
performance.

The primary motivation behind our research stems from the challenges in lung cancer
screening initiatives, faced by institutions such as the Radiology Clinic of Tartu University
Hospital. Therefore, our main focus is on the segmentation of lung nodules. However, to
ensure the generalizability of our methods and explore their potential applications, we
also test these approaches on various other types of cancerous tissue.

In the following chapters, we give an overview of prior work in computer vision,
followed by a description of our datasets and experiments. Finally, we describe our
results, discuss their significance, and ponder future work.
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2 Background
Non-invasive imaging methods like computed tomography are one of the main tools
in radiologists’ arsenal when it comes to detecting and diagnosing tumours [10, 11].
Therefore, many machine learning efforts [12, 7], including this work, have focused
on this modality. However, most computer vision techniques are designed with colour
images in mind. Due to the technical differences between computed tomography and
colour images, adapting methods commonly used with one format to another often
poses challenges. We begin this chapter by discussing the main features of CT scans
that must be accounted for, then follow up by describing various methods that can be
adapted and used for interactive medical imaging segmentation. We start with classical
algorithms, which leverage topographic features of input images. That is followed up
with descriptions of more complex deep learning based methods.

2.1 Computed Tomography Imaging
Computed tomography (CT) is a technique that produces images of internal organs in
a non-invasive fashion. CT scan is a three-dimensional image consisting of 3D pixels,
also known as voxels - values with corresponding x, y and z coordinates. A combination
of specialised CT scanners and tomographic reconstruction software is used to produce
such scans.

A CT scanner (Fig. 1) uses X-ray tubes and corresponding ray detectors arranged on
the opposite sides of a ring surrounding a patient. Emitted rays pass through different
organs of the human body, losing intensity in the process. The remaining signal is picked
up by the detector to measure how much of the ray was absorbed within the patient.
The absorption rate varies based on the tissue - for example, soft and relatively coarse
lung tissue material absorbs less of the rays than dense bone structures. The ring spins
around its axis, measuring the change in ray intensities from various angles of the same
plane. The measurements are processed using tomographic reconstruction to compute a
cross-section image. The image represents the difference in the emitted and detected ray
intensities rather than the detected signal strength, causing more ray-absorbing tissues to
appear brighter in the constructed image. During patient examination, contrast material
is injected into the patient’s body. Contrast strengthens the absorption of X-rays, making
blood vessels and organs that receive a lot of blood flow appear brighter and clearer on
the scan. The spinning ring is moved along its axis to take measurements of different
parts of the human body, and the produced cross-sections are stitched together into a 3D
volume, as seen in Figure 1.

As a 3D structure, a computed tomography scan has to be projected into a 2D space
to be viewed on a monitor or other two-dimensional medium. While there are various
methods to produce such projections, when there is a need to inspect a specific area of the
scan, commonly viewing it slice by slice is the preferred approach. This slice tends to be
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Figure 1. Constructing a CT scan. On the left, a computed tomography scanner is
displayed (image from Pexels.com). The patient is laid on the table which moves to
the ring that houses X-ray emitting hardware. The signals measured within the ring are
reconstructed into cross-section images stacked to create a 3D scan volume.

visualised as a grayscale image, as the measurements are stored in a single channel rather
than 3 channels in RGB images. The values of a CT scan are referred to as Hounsfield
Units (HU) and fit into a range of [−1024, 3071] (Hounsfield scale) [13]. The higher the
value, the more captured substance reduces X-ray intensity. For example, air has an HU
of -1000, and water - HU of 0.

2.2 Computational Methods for Biomedical Segmentation
Given the complexity and heterogeneity of CT scans, various computational methods
have been considered for their analysis. These methods vary in their complexity and
effectiveness. Classical computer vision algorithms tend to be relatively lightweight and
simple, while deep learning-based methods trade this simplicity for a potential increase
in performance and robustness.

2.2.1 Classical Algorithms

Classical segmentation algorithms are one of the approaches popular for their simplicity
and adaptability. Their behaviour is clear and interpretable in contrast to the black-box
behaviour of neural networks. When solving an engineering problem, the most simple,
efficient solution with sufficient performance is the one to choose. Classical algorithms
fulfil the criteria of simplicity, therefore, evaluating their performance in the task of
tumour segmentation in CT scans is crucial before considering the real-world application.

One of the approaches examined is the flooding algorithm. It’s an iterative process
where the segmentation mask spreads based on signal similarity. First, a starting point
(pixel) is chosen on the object that should be segmented. Then the algorithm considers
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each surrounding pixel - the value of every neighbour is compared to the initial value.
The new neighbour is added to the mask if the difference between the two does not
exceed a pre-defined threshold. Neighbours of the new pixel are added to the queue for
consideration, and the algorithm continues until there are no more pixels to consider.
It performs well in homogeneous regions, works fast and is not too sensitive to initial
conditions. However, when considering cancerous tissue, it might leave enclosed parts
of tumours unsegmented, as there can be significant differences in signal strength.

Active Contours algorithm (also referred to as snakes algorithm) [14] focuses on
boundaries rather than topography, making it more robust to noisy patterns within the
objects. A so-called "snake" is an energy-minimizing spline formed of independent
points. The "snake" is iteratively guided by its own energy function, a combination of
internal and external forces affecting the spline. Afterwards, the area enclosed within the
spline can be turned into a segmentation mask. The internal energy of the curve attempts
to keep the "snake" smooth (Ecurv) and continuous (Econt), while external forces pull
the "snake" towards image features like edges (Eedge), lines (Eline) and terminations
(Eterm). External energies are also given a weight (w), influencing which features should
affect the spline more. Given an initial arrangement of points, the algorithm attempts to
minimise this energy function through gradient descent.

Esnake = Ecurv + Econt + wedgeEedge + wlineEline + wtermEterm (1)

There are various possible modifications to the definition of Esnake, each with their
own side effects. For example, incorporating a "balloon" force [15] was suggested to
better define the behaviour of the "snakes" in homogeneous areas. We evaluate the
original algorithm proposed by Kass et al.[14]. While active contour algorithms perform
better with difficult topography than flooding, they have their own flaws. The algorithm
is very sensitive to hyperparameter values and requires a good initial guess of the object’s
location. It also has trouble defining edges in noisy images. Therefore, images are
commonly blurred in a preprocessing step, partially losing detail. The algorithm is
commonly used for contouring, not segmentation. Therefore, its performance suffers
when applied to segment hollow objects. Lastly, the approach is a lot slower when
compared to flooding and does not guarantee that the fitted spline will only settle around
the intended object.

2.2.2 Deep Neural Networks in Computer Vision

While classical methods have their uses and can be applied for certain tasks in computer
vision, neural networks have been shown to outperform them in the segmentation of
biomedical imaging [16]. The inspiration for neural networks stems from the processes
in the human brain researched by neuroscientists. Neurons, the nerve cells that form
pathways in the brain, are interconnected and send signals to each other given a particular
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(a) (b) (c)

Figure 2. Classical algorithms used for segmenting a lung nodule. Panel (a) illustrates a
lung nodule outlined in white. Panels (b) and (c) show masks created by the flooding and
active contour algorithms, accordingly. A green dot marks the nodule’s centre, serving as
the starting point for the flooding algorithm and the initial centre for the active contour
("snake") algorithm. The initial "snake" is depicted by a red dashed line, while the green
solid line shows its final shape after completion of the algorithm.

stimulus. Similarly, artificial neural networks are built from smaller building blocks
called artificial neurons. These neurons function by combining an array of input values
into a single output. That is achieved by applying different weights to each input,
aggregating the inputs into a single value, adding a bias and running the result through
a non-linear activation function. In artificial neural networks, neurons are arranged in
layers, where a later layer receives outputs of an earlier layer as an input. The weights
and biases, which are initially set at random, are crucial adjustable parameters. During
training, the model initially generates predictions that significantly deviate from the
desired outcome. A loss function is used to calculate the error between these predictions
and the expected outcomes. This error is then used to adjust the weights and biases
through an optimisation process, typically involving gradient descent, to minimise the
loss and enhance the model’s accuracy over time.

The most basic type of artificial neural network is the fully connected network, in
which each neuron is linked to every neuron of the preceding layer. While this structure
enables broad information transfer across the network, it is not effective universally.
Fully connected networks tend to struggle with imaging due to poor scalability.

Consider a fully connected network designed to classify 128 × 128 pixel images,
a tiny resolution by modern standards. Typically, pixels consist of 3 color channels
leading to a total of 49152 inputs. In a fully connected network each neuron must process
all of the inputs, consequently requiring 49152 weights per neuron. Given a relatively
low size of 512 neurons in the first layer, the network would already contain over 25
million learnable parameters from the input layer alone. Usually, more than one layer is
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necessary for effective predictions.
The number of parameters increases even more drastically when increasing image

resolution. Doubling it to 256× 256 not only quadruples the number of input neurons
but necessitates a larger and deeper network to handle the increased amount of raw data.
Due to this weakness, researchers often use alternative architectures for image analysis.

One of the most widespread approaches when it comes to neural networks in computer
vision is using convolutional filters. A convolutional filter contains a grid of input weights
(commonly referred to as a kernel) that can vary in size, with a 3 × 3 grid being the
most common. Inputs to this filter are multiplied by the kernel weights and then summed
(along with a possible bias term) to produce a single output value. This output is then
typically used as an input for an activation function. The filter covers all input channels
at the same time. Therefore, the depth of the kernel has to match the number of input
channels. This filter moves across the image in a sliding window manner, producing a
2D grid of output values called a feature map. A single layer contains multiple filters,
producing multiple feature map channels. Typically, the network contains consecutive
convolutional layers, where feature maps from an earlier layer become inputs for the next
one. The early layers extract low-level features from the image, such as edges or diagonal
lines, but the deeper we go into the network, the more complex the representations
become [17]. Commonly networks have a shrinking structure where the feature maps
reduce in resolution, giving the convolutional filters in lower layers more and more global
context [18, 4]. The convolutional architecture has demonstrated greater efficiency in
visual workloads compared to fully-connected networks.

Commonly, the architecture of a convolutional neural network (CNN) is tailored to its
specific task. For instance, when dealing with a classification problem, it is common for a
CNN to be comprised of a series of convolutional layers, followed by a classification head
constructed from several fully-connected layers. Convolutions are primarily responsible
for doing the heavy lifting of feature extraction, while the classification head condenses
these features down to a vector of final predictions.

In contrast, a segmentation task requires the network to classify each pixel individu-
ally rather than the image as a whole. Using the above-described approach here would
be impractical, as the classification head would have to scale up to the resolution of the
input image. To address this, Long et al. introduced the Fully Convolutional Network
(FCN), which employs convolutional layers to produce prediction as a classification map,
eliminating the need for fully connected layers. This architecture not only outperformed
prior approaches in semantic segmentation but was also groundbreaking in being input-
resolution independent. This kind of model could be trained on images of one resolution
and then generate predictions on images of a different resolution. This idea quickly
took off, and various fully convolutional architectures were soon proposed, such as the
U-Net, proposed by Ronneberger et al. [19] and shown to be effective in biomedical
imaging. This network has been further refined with subsequent ideas, such as U-Net++
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and nnU-Net [20, 12].

Figure 3. U-Net++. The semantic segmentation model consists of a contracting path
(comprised of 3 × 3 convolutions and max pooling) and an expanding path (2 × 2
transposed convolutions). The paths are connected by intermediate convolutional blocks
and skip connections, deep supervision is employed for the highest resolution layer.

The architecture of U-Net consists of two primary components: a contracting encoder
and an expanding decoder. When put together, they form a structure roughly resembling
the letter "U", which is the inspiration for the model’s title. The encoder has a series of
convolutional layers stacked with max-pooling in-between to down-sample the feature
maps until a high-level representation is reached. However, instead of being used for
prediction, the high-level representations are up-sampled back to the original size and
gradually squeezed into fewer channels, finishing with a channel per predicted class.
Transposed convolutions are employed for up-sampling, rather than simpler techniques
like bilinear or nearest neighbour interpolation, allowing the network to learn more
optimal upscaling of feature maps. Additionally, for each level of the decoder, the
corresponding resolution feature maps from the encoder are concatenated to the outputs
from the lower resolution block, providing additional information to help with the final
prediction. The idea for skip connections was introduced with the ResNet [4], where
their primary purpose was to ease the training of deep convolutional models. However,
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in U-Net, they primarily serve to reintroduce early context to the decoder mechanism.
U-Net++ [20] is an evolution of the U-Net, redesigning the skip connections be-

tween encoder and decoder branches. Rather than passing the encoder feature maps
directly to the corresponding decoder block, they undergo transformations through mul-
tiple convolutional blocks. Additional blocks are added to every pathway. Each block
combines features from the earlier blocks of the same path and up-sampled features
of a corresponding lower-resolution block. It is hypothesised that adding in-between
convolutions allows for a more gradual transformation of features between the encoder
and the decoder, allowing for easier optimisation. Additionally, deep supervision [21] is
used for each top-level convolutional block to enhance training effectiveness.

However, convolutional segmentation models do not have to be limited to an encoder-
decoder architecture. A good example is the HRNetV2 [22] semantic segmentation model.
Instead of a single signal path, it employs a multi-stage, multi-scale architecture. The first
stage of the network contains high-resolution bottleneck convolution blocks. However,
consecutive stages add additional convolution streams where the feature resolution is
halved. In between every stage, feature fusion modules exchange information across
representations of different resolutions. Higher resolution features are down-sampled via
3× 3 convolutions with a stride of 2, while lower resolution maps are squashed with a
1×1 convolution and up-sampled through bilinear interpolation. At the end of a network,
a feature aggregation module up-samples features from lower-resolution streams via
bilinear interpolation, and a final prediction map is produced by a 1× 1 convolution and
an activation function.

Figure 4. HRNetV2. The model consists of multiple parallel convolution streams, which
generate feature maps at different scales. Feature fusion modules are used to share
information between streams of different resolutions and final prediction is produced
from aggregated features of all resolutions.

While the aforementioned architecture is capable of generating effective segmenta-
tions, it is best employed as a feature extractor, as demonstrated with HRNetV2+OCR [23].
The principle behind the OCR (Object-Contextual Representations) module is that a
pixel’s class is determined by the label of the object to which the pixel belongs. Thus,
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the prediction can be enhanced by considering the region surrounding the pixel. Unlike
methods relying on dilated convolutions [24], OCR leverages the object’s context to
enhance pixel-level predictions. The feature maps generated by the HRNetV2 backbone
are considered to be soft object regions, where each pixel is associated with every region
to some degree. An object region context vector is derived from these regions. Subse-
quently, the initial feature maps are adjusted by weighting each pixel’s association with
each object region, refining the final prediction.

This is achieved by a specialised form of the self-attention mechanism. The attention
mechanism [25] identifies and prioritises data segments most relevant within a specific
context. It operates with three inputs: a key (input data to be analysed), a query (repre-
sentation of what should be concentrated on) and value (data from which the information
is extracted). This mechanism calculates an attention score by correlating the key with
the query, indicating the amount of focus each value should receive. Then, a dot product
of the attention score and the value is produced to extract the relevant information. In the
case of OCR, object region context functions both as a key and value for the self-attention
mechanism, while features from the backbone serve as the query.

Figure 5. HRNetV2+OCR. The approach employs HRNetV2 as a backbone. Its predic-
tions and features are used in a specialized version of self-attention, further enhancing
the predicted segmentation masks.

While semantic segmentation models have their use, they lack a particular functional-
ity we’re looking for - influencing the prediction by user guidance. This is achievable
with a specialised branch of computer vision known as interactive segmentation. Interac-
tive segmentation researchers commonly re-purpose semantic segmentation models to
encode the user’s input into their pipeline and guide the prediction accordingly [8, 26].
Numerous interactive segmentation models and architectures exist, yet their application
in medical imaging is still emerging. Notably, many of these models are yet to be tested
on imaging types such as CT scans.

At the moment of writing, no single approach dominates interactive segmentation
benchmarks. Methods such as FocalClick, SimpleClick, and ICL CFR demonstrate
varying performance levels across different datasets [9, 26, 27]. However, these methods
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are built upon concepts originally proposed by Sofiiuk et al. [8] with RITM. This
method facilitates the integration of user input into a feed-forward network without major
changes to the backbone while also making use of existing incomplete segmentation
masks. Additionally, together with RITM a now commonly used sampling strategy was
proposed to generate artificial user input for training purposes.

The concept of RITM is clear and intuitive yet robust. First, user input has to be
integrated into an existing model. Commonly, it is denoted as click coordinates in an
image. A click can be positive, indicating that the marked underlying object should be
segmented, or negative, suggesting otherwise. For use within the model, clicks must
be transformed into a spatial form. In RITM, they are turned into small constant radius
disks in a binary map. The map is split into two channels for positive and negative inputs
and serves as additional input for the model. Interactive segmentation is commonly an
iterative process, producing intermediate predictions during inference. RITM uses these
imperfect segmentations by incorporating the most recent prediction as another input
channel, further enhancing the model’s precision.

One of the main design philosophies with RITM is that a backbone should not be
modified to incorporate additional information into the model. Instead, three chan-
nels—comprising click maps and a pre-existing segmentation mask—are processed
through an independent convolutional block. This block generates guidance feature maps
that align with the dimensions of the outputs from the backbone’s first convolutional
block, in this case, HRNetV2+OCR. These guidance feature maps are then element-wise
summed with the outputs from the initial convolutional block. This method ensures that
the core architecture of the backbone remains unchanged, resulting in easier fine-tuning.

Figure 6. RITM. Click features and a previous mask are passed through a convolutional
block, reshaping the tensor to match the dimensions of backbone features. This tensor is
then incorporated into the backbone via element-wise addition.

During the inference phase, users interact with the model — typically through a
bespoke user interface — to specify which object should be segmented. Based on the
input, the model predicts a segmentation mask, and if improvements are required, the
user adjusts the segmentation by providing an additional click. Then, both clicks and
the prior segmentation are fed into the model. In such cases, all inputs are cropped to
focus on the region of interest. This region is based on the bounding box of the existing

15



prediction, which is expanded with a ratio of 1.4 to ensure parts of the object of interest
are not cropped away. The crop is then interpolated up to at least 400 pixels per axis.
After inference, the produced segmentation is readjusted to fit into the original image’s
dimensions.

However, training an interactive segmentation model is less straightforward than a
semantic one. The guidance information, usually produced by the user during inference,
has to be simulated. An iterative sampling strategy where each subsequent click would
be based on a previously predicted mask best resembles an interaction with a real user.
However, it is computationally expensive. Random sampling is cheaper but does not
correlate with real-world use. Therefore, a combination of both strategies is used. Some
points are sampled randomly for each training batch, and up to 3 points are sampled
iteratively during training. Standard image augmentations such as random cropping,
flipping, color-jitter, etc., can and are used with this approach during training.

FocalClick [9], an evolution of RITM, aims to increase the efficiency of its prede-
cessor and improve the perfection of existing masks with an additional refinement stage.
It is argued that RITM is inefficient when refining an existing prediction, as the entire
area around the mask is re-segmented, although the new click only suggests changes in a
smaller area. This slows inference down and allows for unintended changes in the new
prediction.

Figure 7. FocalClick. The architecture relies on two prediction stages. In the first stage,
Target Crop is made around the existing mask and the latest click, and prediction is
produced by the RITM backbone. In the second stage, a tighter Focus Crop is produced
around the area, which changed after the coarse prediction. This crop is then passed
through a refiner block, further enhancing the prediction. Lastly, the predicted mask is
merged with the previous prediction in a Progressive Merge step.

Instead, the FocalClick pipeline employs two separate crops. The initial "Target
Crop" encompasses the existing mask and the latest click with a bounding box, which
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Figure 8. Comparison of image cropping between RITM and FocalClick. Target Crop
encloses the region of interest tighter and reshapes it to a square aspect ratio.

is then expanded, similarly to RITM. However, the crop can be much smaller, with the
minimum resolution limited to 10× 10 pixels. However, unlike RITM, where original
proportions of the crop are maintained during up-sampling, FocalClick scales the crop to
a fixed size of 256× 256, regardless of the original aspect ratio. This ensures consistent
inference speed but causes distortion to the input image. If no prior segmentation mask
exists, "Target Crop" is bypassed, and the full image is resized to the square 256× 256
dimensions. A prediction is then performed using a backbone network, employing the
same model guidance strategy as RITM. This is considered a coarse segmentation.

Subsequently, a "Focus Crop" is performed, targeting the specific region intended
to be modified. It is computed by calculating a difference map between previous and
new segmentations, identifying regions with changes and extracting a bounding box
around the connected region containing the latest click. The cropped image, clicks,
coarse segmentation and feature maps are used in a refiner block composed of standard
and Xception [28] convolutions. The block contains two heads that predict a detail map
Md and a boundary map Mb. Then the refined prediction Mr is calculated by updating
the coarse prediction logits Ml as in equation 2

Mr = Sigmoid(Mb) ∗Md + (1− Sigmoid(Mb)) ∗Ml (2)

In this calculation, the predicted boundaries of the object are used as weights in a
weighted sum of details predicted by the refiner and initial coarse segmentation. In the
areas with high boundary values, fine predicted details are emphasised. Otherwise, initial
coarse segmentation is mostly sufficient.

FocalClick concludes with a "Progressive merge" step, ensuring that only intended
segmentation modifications are made. Similarly to the Focus Crop stage, a difference
map is computed between the previous and new predictions, and the only connected
region containing the latest click is incorporated into the previous prediction.
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Figure 9. Comparison of Target and Focus crops in FocalClick. User input is denoted in
green for positive clicks and red for negative. The Focus crop is confined to the vicinity
of the most recent input, whereas the Target crop encompasses all provided inputs. With
both cropping strategies, the resulting image is afterwards squeezed into a square 1x1
aspect ratio.

The training procedure for FocalClick contains minimal changes when compared
to RITM - click sampling strategy remains unchanged. However, the refiner block is
supervised separately. Input crops to the refiner are sampled by either calculating an
expanded bounding box for the ground truth of the object (imitating inference with no
prior mask) or generating smaller random crops centred on the boundaries of the ground
truth mask. The refiner’s output is supervised by corresponding crops of the ground truth
mask. Meanwhile, the boundary predicting head is supervised by an object’s border map,
generated by downsampling and upsampling the ground truth, then identifying the pixels
which changed in the process.
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3 Methods
Building on top of the ideas discussed in the earlier section, we now shift our focus
to the specific methods employed for this thesis. Below, we outline the techniques
used to adapt, evaluate and improve upon interactive segmentation methods used for
tumour segmentation from CT images. Additionally, we describe our main contributions -
dynamic radius disk click encoding, Optimal Crop augmentation strategy and the Iterative
IoU Error metric.

3.1 Datasets and Preprocessing
Computer tomography scans are three-dimensional volumes, yet the majority of inter-
active segmentation models are optimised for two-dimensional inputs. To bridge this
gap, we extract 2D slices from CT volumes. These slices, functioning as single-channel
images, are better suited for the segmentation tasks at hand. They are acquired from
publicly accessible datasets that include a range of tumour types and corresponding
annotations. Although some datasets provide granular details like tumour classifications
or cyst annotations, our focus is on generating binary segmentation maps that solely delin-
eate tumour regions. To ensure uniformity, all slices are resized to a consistent resolution
of 512 × 512 pixels, using padding and resizing techniques for scans of non-standard
dimensions. We employ the following datasets as our 3D volume sources:

• LIDC-IDRI [29]: This dataset, obtained from the Cancer Imaging Archive, con-
tains scans of patients who have participated in the lung screening trial. These
patients’ CT scans contain a number of potentially cancerous lung nodules. Each
scan is annotated by at least four different specialists, providing a robust consensus
for detected nodules. As our primary motivation is enhancing lung cancer screening
initiatives, slices from the LIDC-IDRI dataset are central to our experiments.

• KiTS [30]: We used data from the 2023 Kidney and Tumour Segmentation Chal-
lenge, containing 489 CT volumes. These scans come with manually annotated
kidneys, tumours, and cysts. The scans were collected from M Health Fairview
Medical Center and made publicly available through the KiTS competition.

• LiTS [31]: This dataset, originally used for the 2017 Liver Tumour Segmentation
challenge, includes 130 scans of liver cancer patients from six medical centres.

• Medical Decathlon [32]: We incorporate pancreatic cancer patient scans from the
Medical Segmentation Decathlon dataset. The dataset encompasses scans from the
Memorial Sloan Kettering Cancer Center and corresponding pancreas and tumour
annotations.
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We employ two sampling strategies to cater to different experimental needs, creating
two distinct sets of 2D images from each 3D volume dataset. The first strategy selects
slices featuring the largest tumour area within each scan, forming a more condensed
dataset ideal for rapid model training and exploratory design decisions. These datasets
are marked with an S suffix. The second strategy includes every lesion-containing slice,
regardless of size, resulting in a big and diverse dataset that provides a robust challenge
for the models and a thorough evaluation framework. The smaller set is utilised for
development and ablation studies, while the larger set is reserved for comprehensive
method evaluation.

We distribute our slices across three subsets to enable both training and fair evaluation
of our models: 70% for training, 10% for validation, and 20% for testing. Additionally,
we compile combined datasets to evaluate the possibility of training models generalized
for various types of tissue. To maintain a balanced representation, the sample size from
each dataset is adjusted to match the size of the smallest dataset. Training, validation
and test splits are preserved in the combined dataset, allowing fair comparison across
datasets. datasets.

Dataset Data source
Split size

Train Val Test

LIDC 2D
LIDC-IDRI

5097 830 1680
LIDC 2DS 416 57 127

KITS 2D
KiTS

8527 1219 2436
KITS 2DS 342 49 98

LITS 2D
LiTS

5033 719 1438
LITS 2DS 82 12 24

MD PANC 2D
Medical Segmentation Decathlon

1,775 254 508
MD PANC 2DS 196 29 56

COMBINED 2D LIDC 2D, KITS 2D, LITS 2D, MD PANC 2D 7100 1016 2032
COMBINED 2DS LIDC 2DS, KITS 2DS, LITS 2DS, MD PANC 2DS 328 48 96

Table 1. Computed tomography imaging datasets created for our interactive segmentation
experiments.

During training and evaluation, preprocessing of CT slices begins with an important
windowing step. It involves clipping the wide range of HU values found in CT scans to a
narrower, more precise range. This process is consistent with methods applied in clinical
settings - when evaluating a CT scan, radiologists choose a particular HU range which
highlights details of the specific region of interest. The parameters defining a window
include its width and level, where the width determines the range of HU values displayed,
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and the level demarcates the midpoint of this range. We employ an appropriate window
for each organ type in all our experiments.

After windowing, the preprocessing steps diverge based on the segmentation approach.
In the case of classical algorithms, the slice is normalised to a mean of 0 and a standard
deviation of 1. For deep learning methods, the slice tensor is duplicated across 3 channels
and normalised to the mean and standard deviation of the ImageNet [33] dataset. This
last step aims to best employ deep learning models with backbones pre-trained on colour
images.

(a) (b) (c)

Figure 10. Windowing effect on a computed tomography scan slice. Panels display
the same slice with different windowing parameters. Panel (a) presents a slice with no
window applied, (b) and (c) displays the slice with lung and bone inspection ranges,
respectively

We employ three different data augmentation strategies during model training. They
are mostly based on the same principles - random crops and flips.

• RITM-based: This strategy, adopted from the RITM codebase, involves resizing
the image to scales varying between 75% and 140% of its original size. This is
followed by horizontal flips, applied 50% of the time, zero-padding and random
cropping to dimensions of 480× 320.

• FocalClick-based: While employing similar principles as RITM, this approach
contains some modifications. It incorporates both horizontal and vertical flips,
applied 30% of the time, and expands the image crop range to between 50% and
140%. Importantly, the crop intensity for horizontal and vertical axes is picked
independently, simulating distortion of the Target crop. Lastly, image dimensions
are resized to a square patch of 256 × 256. This strategy is adopted from the
FocalClick codebase.
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• Optimal Crop: During the evaluation of the FocalClick model, particularly its
application to the detection of lung nodules within the LIDC 2D dataset, existing
augmentation strategies were identified as a limiting factor. The primary challenge
was observed during the Target Crop step of the inference phase, where the highly
restrictive cropping around the nodules led to a significant decrease in model
performance. This issue was attributed to the disparity between the training
phase’s crop intensity and the more aggressive cropping required during inference.
To bridge this gap, the Optimal Crop augmentation strategy was developed. This
strategy is aimed at refining the alignment between these two phases, ensuring
that the model is well-adapted to the conditions under which it is tested. Rather
than employing an arbitrary cropping range, we opted to determine the crop scale
using the validation set of the dataset. We calculated bounding boxes for the
largest masked object in each image, deriving average dimensions. Let h and w
represent the average height and width, respectively, with H and W being the
image dimensions, the crop scale range can be defined as:

blow =
h

H
+

w

W
; bhigh = blow × 3 (3)

This cropping strategy is applied in 80% of cases. The parameters for crop
probability and crop scale were determined through a grid search on the CT slices
from the validation split of LIDC 2DS dataset.

We remove brightness, contrast, and RGB shift augmentations originally used in
RITM and FocalClick, as, based on our observations, they did not bring a benefit while
training.

Figure 11. Comparison of crop production using various augmentation strategies against
the Target Crop step in the FocalClick inference process. The Optimal Crop augmentation
strategy demonstrates the closest alignment with the inference procedure. Ground truth
mask is represented by a green contour

We have adapted the data loading procedure from FocalClick for the training of all of
the tested deep learning models. FocalClick’s original procedure includes additional data
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generation steps crucial to train its refinement block. This involves additional crops to
simulate the Focus Crop inference step and generating object boundary masks essential
for the supervision of refinement block training. This additional generation step can be
disabled, allowing the procedure to be universally applied across all trained models.

A significant modification was required in the implementation of this data loading
strategy. The original procedure included a preprocessing step that eliminated objects
smaller than 900 pixels from the ground truth masks. Considering the characteristics
of our datasets, where the median size of the masks in our validation sets is only 364
pixels, maintaining this step would lead to the exclusion of a substantial portion of our
data. Therefore, we omit this step to preserve the integrity of our datasets.

3.2 Evaluation Metrics and Strategy
Accurate and meaningful evaluation of predicted masks is crucial for comparing different
tumour segmentation approaches. To this end, we employ a widely used semantic seg-
mentation metric - Intersection over Union (IoU). However, IoU alone proves insufficient
for evaluating interactive segmentation models, which predict multiple segmentation
masks iteratively. Consequently we have defined a novel metric, the Iterative IoU Error.
This metric consolidates the IoU values calculated at each iteration into a comprehensive
score, facilitating the evaluation of models that incorporate user interactions over time.

Both of the above-mentioned metrics rely on pixel-level classification of segmentation
results. Given a tumour is the class we intend to segment, each pixel of a predicted mask
can be classified as follows:

• True positive (TP) - a pixel correctly predicted to be a part of the tumour.

• True negative (TN) - a pixel correctly predicted to be a part of the background.

• False positive (FP) - a background pixel misclassified as a part of the tumour.

• False negative (FN) - a tumour pixel misclassified as background.

Based on these classes, Intersection over Union can be defined as:

IoU =
TP

TP + FP + FN
(4)

The IoU score increases as the denominator (the union of predicted and actual
areas) decreases, and the numerator (accurately identified true positive region) increases,
reaching up to 1 for perfect segmentation.

Although a metric like IoU is sufficient for the evaluation of semantic segmentation,
where only one prediction is generated per input image, deterministic and fair evaluation
of such models presents a challenge. User input has to be simulated consistently, and
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representation of iterative mask refinement must be incorporated into the metrics. We base
our iterative evaluation strategy on RITM [8]. IoU scores are measured for predictions
generated with up to 20 subsequent clicks. The first click is placed in the centre of the
largest connected component of the ground truth mask and is always positive. Subsequent
clicks are positioned based on an error map, which represents false positive and false
negative areas. The biggest connected component is picked from this map, with the new
click being placed in the middle of it. The new click is categorised as positive when the
component is a false negative and negative for a false positive.

Commonly, metrics such as the Number of Clicks (NoC) and the Number of Failures
(NoF) are used to judge iterative segmentation performance. NoC reports an average
number of clicks required to reach a predefined IoU threshold, while NoF indicates in
how many samples this threshold has not been reached. Although commonly used, they
may not accurately reflect all aspects of model performance. For instance, these metrics
might show optimal performance when the prediction meets a predefined IoU threshold,
even if the following clicks do not improve, or even degrade the IoU

To address this limitation, we propose the Iterative IoU Error. This metric encapsu-
lates the model’s performance across all interactions into a single scalar value. Effectively,
the weighted area above the average IoU per click curve is measured. The weight of the
error increases with every subsequent click, penalizing the model more for low-quality
late-stage predictions. The aggregated error is normalised based on the maximum possi-
ble error. Given that n is the maximum number of clicks and IoUi is average IoU after
i+ 1 clicks, Iterative IoU Error is defined as:

Iterative IoU Error =
∑n−1

i=0 (1− IoUi)× (1 + 0.1i)∑n−1
i=0 (1 + 0.1i)

(5)

The values of the proposed metric range between [0, 1], with a lower error representing
better segmentation performance.

3.3 Interactive Segmentation Methods
Our interactive segmentation methodology can be split into 3 major stages. Initially, we
assess classical algorithms for the task of guided segmentation of CT images. Subsequent
research focuses on examining interactive deep-learning models with iterative click-based
guidance. Finally, an enhancement in the encoding of user inputs is proposed to provide
the models with additional information about the dimensions of the segmentation targets.

3.3.1 Classical Algorithms

First, we assess Flooding and Active Contours algorithms in the context of interactive
lung lesion segmentation. Performance of both of these algorithms heavily relies on their
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initial configuration - threshold parameter for the Flooding algorithm or circle radius in
the case of Active Contours. We perform a parameter search to set universal states for
these models. The starting coordinates for each sample are picked based on connected
components in the segmentation mask - we place one click in the middle of the biggest
connected region.

3.3.2 Deep Learning Methods

The tested classical segmentation methods lack an interactive refinement mechanism that
would allow for the refinement of existing predictions. To overcome this limitation, we
employ deep learning models, which are either designed for continuous user interaction
or can be readily adapted for such tasks. Initially, we define a baseline based on a
semantic segmentation model proven effective in medical imaging contexts. That is
followed by the adaptation, evaluation and modification of interactive segmentation
methods.

To set a baseline, we employ the U-Net++ model for the task of interactive segmenta-
tion. The objective of this experiment is to assess the extent of iterative mask refinement
achievable by modifying a conventional semantic segmentation model without employing
architectural ideas from iterative interactive segmentation. Our adaptation uses the first
five convolutional blocks from a ResNet50 [4] as the encoder in the U-Net++. Addition-
ally, we add two channels to the input layer, designed to process positive and negative
click maps constructed from decaying Gaussian disks. The signal from these disks is
strongest at the centre of the click and decays to zero at a radius of 5 pixels. To train these
baseline models, we employ an RITM-based training and data augmentation strategy.

In the search for an optimal solution for interactive tumour segmentation, we eval-
uate RITM and FocalClick as some of the leading approaches on other datasets. HR-
NetV2+OCR is utilised as the backbone for both methods. We make use of weights
pre-trained on the combination of COCO [34] and LVIS [35] as proposed by Sofiiuk
et al. [9]. Our examination of these approaches mostly focused on optimising data
preprocessing, training and inference configuration. Given our focus on lung lesion seg-
mentation, we have employed images from LIDC 2DS to judge most of our adjustments.

The primary objective of our research was to reduce the number of segmentation
iterations necessary to achieve optimal quality. Consequently, we propose a novel
method designed to maximise the information relayed to the model through a single user
interaction. Unlike the fixed-size click encoding used by existing techniques such as
RITM and FocalClick, our approach introduces variable-sized disks, which allow for
more precise target object delineation by also estimating its area. We refer to models
employing this method as dynamic disk models, indicated by a subscript "D" in the
results section.

The implementation of dynamic size disks necessitated several modifications to the
training, inference, and evaluation protocols. If deployed in practical applications, these
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changes would also require a redesign of the user interface to allow users to click and
drag, thus specifying the size of the target. While still considered a click, this method
significantly alters the nature of the information passed through such interaction.

One of the major adjustments necessary to incorporate dynamic disk model evaluation
was to the evaluation procedure. While the location for the next click is chosen as before,
based on the centre of the biggest erroneous region, now the size of the disk has to be
relayed. We define three different strategies for the disk radius calculation:

• Enclosing radius: This method results in a disk that ensures every pixel of the
connected error region is encompassed within the disk’s boundaries.

• Tight-fitting radius: This strategy employs the shortest distance between the re-
gion’s centre and its boundary as the radius.

• Average radius: The mean of tight-fitting and enclosing radii.

Figure 12. Comparison of dynamic
disks produced by different radius
calculation strategies. The ground
truth mask is contoured in white.

These strategies cater to different user prefer-
ences and interaction styles. For example, one spe-
cialist might choose a tight-fitting click to precisely
mark a cancerous region, while another might use
an enclosing click while having the same intentions.
For deterministic results during model evaluation,
we use the average radius. However, we calculate
both the enclosing and tight-fitting disks during
training. The radii are employed as boundaries of
a possible disk radius range, which is expanded by
10% on both ends to account for varying user in-
puts. We then select the radius for each click from
a normal distribution within this range.

Given the modifications in click dynamics, ad-
ditional training adjustments were essential. A ran-
dom sampling of clicks became infeasible as the
size of each click is now dependent on the prior
segmentation mask. Continuing with the previous
sampling strategy would result in negative clicks
that excessively expand until reaching the cancerous tissue. This behaviour is unrepre-
sentative of the clicking strategy applied during inference, which typically results in an
initial large positive disk followed by progressively smaller disks for further refinement.

Therefore, for training models that incorporate dynamic disks, we only employ an
iterative clicking strategy. For each training batch, the total amount of clicks n is drawn
from an exponential decay distribution ranging from 0 to 24. n− 1 inference iterations
are performed, each spawning a new disk based on the existing prediction and the ground
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truth. Lastly, the final click is placed, and loss is computed based solely on this last
iteration.

3.4 Writing Assistance
It is important to note that machine learning based tools were used to assist with the
writing of this thesis. The writing assistant "Grammarly" [36] was used to fix spelling,
punctuation and grammar mistakes and to adjust the writing style to fit academic writing
guidelines better. Additionally, the chatbot "ChatGPT" [37], based on a generative
pre-trained transformer language model (GPT-4), was used for sentence paraphrasing
and text restructuring.
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4 Results
In the following section, we present and analyse the results of our experiments. We
display the possibilities of segmenting lung nodules by employing classical segmentation
algorithms. Afterwards, we move to evaluate deep-learning-based interactive segmenta-
tion approaches, testing both one-click scenarios and iterative mask refinement. Finally,
we assess the model’s capabilities at generalizing on unseen CT data and evaluate the
effectiveness of the proposed Optimal Crop augmentation strategy.

4.1 Experimental Setup
During our experiments, all deep learning models were trained with an adapting learning
rate strategy. We begin the training with a learning rate of 0.0005 for all experiments.
This rate is decreased by a factor of ten each time the IoU metric plateaued on the
validation set. Similarly, we employed an early stopping mechanism, halting training
when the validation metrics ceased improving. For our main datasets, the learning rate
adjustment patience was set to 10 epochs, and the early stopping patience was set at 30
epochs. For experiments using the smaller counterparts of each dataset, these parameters
were adjusted to 25 and 75 epochs, respectively. We train the models using Adam [38]
optimiser and a combination of equally-weighted Binary Cross-Entropy and Dice losses.
Due to the observed decrease in segmentation performance in our datasets, we disable
Progressive Merge for FocalClick in our experiments.

Our experiments were performed on the University of Tartu High Performance
Computing Cluster [39]. All experiments were implemented in Python programming
language, making use of its various public libraries. Most notably, classical algorithms
were implemented and evaluated using scikit-learn [40], and deep learning models were
all built in PyTorch [41]. We made use of Hydra [42] for experiment configuration and
Weights&Biases [43]. Our code is available at https://github.com/Donce530/Every-Click-
Counts-Deep-Learning-Models-for-Interactive-Segmentation-in-Biomedical-Imaging.

4.2 Evaluating Classical Methods on CT Images
We begin with the evaluation of Flooding and Active Contours algorithms. We test the
segmentation performance on the LIDC 2D dataset and optimize the initial states of
both algorithms by performing a parameter search on the training split of the dataset.
Specifically, the threshold of the Flooding algorithm is picked by testing a range of
[0.05, 2] in increments of 0.025 (Figure 13 (a)). In the case of the Active Contours
algorithm, we search for optimal initial circle radius in the range of [4, 24] pixels, with a
step size of 1 pixel (Figure 14 (a)).
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(a) (b)

Figure 13. Flooding algorithm applied on lung nodules in LIDC 2D. Panel (a) shows the
results of a parameter search for the optimal flooding threshold performed on the training
split of LIDC 2D. Panel (b) provides an example, where the threshold producing the best
mean IoU is overshadowed by a hand-picked value.

(a) (b)

Figure 14. Active contours algorithm applied on lung nodules in LIDC 2D. Panel (a)
shows the results of a parameter search for the optimal initial "snake" circle radius,
performed on the training split of LIDC 2D. Panel (b) shows an example, where the
starting circle radius picked by parameter search is considerably worse than a value
picked specifically for this nodule.
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Algorithm
IoU

Train Validation Test

Flooding 0.343 0.297 0.386
Active Contours 0.28 0.252 0.312

Table 2. Classical algorithm performance across
splits of LIDC 2D. Optimal threshold for Flood-
ing and initial circle radius for Active Contours
were picked by a parameter search on the train-
ing split.

Table 2 presents the IoU scores
for both algorithms across the three
dataset splits - train, validation and test.
In our observations, the Flooding al-
gorithm consistently outperforms Ac-
tive Contours. Notably, both algo-
rithms exhibited the weakest perfor-
mance on the validation split and were
the strongest on the test split, suggest-
ing variation of segmentation difficulty
across splits.

Despite parameter optimization,
the average segmentation performance measured is sub-optimal. Qualitative inspec-
tion, however, reveals a more nuanced behaviour. More often than not, the parameter
picked by the search is best on average, but it is possible to find a more optimal value on
a case-by-case basis (Figures 13 (b) and 14 (b)). The algorithms demonstrate varying
responses to suboptimal parameter settings. The Flooding algorithm tends to under-
segment when the threshold value is set too low, with the performance improving as
the threshold increases. However, when the threshold is excessively high, the algorithm
starts significantly over-segmenting, failing to differentiate between the nodule boundary
and its surroundings. In contrast, the behaviour of Active Contours is less predictable
under varying parameters. The quality of segmentation varies significantly, differing
sporadically as the radius of the initial circle increases and behaves differently between
one case and another.

In light of these results, we have discontinued our experiments with classical ap-
proaches and moved on to more complex segmentation methods.

4.3 One-Click Segmentation with Deep Convolutional Networks
We begin our assessment of deep learning techniques for interactive segmentation with
an analysis of one-click IoU performance across our tumour datasets, as summarized
in Table 3. The top-performing model varies across different forms of cancerous tissue.
RITM excels in segmenting lung nodules and pancreatic tumours, while FocalClick and
Unet++ perform best at kidney tumours and liver lesions accordingly. Notably, RITM
architecture shows robustness, closely trailing the leading model in datasets where it was
not the top performer and producing the best average IoU scores in the combined dataset.
Overall, the findings suggest that the choice of the model for one-click segmentation with
static binary disk guidance is flexible. While choosing the best-performing architecture
per dataset is preferable, employing models other than RITM does not substantially
compromise segmentation quality.
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Model LIDC 2D KITS 2D LITS 2D MD PANC 2D COMBINED 2D

U-Net++ 0.638 0.799 0.734 0.647 0.688
FocalClick 0.668 0.827 0.634 0.680 0.679
RITM 0.701 0.816 0.696 0.686 0.707

Table 3. Deep learning model performance across our datasets. Mean IoU is measured
after one guidance click. Click is encoded as a static radius binary disk for RITM and
FocalClick, and as a static radius Gaussian disk in the case of U-Net++

4.4 Assessment of Dynamic Click Encoding
Building on top of our findings with models guided by static disks, we continue our
experiments with the evaluation of the performance gained by utilizing a dynamic
radius disk for guidance. The comparative results are summarized in Table 4. Both
interactive segmentation architectures, RITM and FocalClick, effectively utilize the
additional information provided by a disk, the size of which correlates with the size of
the targeted cancerous object. We observe a significant improvement in performance
across all datasets and both models. Specifically, the smallest performance gains are
observed with RITM on the KITS 2D dataset, with an IoU increase of 0.031. FocalClick
achieves the most substantial gains on the MD PANC 2D dataset, with an improvement
of 0.135. While RITM maintains its dominance in lung nodule segmentation, neither
architecture is universally superior, with FocalClick marginally outperforming RITM
on the combined dataset. Examples of click prompting of static and dynamic encoding
models and generated predictions can be observed in Figure 15.

Model LIDC 2D KITS 2D LITS 2D MD PANC 2D COMBINED 2D
RITM 0.701 / 0.736 0.816 / 0.847 0.696 / 0.751 0.686 / 0.788 0.707 / 0.750
FocalClick 0.668 / 0.708 0.827 / 0.871 0.634 / 0.708 0.680 / 0.815 0.679 / 0.753

Table 4. Performance increase from employing dynamic radius disks for the guidance of
interactive segmentation models. Models are evaluated based on IoU observed after one
click, reported with static and dynamic metrics separated by a slash /.

4.5 Prediction Refinement Capability Evaluation
Although one-click performance is a critical metric, given that the first interaction tends
to produce most of the segmentation, evaluation of the models’ ability to refine existing
prediction is equally crucial. Therefore, we evaluate the refinement performance on the
lung nodules in the LIDC 2D dataset. We report the mean IoU values after the first
five clicks in Table 5. While models are expected to perform well with minimal user
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Figure 15. Guidance by static and dynamic radius disks in one-click scenarios. The
top row illustrates user inputs with click disks depicted in green and the ground truth
delineated in white. The bottom row presents the corresponding predictions.

interaction, understanding their performance with extensive user input is also valuable.
Hence, we report Iterative IoU error after 20 clicks as well.

Model
IoU @ Clicks ↑ Iterative IoU Error

@ 20 Clicks ↓1 2 3 4 5

U-Net++ 0.638 0.653 0.659 0.663 0.668 0.316
RITM 0.701 0.780 0.799 0.814 0.825 0.147
FocalClick 0.668 0.718 0.749 0.777 0.795 0.129
RITMD 0.736 0.801 0.816 0.828 0.834 0.166
FocalClickD 0.708 0.766 0.786 0.802 0.816 0.150

Table 5. Segmentation and iterative prediction refinement performance, LIDC 2D

Analyzing these results reveals several significant trends. First of all, we can see that
our naive U-Net++ solution, while shown earlier (Table 3) to perform competitively with
the other approaches in one-click scenarios, struggles to refine existing segmentation.
Both static and dynamic versions of RITM consistently outperform their FocalClick
counterparts in lung nodule segmentation, as also visible in Figure 16.
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Figure 16. Observed IoU values given 20 subsequent clicks, LIDC 2D. Static disk models
are represented by dashed, dynamic - solid curves

The figure highlights two major trends in the models’ behaviour, with a shift around
the 8th click. Initially, both versions of RITM surpass other methods, with the dynamic
approach proving to be the most effective. It is evident that employing a dynamic radius
disk to encode user input enhances the early performance of both RITM and FocalClick.
As the number of clicks increases, the gains in IoU of dynamic models begin to plateau.
Meanwhile, both static models continue to improve the segmentation quality and have a
higher precision ceiling. Static RITM reaches its IoU ceiling at approximately 12 clicks,
whereas FocalClick shows ongoing improvement in segmentation quality beyond this
point. This observation aligns with the numbers presented in Table 5, which indicates
the lowest Iterative IoU Error for FocalClick.

A qualitative inspection of simulated user input and the models’ predictions after
20 clicks reveals the differences between the models (Figure 17). The static versions of
both models tend to over-segment, requiring more simulated negative clicks than their
dynamic counterparts. A closer examination of the dynamic models’ inputs reveals why
they reach their IoU ceiling earlier. Despite 20 clicks being simulated, significantly fewer
disks are apparent, implying their overlapping placement. That suggests the models are
under-segmenting, requiring multiple positive clicks at the same region which do not
provide additional information for the models.

4.6 Examining Generalization Across Datasets
The primary objective of interactive segmentation models differs from semantic segmen-
tation. Semantic segmentation models lack user guidance, making them rely entirely on
the content of the image. In contrast, interactive models make use of user input, therefore
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Figure 17. Click arrangement and segmentations predicted after 20 iterations of simulated
user input. The top row represents user input, with green and red disks representing
positive and negative clicks, accordingly. The bottom row shows produced predictions
along with measured IoU values

reducing reliance on imaging. In our case, the model’s task is to accurately segment
masses of tissue, based on their topology, boundaries and the guidance of user input.
Given this objective, it is critical to evaluate the performance of these models on unfamil-
iar data. Our analysis focuses on assessing how well both static and dynamic models
generalize across different CT datasets. Furthermore, we explore the impact of training
on a combined dataset comprising various tissue types to determine whether exposure to
more diverse structures during training enhances the model’s ability to generalize.

Our investigation into model generalization assesses the performance of static and
dynamic models on datasets different from their training, in a one-click scenario. The
results, detailed in Table 6, indicate that while training on diverse CT datasets enables
models to generalize relatively effectively, exposing a model to the specific types of
tumours it will encounter during its operational use is often most beneficial.

In comparison to other configurations, the model trained on the combined dataset
demonstrated significantly stronger performance than its counterparts. This model
showed notably strong performance in segmenting kidney and pancreatic tumours, par-
ticularly excelling in the MD PANC 2D dataset, where it outperformed both static and
dynamic models originally trained on pancreatic tumours only. For the KITS 2D dataset,
the model leveraging dynamic click interactions performed best, surpassing other dy-
namic approaches, with the static model closely following the performance of a model
trained exclusively on kidney tumours.
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Training Data
Evaluation Data

LIDC 2D KITS 2D LITS 2D MD PANC 2D COMBINED 2D

RITM

LIDC 2D 0.701 0.422 0.187 0.525 0.459
KITS 2D 0.617 0.816 0.395 0.511 0.585
LITS 2D 0.385 0.515 0.696 0.506 0.527
MD PANC 2D 0.458 0.620 0.396 0.686 0.546
COMBINED 2D 0.675 0.791 0.662 0.698 0.707

RITM + Dynamic click encoding

LIDC 2D 0.736 0.746 0.430 0.662 0.648
KITS 2D 0.437 0.847 0.485 0.776 0.635
LITS 2D 0.513 0.713 0.751 0.756 0.684
MD PANC 2D 0.470 0.773 0.527 0.788 0.639
COMBINED 2D 0.643 0.851 0.702 0.806 0.750

Table 6. Generalization across datasets, mean IoU after one click.

In other scenarios, however, specializing the model on a single dataset proved more
advantageous. Overall, models equipped with dynamic click encoding consistently
exhibited superior performance in segmenting unfamiliar tissue types compared to their
static counterparts. This improvement can likely be attributed to the additional, albeit
imprecise, boundary information provided by dynamic clicks, which reduce the need for
an in-depth understanding of the object’s borders and topology.

4.7 Augmentation Strategy Evaluation
While the behaviour displayed by the trained interactive models aligns well with the
tendencies described by their authors [8, 9], achieving these results required modifications
from the models’ initial configurations, particularly for the adaptation to CT images and
segmenting of tiny objects. One of the most notable modifications was the introduction
of the Optimal Crop training strategy for the training of FocalClick. Given our research
focus on lung nodule segmentation, naturally, most of our experiments were performed
on LIDC 2D and LIDC 2DS datasets. FocalClick’s original augmentation strategy yielded
unacceptable refinement results. While borrowing the RITM-based augmentation strategy
showed an improvement, the model still failed to improve on the initially predicted
augmentations. Applying the Optimal Crop augmentation strategy addressed this issue,
enabling the model to not only produce an initial segmentation but also successfully
refine it with subsequent clicks. The performance comparison of the 3 strategies can be
seen in Figure 18.
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(a) Evaluation on LIDC 2DS (b) Evaluation on KITS 2DS

Figure 18. Ablation study on effects of different kinds of augmentation strategies on the
performance of FocalClick equipped with static radius disks. Panels (a) and (b) display
initial segmentation and mask refinement performance on LIDC 2DS and KITS 2DS,
respectively.

Despite these improvements on LIDC 2DS, when the three augmentation strategies
were evaluated on kidney tumours, as shown in the panel (b) of Figure 18, the RITM-
based strategy outperformed the others. FocalClick-based and Optimal Crop strategies,
while improving on the initial segmentation, demonstrated unsatisfactory, fluctuating
behaviour. Similar results were observed with LITS 2DS and MD PANC 2DS, with
different strategies prevailing on each dataset, highlighting the sensitivity of FocalClick
to relatively minor training adjustments.
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5 Discussion
This thesis has explored the application of interactive segmentation models, specifically
RITM and FocalClick, for identifying various tumours from CT images. The results
strongly support the potential application of these models in clinical settings. It is
important to acknowledge, however, that substantial modifications were necessary to
adapt these models to the CT modality. Typically, interactive (and other) segmentation
models are designed with natural images in mind. Such images often focus on the subject,
resulting in the segmentation targets occupying a significant portion of the image. In
contrast, the segmentation of tumours presents a unique challenge: the scans display
cross-sections, where tumours are tiny objects within a larger area.

Initially, applying these models for tumour segmentation exposed various bugs, as
well as intentional design decisions, which were irrelevant when segmenting bigger
objects. Consequently, adjustments to training and inference procedures, such as the
introduction of the Optimal Crop augmentation strategy for FocalClick, were a necessity
rather than merely an improvement. It is fair to assume that employing these models for
other modalities would similarly require additional changes.

Narrowing our focus to tumour segmentation in tomography scans has also allowed
for more specific assumptions about the targets. In natural images, the diversity of
potential objects constrains the design of segmentation models. For instance, let’s assume
we’re trying to segment a bicycle from a typical image. The target here is complex,
containing various protrusions, hollow wheels, etc. In contrast, tumours generally are
solid lumps of tissue. This characteristic has enabled the implementation of strategies
such as dynamic radius disk encoding. In this approach, it is assumed that enlarging
the disk will likely continue to highlight the tumour without sending mixed signals
about which part of the object should or shouldn’t be segmented. Our experiments have
shown that incorporating this inductive bias into the interactive segmentation models
significantly enhanced the segmentation accuracy, demonstrating the value of tailoring
tooling strategies to the specific characteristics of the objects of interest.

Overall, the results of our experiments suggest that the capabilities of these models
could significantly expedite the examination of CT scans in clinical settings. While the
actual increase in efficiency would depend on processes and practices currently in place,
we were able to show that interactive segmentation models like RITM and FocalClick
are capable of serving as tools for tumour segmentation. Facilitating such deep learning
tools would allow for the reallocation of more human resources towards other stages of
the diagnostic process. The choice of user input encoding, whether dynamic or static
radius disks, should be tailored to specific clinical scenarios. For instance, dynamic
disk encoding is preferable in situations where it is critical to minimise user interaction,
while static disks are better suited for scenarios where optimal segmentation quality is
necessary, regardless of user input required for refinement.

Despite the promising results, it is important to acknowledge several limitations. Our
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models displayed varying performance across different types of malignancies and, more
importantly, required significant tuning to adapt to specific scenarios. For instance, while
the introduction of the Optimal Crop augmentation strategy allowed for the refinement
of lung nodules of LIDC 2D with FocalClick, the effect did not translate well to other
datasets. Furthermore, the models’ performance was highly sensitive to even minor
modifications during training and inference. Maintaining a consistent correlation between
one-click segmentation and refinement performance remains a significant challenge.

While our research makes a strong case for interactive segmentation models applica-
tion in diagnostic pipelines, there is vast potential for further development. In future work,
we would like to explore the integration of 3D scan volume data to enhance segmentation
accuracy. This might involve using adjacent CT slices to possibly improve predictions
of 2D segmentation, or developing models that operate on entire volumes and generate
predictions in 3D space. Additionally, a combination of both static and dynamic radius
disk click encoding should be explored, possibly allowing for optimal initial predictions
without the reduced refinement potential.

Classical segmentation methods, while observed to be lackluster as a universal one-
click solution, have also shown potential on a case-by-case basis. While they lack
segmentation refinement capability, these algorithms could be utilized in one-click
scenarios and we would like to explore adapting dynamic radius disk click encoding to
provide instance-specific starting conditions for these algorithms.
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6 Conclusion
As we progress deeper into the 21st century, healthcare systems and, in particular,
radiology services face increasing pressures from an ageing population. These challenges,
compounded by an understaffed healthcare workforce, result in a need for technological
advancements in diagnostics. Our research aims to address this necessity by exploring
the potential of using interactive segmentation deep learning models to streamline the
diagnostic process.

Through our experiments, we have explored the potential of employing interactive
deep-learning models as tools for lesion segmentation in CT images. Our findings have
demonstrated that they could both effectively predict and refine tumour masks. Moreover,
we have discovered that interactive segmentation models can utilize additional input data
encoded through dynamic radius disks, increasing the segmentation quality across the
initial user clicks. These results signify the potential of applying interactive segmentation
models in clinical settings and increasing the efficiency of diagnostic pipelines.

Ultimately, by advancing these technologies and assessing their feasibility, we aim
to support radiologists and contribute to faster and more accurate diagnostics. That is
crucial in improving patient outcomes in the face of ever-growing healthcare demands.
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