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Raamistik teaduslike t66voogude automaatseks partitisio-
neerimiseks pilves

Liihikokkuvéte: Teaduslikud té6vood on saanud populaarseks standardiks, et
lihtsal viisil esitada ning lahendada erinevaid teaduslikke iilesandeid. Uldiselt koos-
nevad need toovood suurtest hulkadest iilesannetest, mis nouavad tihti palju erine-
vaid arvuti ressursse, mistottu jooksutatakse neid kas pilvearvutust, hajustodtlust
voi superarvuteid kasutades. Varem on toestatud, et kui rakendada pilves to6voo
erinevate osade jagamiseks k-way partitsioneerimis algoritmi, siis iileiildine kom-
munikatsioon pilves viheneb. Antud magistritoos programmeeriti raamistik, et
seda protsessi automatiseerida. Loodud raamistik voimaldab automaatselt par-
titsioneerida igasugusegi t66voo, mis on moéeldud Pegasuse programmiga jooksu-
tamiseks. Raamistik, kasutades CloudML’i, seab automaatselt pilves iiles klastri
masinaid, konfigureerib ning sétestab koik vajaliku tarkvara ning jooksutab ja
partitsioneerib etteantud téovoo. Lisaks, kuvatakse pérast toovoo 16petamist ka
ajalise kalkulatsiooni visualisatsioon. Seda kasutades saab 16ppkasutaja aimu, mi-
tu tuuma peaks t66voo jooksutamiseks kasutama, et 16petada eksperiment mingis
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Framework for Automated Partitioning of Scientific Work-
flows on the Cloud

Abstract: Scientific workflows have become a standardized way for scientists
to represent a set of tasks to overcome or solve a certain problem. Usually these
workflows consist of numerous amount of jobs that are both CPU heavy and I/O
intensive that are executed using some kind of workflow management system either
on clouds, grids, supercomputers, etc. Previously, it has been shown that using
k-way partitioning algorithm to distribute a workflow’s tasks between multiple
machines in the cloud reduces the overall data communication and therefore lowers
the cost of the bandwidth usage. In this thesis, a framework was built in order
to automate this process - partition any workflow submitted by a scientist that is
meant to be run on Pegasus workflow management system in the cloud with ease.
The framework provisions the instances in the cloud using CloudML, configures
and installs all the software needed for the execution, runs and partitions the
scientific workflow and finally shows the time estimation of the workflow, so that
the user would have an approximate guidelines on, how many resources one should
provision in order to finish an experiment under a certain time-frame.

Keywords: Scientific workflows, cloud computing, partitioning, Pegasus, METIS,
CloudML
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1 Introduction

In recent years there has emerged a lot of applications that rely heavily on resources
and computing power. It is known, that maintaining an own infrastructure is
hard due to system administration, electric power bills, hardware maintenance etc.
Cloud has several benefits like elasticity, scalability and the promise of providing
virtually unlimited resources, so therefore, more and more users are migrating
their applications to the cloud. While cloud is generally known more to be used
for different enterprise applications, the scientific community has also been turning
towards cloud computing for the additional benefits.

Scientific workflows have become in the technical domain the primary way of
representing a solution, usually consisting of numerous amount of jobs/steps, to a
certain scientific problem [GDET07|. After the modeling of a workflow, a scientist
just has to submit it to a SWfMS (Scientific Workflow-Management System) like
Pegasus [DV.J7T15] or Kepler [ABJT04] and wait for the desired results, without
having to think about task scheduling, data allocation, fault tolerance, etc. While
running computations in the cloud has many benefits, there are also several hin-
drances such as communication latencies, cost and set-up to name a few. Also,
finding an ideal deployment for a specific case can be hard due to different scaling
requirements, platform and vendor dependability, etc.

Previously it has been shown, that the communication latencies can be reduced
using existing graph partitioning techniques on a scientific workflow by distribut-
ing the tasks between a computational cluster in the cloud more efficiently [SV14].
While the previous work was focused on a single use case (Montage), in this the-
sis, the process of partitioning and scheduling the tasks and the execution of any
non-hierarchical workflow with Pegasus SW{MS is automated. This is achieved
by analyzing the task logs produced by the Pegasus system and constructing a
weighted graph, partitioning the graph using METIS [KK98| and remapping the
results back to the original workflow. With this approach, a user can easily parti-
tion any workflow, and gain several benefits such as overall bandwidth reduction,
occasional improvement of the execution time and the decrease of the cost of run-
ning an experiment in the cloud.

As stated earlier, some of the problems of executing scientific workflows in the
cloud are for example the setting up of the system itself and vendor dependability.
These problems can be overcome using multi-cloud deployment tools like JClouds
[JCI] or CloudML |GES™11]. In this thesis, a framework is built, to easily setup
a cluster of machines in the cloud (OpenStack or Amazon), using CloudML and
Java Spring. The toolkit configures and sets up everything for the user to easily
run partitioned workflows in the cloud.

Another problem this thesis also tries to solve, is trying to estimate the runtime
of a scientific workflow, based on the number of CPU cores. With this approach,



after the initial run, a user can easily see the time estimation of the workflow
and select the preferred amount of cores for their problem. This was achieved
by modifying the makespan algorithm produced by I.Pietri et al. [PJDS14] and
adding a scaling factor based on the initial run. Also, to ease the choosing of
the resources, a cost parameter was added to the selection process, so that a user
can see the estimated cost of running a workflow on a certain setup. All the
functionality listed, i.e. the time estimation, partitioning and automatic setup are
included in the built framework.

1.1 Motivation

Grid computing, while having many hindrances, has been popular for many years
among scientists to run their scientific workflows on. According to C.Hoffa et al.,
”One of the primary obstacles Grid users face today is that while a Grid offers
access to many heterogeneous resources, a user typically needs a very specific en-
vironment that is customized to support a legacy application, remains consistent
across multiple executions, or supports the idiosyncrasies of many service configu-
rations.” [HMFT08§].

Cloud with its many advantages is a good alternative in this case but has its own
problems. One of the key disadvantage for a single scientist is the set up of the
overall system. For example, assuming a user has modeled a scientific workflow to
be run with Pegasus SW{MS in the cloud, they have to have a running and config-
ured system to execute that workflow on top of. For instance, in the grid scenario,
usually the SWIMS is already installed for the scientist and ready to be used. In
the cloud case, every time instances are either provisioned or deprovisioned, they
have to be configured again, which is time consuming and tedious.

Over the years there has emerged numerous tools to ease the automation of
configuration of the instances in the cloud, e.g. Salt [SAL], Ansible [ANS], etc.
Because some of these tools are proprietary, can force vendor lock-in or cost money,
one should look for some other open-source alternatives, that can be modified for
a specific use case. For example, JCloud or CloudML, that are based on Java, suit
perfectly to build the basis of a framework, in order to set up a SW{fMS, in this
case Pegasus, with all its dependencies in the cloud easily.

Let’s say that a scientist has a tool to easily setup and configure the Pegasus
SWIMS system in the cloud, and provision as many instances before the execu-
tion for a certain workflow as needed. Still, a few problems remain unsolved,
for example, which is a good configuration for a certain problem considering task
scheduling and how many cores to provision for a specific execution? The solution
to the former problem is using k-way graph partitioning to distribute the tasks
between the virtual machines, to increase the intra-instance communication while
decreasing the inter-instance communication. The problem of finding how many
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cores to provision for an execution can be solved using some kind of time estima-
tion for the workflow, that is based on the number of CPU cores available. An
algorithm, that takes into consideration the runtimes of each separate task of the
workflow is a good way for a runtime approximation [PJDS14]. To fine-tune the
estimation even more, a scale factor based on the first run of the workflow can be
introduced to the initial algorithm. Taking into account, that for each number of
cores provisioned, one gets a runtime estimation of the workflow, it is rather easy
to plug in also a cost factor. With this approach, a user can easily see at what
cost and how many cores suit their specific case, when considering the execution
time.

All in all, in this thesis a framework is built, in order to ease the execution,
configuration, and deployment of a scientific workflow with Pegasus SW{MS in an
optimal and automated way in the cloud.

1.2 Thesis outline

The structure of the rest of the thesis is as follows. Chapter [2| provides a back-
ground to the main paradigms of this thesis. Chapter |3| introduces the related
works done regarding partitioning, time estimation and multi-cloud deployment.
Chapter 4] describes the architecture and the technical details of the built frame-
work. Chapter [5] shows the results and gains of the partitioning, accuracy of the
time estimation and the duration of the deployment, and finally, chapter [6] con-
cludes the thesis and goes briefly over the future work to be done.



2 Background

2.1 Cloud computing

The cloud computing paradigm has well matured over the years, but the underlying
characterization of its core idea has remained unchanged. According to National
Institute of Standards and Technology:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g. metworks,
servers, storage, applications, and services) that can be rapidly provisioned and re-
leased with minimal management effort or service provider interaction ” [MGT11].
In other words, cloud computing offers a convenient and easy way for the public
to access various computing resources over a certain network. Much like water or
electricity, the resources are provisioned as a utility, where the cost is calculated
by the amount of usage.

Cloud computing can be categorized into three main services [ZCB10]. Infras-
tructure as a service (IaaS), Platform as a Service (PaaS) and Software as a Service
(Saas). Infrastructure as a Service can be described as a way of provisioning dif-
ferent types of resources, usually virtual machines, to the users. For example,
Amazon EC2 [Ama] or Google Cloud [Pla] are well known IaaS providers. PaaS
refers to a service, where usually a pre-configured platform is provisioned to the
customers. This allows the users to manage and develop several applications with
an ease, without the need to maintain the underlying infrastructure. For example,
PaaS providers like Heroku or Google App Engine are popular among developers
because they are easy to use and configure. SaaS can be characterized as a service,
where a certain software that uses the benefits of cloud computing is provisioned
to the customers. Some of the well known SaaS applications are for example Drop-
box or Salesforce. Figure [1] depicts the different services of cloud computing and
its layers.

Cloud computing paradigm bears many different advantages, for example, scal-
ability, utility computing, on-demand provisioning, etc. Scalability is one of the
key features of cloud computing. It forwards the idea, that services run on the
cloud are flexible and can be scaled real-time. For example load balancing is a
popular way of utilizing the full power of scalability [SIV16], i.e. when the load of
some application increases, spawn more resources and vice versa. Utility comput-
ing, as stated before, is the idea of ”leasing” different computing resources, while
charging for their usage. This is perfect, because companies can cut out the hassle
of maintaining and managing their own infrastructure and migrate their applica-
tions to the cloud, while reducing the overall costs. One can not also forget the
ease of deployment when using cloud computing, as users can launch several dif-
ferent resources quite easily and quickly. With the help of virtual machine images,
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Figure 1: Different cloud services and its layers [ZCB10]

it is also rather easy to create a template from a machine, that can be later used
across an enterprise system as a base building block.

Like every coin has two sides, cloud computing has also its downsides. The
underlying virtualization technology, that enables the running of multiple inde-
pendent virtual machines on one platform causes extra communication latencies,
which hinders the execution of different scientific applications [SBJVTII]. Also
when considering that cloud infrastructures usually use commodity computers,
one has to take into consideration that they fail after a certain time, which means
data replication and fault tolerance are a necessity when thinking of the execution
of different applications, especially scientific workflows.

Commonly, when scientific applications are developed, they are run on high
performance super computers or grid infrastructures. While performing applica-
tions, that require a lot of computational resources, run quite efficiently on these
platforms, the lack of control and the dependency on the availability of these un-
derlying resources are the main reasons why a scientist should consider using cloud
computing. With the help of commercial cloud services like Amazon EC2 or Mi-
crosoft Azure [Azul, the accessibility to spawn customizable computer clusters has
been significantly simplified.

Whether scientists are using cloud environments like Amazon EC2 or Open-
Stack, cloud computing can be divided into these three types [MGT11]:

e Public cloud — A model, where the provisioned resources are available to the
public. The customer can utilize as many resources as needed in exchange
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for money. Usually, these clouds are owned by businesses or government
organizations.

e Private cloud — A model where a cloud environment, e.g. Nebula or Open-
Stack has been set up within an organization and is unavailable to the public.
This setup provides more fine grained control over the resources available and
can be configured for advanced security.

e Hybrid cloud — A combination of both of the models described beforehand.
For example, when an application that is running in a private cloud suddenly
becomes under heavy communication load, one can burst it to a public cloud
for more resources to satisfy the increased demand.

While Amazon Elastic Compute Cloud, or in short, EC2, has been a popular
[aaS provider for a long time, over the years, there has emerged several other mas-
sive cloud infrastructures like Google Compute Engine or Microsoft Azure. By
using these services, customers can create, start, destroy instances according to
their need and they only have to pay for the usage of the resources. While these
infrastructures share all of the main benefits of cloud computing like elasticity and
scalability, it falls on the shoulders of the end user to choose the most suitable
vendor. For example, when considering billing, EC2 charges users hourly, while
Google Cloud supports per-minute billing. Also, the price rates vary for differ-
ent regions, each vendor offers different type of machines with different storage
constraints, etc., making the choosing of the provider a tedious process.

The previously listed cloud infrastructures, as stated, have a lot of advantages,
however the main problem using their services is the cost. For example, users can
not test whether their applications are running correctly on the cloud beforehand
and they have to pay even when they are migrating and testing the application.
For these reasons there has emerged open source cloud platforms like Nebula or
OpenStack. In essence, they are quite similar to the commercial cloud providers
— features like elasticity, scalability and virtualization are also part of the system
and just a matter of implementation. Scientists can deploy their applications,
test them under different conditions and if they want to, migrate also it to the
commercial cloud.

Albeit open source private clouds may seem a tempting alternative for scien-
tists, it is actually not that simple. It takes a lot of work, skills and time to set up
a private cloud on your own infrastructure. One has to carefully consider which
kind of infrastructure to buy and set up in the first place. Additionally one has to
rely a lot on the documentation, which can be sometimes insufficient, and if there
is not a large community behind the open source project, finding answers for a
particular problem will be hard. These problems does not exist with commercial
cloud services because a feature like client support is already paid for.
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2.2 Scientific workflows

Commonly, when a scientist is working on a problem, they have numerous steps
to take in order to verify and validate their results, such as repeating experiments
with new data sets, reproducing previous results, and so forth. Often both the
observations gotten and the different tasks of the experiments are needed to be
shared with other scientists, which can be cumbersome, if there is no standard-
ized way of representing these experiments. Fortunately, scientific workflows have
enabled scientists to model and describe different problems in an easy and a stan-
dardized way, in order to automate the overall scientific process. It is a paradigm
for representing, orchestrating and managing complicated scientific computations
[GDE07].

Workflows are composed of several different basic structures: processes, data
distributions, pipelines, data aggregations and data redistributions [BCDT08|. For
example, data aggregation is a process, where multiple inputs are aggregated into
one output, while data distribution does the exact opposite as a single input of
data is divided into multiple subsets in order to increase parallelism in the next
step of the workflow’s execution.

Scientific workflows are being used in various different fields such as cosmol-
ogy, biology, physics, etc. For example, the Laser Interferometer Gravitational
Wave Observatory has used Pegasus SWIMS to execute and create their scientific
workflows in order to detect gravitational waves produced by different types of
events in the universe [Blul6]. Scientific workflows are used even in the fields like
seismology, for instance, the CyberShake workflow has been intensively utilized by
the Southern California Earthquake Center to characterize different earthquake
hazards |[GJCT11].

There are numerous ways to represent scientific workflows. In this thesis, all
the workflows are created in the directed acyclic graph in XML format, known as
DAX, which is compatible with Pegasus SWfMS. For example, the Taverna SW{MS
[Tav] uses a SCUFL (Simple Conceptual Unified Flow Language) to specify their
workflows.

2.2.1 Overview of the workflows used

This subsection describes the multiple workflows that were used in the thesis, in
order to test different aspects regarding data scheduling, time estimation, setup of
the workflows themselves, etc.
Montage

Montage is an open source toolkit, designed by the NASA /TPAC Infrared Sci-
ence archive, to generate different mosaics from the sky using FITS images as an
input [Mon]. The toolkits workflow representation is quite popular among sci-
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entists to be used for testing of different hypothesis, ranging from scheduling of
tasks to workflow cost estimations. It is a data intensive application and 95% of
the time, it is waiting on 1/O operations and only 5% of the time on computa-
tion [AJD12], which makes the workflow perfect for trying various data scheduling
techniques.

It consists of 9 different levels, where each level has various types of jobs. The
mProjectPP jobs are loosely correlated to the number of input images (fetched from
the NASA /IPAC database) and perform on each input a plane-to-plane transform.
The mDiffFit jobs will calculate the difference of the overlapping pair images
gotten from the previous jobs and its outputs are merged by the mConcatFit
job [Mon]. The mBgModel determines what corrections to apply on each image
and the mBackGround applies these corrections on the images. The next job,
mImgThl, extracts geometry information and creates image metadata table, that
will be used in the upcoming tasks. Finally the mAdd job, which is the most
compute intensive, co-adds the reprojected images to produce an output mosaic,
which is reduced by the mShrink job and transformed into a JPEG format by the

mJPEG job [BCD¥0]].

Data Aggregation

Data Partitioning

Data Aggregation

Pipeline

mProjectPP . mDiffFit mConcatFit mBgModel mBackground

mimgThl () mAdd mShrink mIPEG

Figure 2: Montage workflow
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The workflow’s size increases with the number of FITS input images. For
example, a 2.0-degree Montage workflow consists of 312 input images and results
in a total of 1442 jobs, while a 5.0- degree workflow already has 1718 input images
and a total of 5657 jobs. Figure |2, shows the structure of the Montage workflow
and its jobs.

PGen

The PGen - large-scale genomic variation analysis workflow was built in order to
perform efficient analysis on soybean data [WWFEFT08]. It was modeled in order to
study the genomic variations of plants using next generation re-sequencing data.
It consists of 12 different levels, which is composed of numerous types of jobs.
In contrast to the Montage workflow, the PGen is a lot more CPU demanding,
although it can be scaled up to handle terabytes of data. The workflow takes
for input a reference genome, chromosome names and multiple FASTQ files and
outputs various sequence alignment data. Due to the fact, that using real input
files, the PGen workflow can execute for days or even weeks, synthetic inputs were
used to fasten up the overall execution.

Custom workflows

In this thesis, two custom workflows with different structures were also cre-
ated, in order to see that not only the total communication is decreased when
partitioning a workflow, but also if the overall execution time is reduced.

T

NN
o S 06

\ ) /

N

N

splitter fibonacci

increaser combiner . increaser . combiner

(a) Increaser workflow (b) Fibonaci workflow

Figure 3: Custom workflows
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Figure |3| shows the structures and the jobs of the created custom workflows.

The first workflow, called ”fileIncreaser”, is a simple benchmark workflow, that
consists of as many number of levels as specified by the user. It takes a custom
file for an input. The workflow splits the file into n parts, depending on the level
of the workflow, increases the split files by the specified size gotten from the user
and combines them into a larger file. This workflow was modeled considering only
data-transfer in mind and the time spent on computing is close to none.

The second ”fibonacci” workflow, is a bit different than the ”fileIncreaser”. It
takes a text file for input, that contains two numbers. The Fibonacci job adds these
two numbers together, calculates the Fibonacci number from the result and outputs
two files: a new text file consisting the next numbers to calculate and a dummy
file, that has the size of the logarithm of the Fibonacci number calculated. The
dummy file is created in order to create additional data communication between
the nodes of the workflow. Each Fibonacci job is followed by two increaser jobs.
The leftmost increaser job increases the numbers gotten from the Fibonacci job by
2/5 and the rightmost by 2/8. These fractions were chosen randomly, in order to
make one branch of the tree more computationally demanding than the other. The
final job, combiner, just takes all the outputs from the last calculated Fibonacci
jobs and outputs a dummy file of 50mb.

Both workflows are scalable, which means that with different parameters from
the user, they produce different size workflows. For example, the Fibonacci work-
flow with 6 iterations consists of 126 jobs and produces only 749 Mb of data, while
10 iterations already has 2045 jobs and produces in total of 39GB amount of data.

2.3 Scientific Workflow management systems

As stated, there has emerged a paradigm to represent and model different scientific
computations. In order to fully take advantage of it, i.e. ease the modeling,
monitoring, and execution of a workflow, there has been built many scientific
workflow management systems (SW{MS) over the years.

Most SWIMS are similar in their architecture and are composed of five layers:
presentation layer, user services layer, workflow execution plan (WEP) generation
layer, WEP execution layer and infrastructure layer [LPVMI15]. According to
M.Bux and U.Leser, SWfMS can be further divided to textual language based,
graphical standalone systems and domain-specific web portals [BL13].

Textual language based SWIMS are systems, where the modeling, monitoring
and execution of workflows are based on textual languages. They are greatly
modifiable and meant to be run on different heterogeneous compute resources.
For example, the Pegasus SWfMS, which is the main ”execution engine” in this
thesis, is a textual language based SWIMS. Workflows are usually described in
a textual representation like XML, which can be written manually or modeled
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with the help of the SWEMS itself. Pegasus, for example, provides both Java,
Python and Perl libraries in order to ease the modeling of scientific workflows. The
orchestration and management of the workflow is also modeled and represented by
various XML and text-based configuration files. The essence of textual language
based SWIMS lies in highly efficient computing of high workloads [BL13]. In most
cases, using textual language based SW{MS need a lot more configuration, set-up
and understanding of the system itself in order to run a scientific workflow. For
these reasons there has emerged graphical SW{MS.

Graphical workflow management systems focus on the ease of usage and graph-
ical illustration of a workflow. Commonly these systems are installed on a server or
a local client, ready to be used by a scientist. Workflows are typically constructed
by a collection of supported components with drag and drop functionality, mak-
ing the modeling rather easy. Due to the reason, that it is tedious to portray
a large workflow graphically and to ease the overall modeling, most systems en-
force their users to nest their workflows with sub-workflows. There exists several
graphical SW{MS like Taverna [Tav], KNIME [KNI] or Kepler [Kep]. For example
in Taverna, users can easily create, edit and run their workflows using Taverna
Workbench. Just like Pegasus, it also supports different execution sites like grids
and clouds.

The last category, domain specific web portals, consists of different online ap-
plications, where users can create, execute and share their workflows. As the class
name suggests, these SWIMS are explicitly domain specific and do not support the
execution of cross domain workflows. For example, portals like Mobyle [Mob| or
Galaxy [BKCT10] are well known frameworks in the bioinformatics domain. The
main strength of this class of SWfMS is the ease of sharing both of the results and
the designed workflows in the community.

There are several core functionalities when speaking of SW{MS like fault tol-
erance, monitoring, data and task scheduling, etc. For instance, the reliability of
a workflow’s execution in the Pegasus SWIMS is achieved by reactive fault tol-
erance, i.e. after a failure, the jobs or data transfers are automatically retried.
Another key functionality of a SWMS is parallelization, i.e. the ability to exploit
the resources available efficiently to execute a scientific workflow or its tasks in
parallel. There are two distinct parallelism levels: fine-grained parallelism, which
conveys the idea of executing different jobs in parallel and coarse-grained paral-
lelism, which is the execution of sub-workflows in parallel [LPVMI5]. Most of the
named SWIMS above support some kind of parallelization, but they do not take
advantage of hybrid parallelism, which is the combination of data, pipeline and
independent parallelism techniques. For this reason, there exists a few SWI{MS
that take advantage of hybrid parallelization like Chiron [ODS™13], that allows a
user to run a workflow in the most optimal way, when considering parallelization.
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2.4 Cloud deployment

In the past, there has been developed a lot of different software to deploy an ap-
plication to the cloud. While solutions of popular cloud providers like Amazon
CloudFormation [Clob] or Azure Resource Manager [Man] provide better inte-
gration and with good configuration could be more efficient than multi-platform
deploying systems, the deployed configurations cannot be easily migrated. Also,
because platform specific deployment tools will make the customer dependent on
their products, more and more scientists are interested in multi-platform deploy-
ment software, which mostly are open-source. It will help to solve the vendor lock
problem and allow them to easily migrate their computing applications to different
cloud providers. Although, one has to remember, that as in the cloud platform
cases (OpenStack, Nebula), the lack of good customer service and the deficiency of
satisfactory documentation, could make the usage of open source multi-platform
deployment tools a bit of a hassle.

One of the popular multi-platform deployment tool is JClouds. It is an open
source library, which is known to work with multiple of different cloud providers
like Amazon or GoGrid. It has features like load balancing, easy customization etc.
Because of the high configurability and accessible API, JClouds has also different
frameworks built on top of them, like CloudMF (Cloud Modelling Framework)
[FCRT13].

CloudMF, the multi-platform deployment framework used in this thesis (re-
ferred as CloudML in general), is a toolkit that enables users to deploy, provision
and adapt multi-cloud systems and change them at run-time using Java code or
JSON files. It was developed part of the EU FP7 REMICS project [REM]J.

The Cloud Modelling Framework is composed of two parts [FCR™13]:

(i) CloudML — Cloud Modelling Language, a domain-specific modelling lan-
guage, developed in order to assist a user with the design of the deployment
of multi-cloud systems. It allows the modelling of the machines to deploy,
their external and internal relationships in the system, the set-up, etc.

(71) models@run-time environment - a broker that is responsible for the migration
and adaption of the described model by the user. It maps the modifications
and updates of the running system back to the original model in run time.

For smaller projects, the configuration is rather easy. Users can define which
kind of instances to provision on which clouds, what kind of scripts to configure
after deployment, what bindings to define between the instances, etc. Listing 1
shows a snippet of the modeling of a system with CloudML with JSON [1]

While the configuration may seem easy for smaller projects, it becomes gradu-
ally harder with larger systems — one can see only during a full deployment if the
configuration file is valid and does exactly what is needed.
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Listing 1: Snippet of modeling a system with CloudML using JSON

"nodeTypes”:[{
7id” :”mainNode”,
”0s”:” Ubuntu”,
”provider”:” openstack nova”,
”compute”:[2,4],
”memory”:[2048,4096],
”storage” : [40960],
”location” :” RegionOne”,
”sshKey”:”big_duke_6”,
”securityGroup”:” jaagup_pegasus”,
”privateKey”:” jaagup_key.pem”,
s
”artefactTypes”:[{
7id” :” pegasus”,
” retrieval ”:” wget http://../pegasus.sh”,
”deployment”:”bash pegasus.sh”,

H

Setting up the configuration with files that are written in Java can also be a
hassle, because it is more complicated to set up than with JSON and with several
configurations, the code can get ”ugly” really fast. Also one downside of using
CloudML with Java is reliability, since if some unexpected error is thrown from
the underlying library JClouds, it is hard do tap back to the current deployment
model, if it is not backed up on every iteration.

Another alternative to the aforementioned framework CloudML, is an EU re-
search project called SeaClouds [BIS™14]. Tt is also an open-source toolkit in order
to deploy and manage multi-cloud applications. The main difference between the
two is that SeaClouds is mainly focused on heterogeneous PaaS platforms, although
it also supports the deployment and configuration of various IaaS infrastructures.
A key functionality of SeaClouds is providing agility for a user after the initial mi-
gration. For example, SeaClouds will monitor the quality of service requirements,
and in the case of a violation, the application or part of the application will be
migrated to a different cloud vendor, that satisfies the initial requirements.

With the recent interest in containers, one could suggest also Docker[Dod| as
an alternative to CloudML, which is an open platform application that is meant
to run distributed systems on different infrastructures, including cloud. It has
become popular because it is really lightweight and easily deployable. Docker
packages your application into containers, which includes the application with its
dependencies and shares the kernel with another containers.

Although it has gained a lot of interest because of the advantages stated before,
it also has its downsides. It is not as stable as just using virtual machines for the
reason that it is an ongoing project. Additionally, because containers run on the
same kernel, setting up firewall rules and loading modules are difficult. One also
has to remember, that using Docker alone does not provide a user with a unified
way to deploy the containers to different infrastructures. In order to do that, users
have to use external frameworks like Clocker [Cloa] or RightScale [Rig], which can
cost money and need additional time to set up and configure.
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2.5 Partitioning

Graphs are used in various different fields like biology, informatics, physics to con-
vey and model different problems in a structured way. One of the fundamental
algorithmic procedures, called graph partitioning, is the splitting of a graph into
smaller sub-sets. The technique can bear many benefits like the overall communi-
cation minimization, reduction of the complexity of a graph, speeding up a route
planning, among others. [BMS™16].

Because of these benefits, graph partitioning is utilized in numerous domains,
e.g. it is extensively used in image processing, as means to partition the pixels
of a picture into clusters that represent various objects. Another popular field
to use graph partitioning is parallel processing, where the distribution of tasks to
processors or machines can be more evenly dispensed, which in return results in a
better load balance and the minimization of communication [BMS™16].

There are several approaches and algorithms to find a good partition for a graph
including spectral partitioning, geometric partitioning, multilevel graph partition-
ing to name a few [KK98|. There are different toolkits implementing some of these
algorithms, like Chaco [HL95] or PaToH [CAT11], but in this thesis, the METIS
library is used, which implements the multilevel k-way graph partitioning algo-
rithm. It has shown to produce more quality partitions than for example different
spectral partitioning schemes [KK98]. Another reason the METIS toolkit is used,
is because of its speed, as graphs with millions of nodes can be partitioned in a
matter of seconds, which is perfect as scientific workflows can be composed of a
huge number of nodes.

The METIS library takes for an input a graph file, where on each line there
is specified the nodes of the graph, its connections and weights. After execution,
METIS will output a file with n lines (n is the number of vertices) and an integer
value that shows to which group a node from the original graph belongs to.

In this thesis, in order to build a weighted graph that can be used with METIS,
after the first execution, the log files of each task of a scientific workflow are
analyzed. The weights of the edges in the graph are going to be the amount
of data exchanged between the nodes in the workflow. For example, if task A
sends 1 megabyte of data to its adjacent task B, then the weight for the edge e
connecting nodes A and B is going to be 1. With this approach, one can build an
undirected graph of the initial scientific workflow, where on the edges are the data
communication sizes between the tasks of the workflow.

Figure 4| depicts the gain, that one can gain when using graph partitioning. The
graphs tasks are partitioned between three machines using a random algorithm and
the multilevel k-way partitioning algorithm. One can see, that the weights between
the vertices in the random case will give a sum of 12 and in the METIS case only
9, meaning that the total communication between the machines in the cluster can
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be minimized when scheduling the tasks using graph partitioning.
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Figure 4: Partitioning gain with METIS

2.5.1 Multilevel k-way partitioning

The k-way partitioning problem is expressed as following.
Given a graph G = (V, E) with |V| = n, partition V into k subsets Vi, Vs, ...V},
such that V;NV; =0 for i # j, |[Vi| = n/k, and U;V; = V, and the number of edges
of E whose incident vertices belong to different subsets is minimized [KK9§].

The problem can be extended to graphs with weights on both of vertices and
edges, which furthers the initial goal to partition the graph nodes into k disjoint
subsets, so that the total sum of the node weights in each subset is going to be
the same, and the sum of the weights of the edges, whose shared vertices belong
to a separate subsets is minimized |[KK98]. Usually, the solution for a k-way
partitioning of V' is expressed by a partition vector P of length n, so that for
Vv € V, Plv] is an integer within 1 and k, showing which partition a vertex v
belongs to.

The multilevel k-way partitioning takes advantage of bisecting a graph G using
a multilevel algorithm. The main idea between a multilevel algorithm is pretty
straightforward - decrease the size of the initial graph, calculate a bisection of it
and project the results back to the original graph G.

In METIS, the partitioning consist of three distinct phases (Figure [5):

e Coarsening phase — The inital graph G, that is provided is coarsened down
to a set of smaller graphs, i.e. it is remodelled into a sequence of graphs
Gy, G, ..., Gy, such that |Vo| > V1] > Vo] > ... > |V,,| [KKOS].
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Figure 5: The different phases of multilevel k-way partitioning [KK9§]

e Initial partitioning phase — After the graph is coarsened down, the k-way
partitioning algorithm is used to divide the graph into several different parts.

e Uncoarsening phase — The final phase, where the coarsest graph is projected
back to the initial graph, i.e. the partition P, is projected back to the initial
graph GGy and in each uncoarsening iteration, the graph is also refined with
the k-way algorithm, so that the final partition will be the most precise.

In other words, the partitioning in the METIS toolkit of a graph G into k parts
is done using the multilevel k-way partitioning, which consists of three different
phases in order to refine the initial partitioning and produce higher quality results.

2.6 Summary

This chapter described the state of the art techniques used in this thesis. To recap,
the cloud computing paradigm has allowed scientists to migrate and run their ap-
plications on top of a large number of resources in different parts of the world with
an ease. Due to the rise of multi-cloud deployment tools, users are not constrained
any longer by vendors and can switch seamlessly between different cloud providers.
Furthermore, with the help of partitioning, the communication overhead of a sci-
entific application running in the cloud can be reduced significantly. This allows
the execution of various scientific applications on different SWfMS, across multiple
clouds in an optimized way.
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3 Related work

This chapter covers the related work that has been done regarding the scheduling
of scientific workflows, the automatic configuration and set-up of a SWfMS and
the execution time estimation of workflows.

3.1 Scheduling of scientific workflows

Extensive research about scheduling the tasks of scientific workflows in the cloud
has been done, when considering numerous amount of different parameters: data
transfer, cost, execution time, etc. For example, C. Lin and S. Lu proposed a
SHEFT [LL11] scheduling algorithm, that takes into consideration the elasticity
of the cloud. Their preliminary experiments showed that the SHEFT algorithm is
better when considering execution time than a well known HEFT [THW02] algo-
rithm, that is often used to reduce the makespan of a workflow. Their algorithm
also enables resources to scale elastically during the execution, which the HEFT
does not support. In this thesis, the elasticity of cloud is not considered, when
scheduling tasks between virtual machines. Firstly because the SWIMS Pegasus
does not support adding new execution sites (machines) dynamically during run
time and secondly, because at the moment, the framework supports only a ho-
mogeneous set-up of virtual machines. When considering robust scheduling, that
takes into account the cost and deadline constraints, then D. Poola et al., pro-
posed a resource allocation model, that outperformed in most cases the similar
ICPCP and GA algorithms [PGBT14]. This thesis on the other hand focuses the
scheduling of the workflow tasks by considering the data movement between the
nodes and not cost, heterogeneity and neither deadline constraints.

There has been done a lot of research about scheduling workflows, when taking
into account the data movement. J.Zhang et al., adopted a k-means clustering
placement with a multilevel task replication strategy, in order to optimize the
overall data transfer of a workflow between multiple data centers in the cloud
[ZWL7T15]. Their simulations showed that both the data transfer time and the
data transfer volume was reduced when using the proposed method. This thesis
on the other hand focuses the scheduling of the tasks in a single data center, and
does not take into account the locality of the data centers.

Using graph partitioning as the main strategy of a workflow scheduling has
been done in [cKUT11], [GHKS14] and [TT12]. In [cKUTI] a multi-constraint hyper-
graph partitioning tool called PaToH [CAT11] was enhanced with a heuristic called
DPTA. They achieved up to 38% of improvement in the communication cost on the
workflows gotten from Pegasus. In this thesis a multilevel k-way graph partitioning
algorithm is used, that is implemented in the partitioning toolkit named METIS.
In [GHKSI14] the METIS toolkit was also used. It was compared to CPLEX
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and their own data placement heuristic, that does not use graph partitioning. It
was shown that METIS is a good, fast and scalable toolkit for reducing the data
communication of a workflow. While in the computational cluster they used the
Hadoop distributed file system, in this thesis, each machine has its own files system
and the sharing of data between the machines is done in a peer-to-peer manner.

In [TTI12], M. Tanaka and O. Tatebe showed, that using multi-constraint
graph partitioning for task assignation, can reduce the execution time up to 31%
when compared to other scheduling techniques like round-robin or immediate task
scheduling. In this thesis however, I show that the runtime of a workflow can be
reduced occasionally, when using k-way partitioning as it is heavily dependent on
the characteristics of a workflow. Furthermore, for their evaluation, a Pwrake par-
allel SWEMS was used, but in this thesis, the Pegasus SW{MS is the main system
for workflow execution.

3.2 Time estimation

Estimating the runtime of workflows in different environments like grids or clouds
has been a research topic for several years. In [HWW13] a framework was built to
predict the performance of workflows in cloud environments. The work was mainly
carried out using e-Science platform, but the authors state that the methodology
can be applied to different systems as well. The time estimations were based on
the amount of data consumed and produced by a component and the success of
the predictions were dependent on the data relationships. In [MM12] T.Miu and
P.Missier estimated the makespan of scientific workflows on their input features.
They used C4.5 machine learning algorithm that took the data inputs of past
experiments and showed when sufficient amount of historical data is present, the
relative absolute error can be below 20%.

However in this thesis the time estimation is based on the work of [PJDS14],
which calculates the estimation based on the structure of the workflow and does
not need a lot of historical data. The makespan algorithm gotten from [PJDS14]
is left unchanged, but a scaling factor based on the first actual run is introduced,
in order to increase the accuracy of the estimation even further.

3.3 Configuration and set-up

In the past years, there has been proposed and developed many cluster manage-
ment and deployment systems. While there are cloud configuration and automa-
tion systems like Chef |[CHE], Ansible [ANS| or Salt [SAL], that do not have any
restrictions on what kind of system or software to configure and deploy to the
cloud, there are architectures that specifically focus on the deployment of WIMS
and the execution of scientific workflows like [VHHLRI5], [HWWCT13]| or [JD11]. In
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[VHHLRI15] K. Vukojevic-Haupt et al., present a multistep bootstrapping process,
that allows a user to start a complex workflow middleware with minimal effort.
They designed the "bootware” with multiple requirements like: ”be lightweight”,
"be generic”, "be robust”, etc. The main feature of the approach is the inde-
pendence of specific WIMS [VHHLRI5|. This thesis however focuses only on the
configuration and deployment of the Pegasus SW{MS on a cluster of machines us-
ing CloudML |GES™11]. For validation in [VHHLR15] the SimTech SWIMS was
set up and the provisioning of three virtual machines and the required middleware
took approximately 17 minutes. In contrast, the deployment of six machines and
their configuration with the built framework takes about 19 minutes on average
or less (& 7 minutes with a snapshot), depending on the Internet connection and
the workflow specified by the user. Both frameworks described have support for
different cloud environments like Amazon-EC2 or OpenStack.

In [JDI1I] an automated deployer for cloud environments called Wrangler was
developed. Robustly speaking, it is similar to the software that was developed by
K. Vukojevic-Haupt et al., as it supports multiple cloud environments, different
WIMS, plugins, etc. On the other hand, both systems still need some kind of
configuration input by the user, e.g, which kind of WfMS to install, its dependen-
cies, the configuration between the machines using the default WIMS, etc. In this
thesis, the user just has to select a vendor, virtual machines, provide a workflow
for the framework, and the rest is done by the click of a button. One disadvantage
also in [JD11], is that the agent software has to be pre-installed in the VM image
beforehand, while no such requirement is needed for the framework developed in
this thesis. Also the availability of the software of both K. Vukojevic-Haupt et al.,
[VHHLR15] and G.Juve and Ewa Deelman [JD11] is unknown, as no reference to
the described software is provided in either paper. In contrast, the open-source
framework developed in this thesis is available in [Viil7].

3.4 Summary

This chapter covered the related works performed regarding the topics of schedul-
ing of scientific workflows, configuring and bootstrapping SW{fMS and estimating
the makespan of workflows.

All of the techniques used in the framework have been extensively researched
before, but combining the different parts, i.e. partitioning, automatic set-up with
CloudML and time-estimation [PJDS14] into an easy to use framework, has not
been addressed before. The thesis tried to address this gap in the related work,
which is discussed further in the next chapters.
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4 Architecture overview

This chapter describes the underlying frameworks executing the workflows, mod-
ifications made to them and finally the system and its components built in this
thesis.

4.1 Pegasus and Condor

As stated earlier, the SWfMS used in this thesis is Pegasus, which is widely used
framework in the scientific community for the execution of workflows. Pegasus has
a lot of features like reliability, error recovery, scalability, provenance to name a
few [DV.JT15].

It consists of four main parts: mapper, execution engine, job scheduler and a
monitoring component. The mapper takes an abstract workflow file in the format
of DAX and maps the tasks onto the execution environment, while taking into
account the needs specified by the user like the computational resources required or
the software desired. The execution engine is self-explanatory and it is responsible
for the running of the tasks in the workflow on both local and remote execution
sites. The job scheduler is the manager of each task, i.e. it tracks their states,
submits them to the queue, etc. The last subsystem, monitoring component, is
responsible for the logging and monitoring of the executing workflows, allowing
users to see the status of the current executing workflow. The component also saves
valuable information to a workflow’s database, e.g. performance and provenance
information in order to debug failures more easier.

To execute a workflow with Pegasus, users have to have defined these four
components:

(i) Abstract workflow file - the DAX file that consists of all the tasks that are
needed to be executed. It can contain the next three components listed on
its own, but to enforce readability and ease the management of a workflow,
it is suggested to divide them into different parts.

(ii) Sites catalog file - Describes the different compute environment resources
(clouds, grids, HPC, etc.) that the user wants to execute their workflow
upon.

(i4i) Transformation catalog - This component has to have all the software spec-
ified that are needed to run the tasks for each execution site specified in the
site’s catalog.

(iv) Replica catalog - Keeps a mapping of all the files that are needed to execute
the workflow. For example, in the Montage workflow case, the replica catalog
would contain all the initial FITS input images.
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Without Condor, however, there would not be Pegasus. Condor DAGMan
(Direct Acyclic Graph Manager) and most of the Condor stack is used to run the
submitted workflows by Pegasus. Condor, the underlying engine, is a workload
management system, that was built in order to execute compute-intensive tasks
[TWMLO02]. Some of the key functionality of Pegasus is actually gained already
from the Condor framework itself, for example, the support of heterogeneous sys-
tems or execution reliability.

Condor uses a powerful concept, called ClassAds, to match different tasks
with the available resources based on requirements and preferences. According
to T.Tannenbaum et al., it can be compared to the advertising in newspapers,
because buyers define what and for how much they are willing to buy and sellers
advertise what they have got for sale [TWML02]. In computing terms, machines
in a Condor pool advertise their resources, for instance, CPU load, disk size,
RAM, etc. and each job executed in Condor includes a ClassAd, containing the
requirements to run the job, which helps to find a match in the pool of resources
available to Condor.

The Condor architecture of a pool is quite straightforward (Figure @ - a single
machine, called the central manager, is responsible for the orchestration of jobs be-
tween rest of the machines. Each machine has different Condor daemons running,
depending on their role in the pool. The different daemons are: condor_master
(keep rest of the daemons running), condor_startd (advertises a machines ClassAd),
condor_starter (starts a job on a machine), condor_schedd (stores jobs to a queue),
condor_shadow (responsible for file transfers, logging, statistics), condor_collector
(collects all information about a Condor pool), condor_negotiator (responsible for
the negotiating of jobs within the pool) [TWMIL02].

| Central Manager |

Figure 6: Layout of a Condor pool [TWML02]
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4.2 Peer-to-peer approach with Mule

In Pegasus, there are different ways to share data between the execution sites, such
as a shared file system, non shared file system (NFS), GlusterF'S, etc. The most
common solution in cloud is using a non-shared file system, meaning that every
execution site that Pegasus has access to, has its own means of storing data.

One problem using this set-up, is that a Condor pool consists of a central
manager. In this scenario, every bit of communication is sent through the manager,
which is a bottle-neck in the overall system. When extending this problem to a
scheduling context when using partitioning, one can see, that there will be no
benefit gained in this scenario as it does not matter if a job is run on machine 1
or 2, all the data transfers go through the central manager anyway (Figure @

To overcome this problem, the same solution as in [SV14] was used - enable the
sending of data in the computational cluster in a peer-to-peer manner. This was
done using Mule [AJD12], which was written as an additional library for Pegasus
to allow machines to send data in a peer-to-peer way.

Mule is composed of three components: a replica index server, a cache daemon
and a client [AJD12]. The replica index server stores all mappings of the files used
by Mule. The cache daemon is run on every machine that runs a job with Pegasus,
and stores all the data produced to the local disk. The client is an interface for
the aforementioned replica server and cache daemons.

The peer-to-peer data sharing with Mule is achieved by storing every outputted
file from a job’s execution to the local cache daemon. If some other job, needs some
files that is not available in its local cache, it will query the replica index server
for a list of machines that will have that particular data. If a match is found, a
machine is selected and the files are downloaded to the local cache daemon from
the selected machine.

Performance of Montage 10 degeree workflow
9000 M NFS
W P2P
GlusterFs

e
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Number of worker nodes | cores

Figure 7: Execution times of Montage on different storage systems [AJD12]
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After implementing Mule, the data communication was reduced in the cluster
already by ~ 50% [SV14]. Also, from the figure m one can see that the runtime of
a workflow is also faster, when using peer-to-peer mode compared to simple NF'S
mode with a central manager.

Because of the reason, that Mule is not supported natively by Pegasus, the
source code of pegasus-transfer, which is responsible for the sending of data between
the machines, had to be modified, by adding a new handler called MuleHandler.
After intertwining everything together, the set-up to execute scientific workflows
on the cloud can be seen in figure [§

[ Pegasus ][ Condor ][ DAGMan J

— . Cache
Replica Index Server BEETEm

Main node
/\

Condor Condor
Worker Worker
€— = = n —>
Cache Cache
Daemon Daemon

Worker node \/ Worker node

Figure 8: The current setup to execute a workflow in the cloud

4.3 CloudML additions

JClouds, the underlying library used by CloudML is evolving and developed rapidly.
For this reason, some of the internal code of CloudML had to be tweaked, modified
and updated, in order for it to work properly and efficiently again.

Some of the changes introduced to CloudML are the following:

e Execution of commands with responses - For the reason to execute com-
mands via SSH and get the results back as a string, a function named ezec-
CommandWithResponse() was added. For example, one of the uses of this
function were to periodically get the status of a workflow, using the output
of pegasus-status and showing the result to the end user.

e Downloading of files - Additional function called getFileStream() was added
in order to receive different log files to build the time estimation from Pegasus
runs.
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e Multiple amazon regions - Several functions regarding Amazon EC2 were
changed to support different regions, as previously the region named ”eu-
west-1” was hard coded in to CloudML.

e Private address to external component - Previously, the class FxternalCom-
ponentinstance only had fields for public IP addresses. For the overall system
to work properly, the additional functionality to receive private IP addresses
was added as it was necessary for the setup of Condor.

The cycle of modification, building and validation, were a bit cumbersome and
slow, because the building of the CloudML project takes over ~ 5 minutes on
average, plus the additional time of provisioning and configuring the instances to
verify that the changes that were made, were correct indeed.

4.4 The framework

The overall architecture of the framework built, can be divided into three main
components: frontend, backend and the cloud (Figure E[) Frontend serves all
the necessary templates for a scientist to start the overall process of setting up
the machines, running the workflow, seeing current status, etc. The backend is
responsible for all the communication between the frontend and the cloud, and
finally, the cloud is used to execute the submitted workflow.

The backend can further be divided into three main parts: deployer, workflow
manager and estimator (Figure E[)

Spring
CloudML
JClouds
Gradle

Pegasus
Condor
Mule

BACKEND
e Thymeleaf
e Javascript

) [ DEPLOYER ]

FRONTEND

J [ MANAGER ]

[ ESTIMATOR ]

Figure 9: The architecture of the framework built

The deployer is the main engine that sets up the instances specified by the user
either in Amazon EC2 or OpenStack. It works as following: spawn one instance
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and install the needed software (Condor, Mule, Pegasus, ..), run the user specified
script on it, which installs the software needed to run their workflow and generates
the initial workflow itself. Afterwards, clone the first instance and spawn the rest of
the machines from the clone. If the user already has an image of the first instance,
the initial installation steps are skipped and the machines are spawned right away.
After the provisioning of the instances, they are configured, which involves changes
in Condor configuration files, starting of the Mule cache daemons, etc. Finally, a
JSON file is created with the information of the current set-up. The file can be
used later to attach the deployment and continue the overall cycle (Figure .

The workflow manager is responsible for the execution, termination, restarting
and partitioning of the scientific workflow. After deploying all of the instances, the
workflow is automatically executed. When the workflow finishes the first run, it is
partitioned between the amount of instances in the current cluster. This involves
analyzing the logs from the first execution to collect the data transfers between the
different jobs and the times taken to execute each individual job in the workflow.
From the analyzed logs a graph file is constructed, which is fed into the METIS
library. The output from METIS is re-mapped back to the original workflow, so
that for each job an execution site where to run the task in the cluster is specified.

The last component, estimator, is used to calculate the time estimation of
the scientific workflow. The estimation is computed also from the logs, using the
makespan algorithm gotten from [PJDSI4]. The results, algorithm and the addi-
tional scaling factor that was introduced based on the first execution are further
discussed in lsubsection 5.2

The overall cycle of using the framework can be seen in figure - first a
user submits the initial settings, which includes all the information about the
deployment (SSH keys, number of instances, vendor, etc.) and the workflow to
be executed. Next, the instances are provisioned using the deployer. After the
set-up, the manager starts the execution of the workflow. If the workflow has
not been run before, it is run for the first time, otherwise it skips straight to the
partitioning. After partitioning the workflow, the estimator gets the log files from
the cloud and calculates the time estimation.

In the frontend, the time estimation plot of the current workflow is displayed,
where the z-axis shows the number of cores and the y-axis shows the amount of
time in minutes it takes to execute the workflow using z cores (Figure . Users
can select various points from the plot and get price information regarding their
selection (Amazon EC2 only). For example, if a user selects from the estimation
plot a point (z = 1,y = 120), all the Amazon instances are shown, which has one
core. With each instance shown, the price for the experiment is also displayed, e.g.
when selecting a t2.nano instance for the aforementioned point, the cost calculated
would be $0.0059*2hours=%$0.0118
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Figure 10: The overall cycle of the process

After selecting the instances that seem suitable to run the workflow under a
certain amount of time and the cost is reasonable, the overall cycle is started again,
i.e. deploying the new machines, configuring them, executing the workflow, etc.

The screen-shots of the framework in some of its different cycles can be seen

in the figures [T}, [12] and [13]
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Settings: {*

Connection settings
Virtual machine settings

Workflow settings

Estimator (optional)

Figure 11: The settings page
Statuses

Deployment status, Options: &F

Status:
Snapshotting the first instance.

Workflow status, Options: &¥

Status:
None

Figure 12: The deployment of a system

Figure[l1|shows the different sub-settings a user has to select to start the initial
deployment. Figure [12] illustrates the set-up of a cluster and figure [13| shows the
state of the overall cycle after the deployment, initial execution of the workflow
and clicking the point cores=8 on the time estimation.
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Figure 13: The state after clicking the point cores=8§ on an estimation
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4.5 Summary

This chapter described the framework built in this thesis, which uses the Pegasus
SW{MS with a peer-to-peer library in order to execute the scientific workflows in
the cloud. The built framework consists of three main parts: deployer, manager
and the estimator. The deployer sets up the machines in the cloud, the manager
executes the workflow with Pegasus and partitions it, while the estimator estimates
the execution time of the workflow. After the initial execution, users can run the
partitioned workflow, or if not satisfied, spawn a new deployment consisting of
different virtual machines and run the already partitioned workflow on top of it.
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5 Evaluation

This chapter shows the benefits gained when scheduling a scientific workflows tasks
using multilevel k-way partitioning, the accuracy and the algorithm of the time
estimation and the amount of time it takes to deploy a whole system to different
clouds.

5.1 Scheduling gains

As shown in the illustrative figure [4, the main benefit of scheduling of the tasks
in the cluster using METIS is the decrease of the inter-instance communication
while increasing intra-instance communication, i.e. the reduction of data transfers
between the machines.

Previously, it has been shown that the data transfer of a workflow can be
reduced up to &~ 70% [SV14], using the aforementioned technique. While the
previous work was focused on a single case (Montage), in this thesis, several other
workflows have been used (Section [subsubsection 2.2.1]).

Figure [14] and (15| show the data transfer differences of two custom workflows,
when running them in a cluster consisting of eight c4.xlarge machines (4 cores,
7Gb RAM), when using a random algorithm and METIS for task scheduling.

One can see, that the communication is decreased significantly, when using
graph partitioning. For example, in the Fibonacci workflows case, the data trans-
fer is reduced by astonishing ~ 95%, which means that the cost of running the
experiment is also reduced. For instance, Amazon charges $0.01 per GB of data
transfer in and out to EC2 when using a public IPv4 address.
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Figure 14: Fibonacci workflow data transfers
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An additional goal was to find out, if the k-way partitioning could also reduce
the overall runtime of an experiment, meaning that the cost associated with it,
could be reduced even further. To evaluate this, two different setups were used: six
ml.medium (2core, 4GB RAM) instances for the SoyBean workflow (two 153 MB
synthetic inputs with a synthetic 1GB reference file) and eight c4.xlarge instances
for the Montage workflow (5.0-degree 2mass).

As anticipated, the partitioning can not guarantee every time the reduction of
the makespan of a scientific workflow. Figures illustrate this clearly, where
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Figure 16: Montage workflow runtimes



in the Montage workflows case, the runtime is faster when using METIS, but in the
Soybeans case, it is indeterminable, meaning that the reduction of the execution
time is heavily dependent on the characteristics of the workflow.
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Figure 17: Soybean workflow runtimes

The Soybean workflow is a lot more CPU intensive than Montage, meaning that
the scheduling of tasks, whilst taking into account data transfers of the workflow,
can not ensure the decrease of the execution time (the same observation was made
on the Fibonacci workflow case). Although it is clear, that when a workflow is I/O
heavy, like Montage, which means it does not spend a lot of time on each tasks
CPU-wise, but its data, the makespan of the workflow can be reduced indeed, as
seen in figure

Another gain of partitioning, is the decrease of the overall input and output
operations in the computational cluster. This is directly correlated to the reduction
of the data transfers, i.e. the fewer data transfers are made between different
machines, the fewer unnecessary 1/O operations in the cluster are executed.

In order to verify this, the Fibonacci and the 5.0-degree Montage workflow
were run in a cluster consisting of eight c4.xlarge machines, while measuring the
I/O operations of the experiments. In the Fibonacci experiment, the total 1/O
operations made without the partitioning was 494137, while with METIS it was
395814, which is a difference of 98328 (19%) operations. In the Montage workflows
case, the numbers were respectively 710271 and 525250, resulting in 185021 (26%)
lesser I/O operations. To illustrate, Amazon EC2 [Amal charges $0.05 per 1 million
I/O requests. These expenses can grow significantly, when using workflows that
run for weeks or even months, but with the help of partitioning, these costs can
be easily reduced.
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5.2 Time estimation

As discussed, one of the key functionalities of the framework is the runtime esti-
mation of a workflow. This gives a scientist a base estimate, how many resources
one has to provision in order to finish an experiment under a certain amount of
time.

The pseudo-code to calculate the runtime of a workflow based on the number
of cores provisioned, is as following [PJDS14]:

Listing 2: Time estimation calculation pseudocode

function calculateMakeSpan(cores, levels, jobs) {
total_makespan = 0;
for (level : levels) {
jobs = level.getJobs()
total_runtime, max_runtime = 0
max_cores = jobs.size()
for (job : jobs) {
job_runtime = job.getRuntime ()
total_runtime += job_runtime
if (job_runtime > max_runtime) {
max_runtime = job_runtime
+
X
makespan = max((total_runtime/min(cores,max_cores))) ,max_runtime)
total_makespan += makespan;
X

return total_makespan;

¥

The workflow jobs are grouped into levels, using a top-down approach, when
traversing the graph of the workflow. For instance, the Montage workflow con-
sists only of 9 different levels, even though it could have tens of thousands of jobs.
For each level, the makespan is calculated separately with the equation:

total _runtime;ope;

makespanepe; = max( , max_runtime) (1)

min(cores, max_cores)

In essence, the makespan of a level, is either the amount of time it takes to execute
the longest job (maz_runtime) or the sum of all the job execution times in the level
(total_runtime) divided by the amount of cores provisioned.

The algorithm produces quite good results on its own, e.g, in 92 out of 95
experiments conducted by Ilia.Petri et al., the error was less than 20% [PJDS14].
To fine-tune the results even more, I introduced a scaling factor, which uses the
execution time of the first initial run.
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In order to scale up the estimation, a function to represent the line had to be
found. I plotted the time estimations gotten from the makespan algorithm and
drew log-log plots, which resulted more or less in a straight line, indicating that the
estimation lines could be represented by a function: log(y) = a*log(x) + b, which
simplifies to a polynomial y = 2% * e, where a is the slope and b is the intercept of
the curve. After finding the function of an estimation, the slope was modified so
that the estimation curve scales up and passes through the initial runtime point.

I conducted two experiments, one in Amazon, using c4.xlarge instances and
the other in OpenStack, using m1.xlarge (4core, 4GB RAM) machines to see the
accuracy of the makespan algorithm and the scale up.
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Figure 18: Makespan estimation of Fibonacci workflow
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Figure 19: Makespan estimation of 5.0-deg. Montage workflow
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The results of the experiments can be seen in the figures [1§ and [I9] where
in both cases, the estimation accuracy of the scaled runtime was better than the
baseline estimation. The error % for each point, when compared to the real run
for both of the experiments can be seen in the following tables:

Table 1: Error % for the Montage runtime estimations

machines—cores | Base estimate error % | Scaled error %
1—4 5 5.9

2—S8 5.2 0.18

4—16 7.8 0

8—32 22.6 18

16—64 21.5 25.4

Average error 12.4% 9.9%

Table 2: Error % for the Fibonacci runtime estimations

machines——cores | Base estimate error % | Scaled error %

1—4 5.4 24.5
2—S8 14.8 10.2
3—12 22.3 5.8
4—16 32.5 4.7
5—20 30.9 0
6—24 34.4 3.2
7—28 43.9 16
8§—32 29.7 28
Average error 29.7% 11.6%

In these experiments, the results were scaled using the center point of the
graph, which resulted in the most accurate result. For example, when scaling the
Fibonacci workflow up, using the point z = 1|4 (Figure , the average error is
29.2%, which is basically the same as the baseline estimation. During the real
deployment, the point that is going to be used for the scaling is taken from the
last execution of the workflow.

It is quite obvious, that these numbers can vary a lot due to various reasons,
such as cloud latencies, the choice of the scaling point, the workflow logs used for
the baseline estimation, to name a few. This means that the estimation results
should be taken as a rough guideline for finding the number of cores to provision
to a workflow.

40



5.3 Deployment times

Another interest was to find out the total duration of the deployment, i.e. the
time span of ”"bootstrapping”, and see if it can be sped up. For example, the
deployment of 8 c4.xlarge instances from a pre-made image in Amazon EC2 took
in total approximately 24 minutes with the framework, which was too long.

After a quick investigation, the problem lied in the configuration. Out of the
24 minutes, it took about 13 minutes to configure the eight instances. This was
due to the reason, that for every separate configuration command, a new SSH
connection was established. While this approach improves reliability and debug-
ging, it took too long to execute these commands sequentially. The solution for
this problem was executing the configuration commands all at once, for every in-
stance. This approach reduced the configuration time in this case from 13 minutes
to approximately 4 minutes.

Table 3| and 4| show the deployment times of six t2.micro instances (1core, 1GB
RAM) in Amazon and OpenStack, with and without a snapshot. From the tables,
one can see that there are big differences with the deployment to private and public
clouds. For example, the software setup takes an astounding 10 minutes longer in
our local SciCloud [SBV10] than in Amazon EC2. This is due to the fact, that the
downloading of the required software in Amazon is a lot faster. On the flip-side,
some of the deployment steps, like image creation or configuration is faster in the
SciCloud. Nevertheless, on average, the deployments took approximately the same
amount of time, i.e, in Amazon it took without and with an image (1849)/2 ~ 13
minutes to deploy, which is roughly the same as in OpenStack, (2245)/2 ~ 13
minutes.

The overall deployment time can vary significantly because it is mostly de-
pendent on the amount of instances launched and the workflow script provided.
For example, in the Montage workflow configuration script, one could download
all the input files to the local disk, increasing the total duration of deployment
remarkably.

Table 3: Deployment times without snapshot

Deployment step Amazon (time) | OpenStack (time)
First instance deployment 0:01:57 0:00:51

File uploads 0:01:15 0:00:55

Software setup 0:02:37 0:12:37

User script setup 0:00:05 0:00:05

Image creation 0:03:59 0:01:18

Rest of the instances creation | 0:05:08 0:05:18
Configuration 0:03:17 0:00:59

Total time 0:18:18 0:22:03
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Table 4: Deployment times with snapshot

Deployment step Amazon (time) | OpenStack (time)
First instance deployment 0:00:00 0:00:00

File uploads 0:00:00 0:00:00

Software setup 0:00:00 0:00:00

User script setup 0:00:00 0:00:00

Image creation 0:00:00 0:00:00

Rest of the instances creation | 0:05:58 0:04:27
Configuration 0:03:31 0:01:13

Total time 0:09:29 0:05:40

5.4 Summary

This chapter outlined the various experiments that were conducted in different
settings, in order to see the benefits of partitioning, the accuracy of the time
estimation and the configuration and set-up times of the framework. As found,
partitioning has many benefits like the reduction of I/O operations, the decrease
of data communication in the cluster and the occasional minimization of the exe-
cution times of a workflow.

The workflows makespan estimation algorithm of [PJDS14] was found to be
quite accurate on its own, but after scaling it up using an existing execution point,
the results were even more accurate. To bring an example, the error percent of the
runtime estimation of the ”fibonacci” workflow was reduced from 29.7% to 11.6%.

Finally, as anticipated, the configuration and set-up times of a deployment with
the built framework, were different on different clouds. For example, the software
setup in Amazon took only ~ 3 minutes, while the same step took approximately
10 minutes longer in our local SciCloud. Even with some major differences in
the configuration steps, on average, the deployment times (without and with a
snapshot) in OpenStack and Amazon were roughly the same (about 13.7 minutes).
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6 Conclusion

In this thesis, an open-source framework was developed in order to ease the pro-
cess of deploying, running and partitioning a scientific workflow in the cloud with
Pegasus SW{MS.

The framework provisions and configures the selected resources automatically
into multi-cloud environments (OpenStack or Amazon) using CloudML. After the
initial execution of the workflow, it is partitioned using the METIS toolkit.

Partitioning helps to decrease the data communication in the cluster and occa-
sionally shortens the execution time, reducing the overall cost of the experiment.
For example, the thesis observed that in some cases, the data transfers in the
computational cluster were reduced up to =~ 95%. Furthermore, the total I/O op-
erations made in the cluster, was also reduced. To illustrate, running a 5.0-degree
Montage workflow with partitioning, the amount of operations made was decreased
by 26%, which is hugely beneficial, considering that Amazon EC2 charges $0.05
per 1 million of I/O transfers made.

Additionally, a workflows time-estimation algorithm gotten from [PJDS14], was
introduced to the framework, in order for a scientist to have an approximate idea
how many resources to provision for a certain scientific workflow. The outcome
from the algorithm was scaled up using the initial execution point, in order to
produce even more accurate results. For instance, the initial time estimation was
improved in some cases by 18.1%. Also, a cost factor based on the time estimation
was implemented into the framework, so that the user has a better overview on
how many machines and at what cost to provide to a certain workflow, when taking
into account the execution time.

The overall time of deploying and configuring a system with the framework was
heavily dependent on the amount of machines specified, the cloud environment
used and the workflow provided. To illustrate, the overall process to provision and
configure six t2.micro instances without a snapshot took 18 minutes in Amazon,
but 22 minutes in OpenStack.

All in all, the framework helps a scientist to deploy and configure the needed
resources to the cloud with an ease, execute the workflow in an optimal manner
and provide a time/cost based guideline for the future executions.

6.1 Future research directions

Regarding the future work, there is much to be done and researched. The major
part of this thesis is based on the multilevel k-way partitioning, which has shown
promising results. One area of interest is to try different partitioning techniques to
see if there are big differences in the end results. Also, right now the partitioning
is done while taking into consideration only the data transfers of the jobs. Another
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approach could be adding also the CPU load of the tasks, to distribute the jobs
among the cluster even more accurately.

Development wise, the framework could benefit from several modifications like
the support of additional cloud vendors, e.g. Google Cloud, making the overall
process more reliable (Figure , even friendlier user interface, etc. Furthermore,
one key functionality worth adding, would be the support for a heterogeneous
setup among multiple clouds. Currently, all the machines deployed to the cluster
are the same type, running in the same cloud.

The time-estimation of a scientific workflow could also be improved. Instead of
constructing the baseline estimation from a single execution, to increase accuracy
even further, multiple runs should be incorporated. Additionally, the scaling up
of the workflow can be enhanced using several data points.
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