Tarkvara loomine erinevate k-keskmiste algoritmide rakendamiseks

Nimi
Joonas Puura
Kokkuvõte
Klasteranalüüsis on laialt levinud k-keskmiste meetod, mis võimaldab andmeid grupeerida nende tunnuste järgi, seejuures minimeerides ruutvigade summat klastrites olevate andmeobjektide ja vastava klastri keskpunktide vahel. Kuna k-keskmiste meetodi kui optimeerimisülesandele täpse lahenduse leidmine on NP-raske, siis on probleemi lahendamiseks võetud kasutusele mitmeid lähendeid otsivaid algoritme. Bakalaureusetöö eesmärgina valmis rakendus, mis lubab kasutada viit k-keskmiste klasterdusalgoritmi ja nelja algsete keskpunktide valimise meetodit. Kasutades nii reaalelulisi kui ka sünteetilisi andmestikke antakse ülevaade rakenduses implementeeritud algoritmide jõudlusest, mälukasutusest ja edukusest leida hea lähend k-keskmiste optimeerimisülesandele.
Lõputöö keel
eesti
Lõputöö tüüp
Bakalaureus - Informaatika
Juhendaja(d)
Jaak Vilo
Kaitsmise aasta
2016
 
PDF Lisad