Struktureeritud andmetest duplikaatide eemaldamine Apache Spark'iga

Nimi
Khalil Ur Rehman
Kokkuvõte
Üha rohkem avaldatakse veebis struktureeritud sisu, mis on loetav nii inimeste kui masinate poolt. Tänu otsimootorite loojatele, kes on defineerinud standardid struktureeritud sisu esitamiseks, teevad järjest rohkemad veebisaidid osa oma andmetest, nt toodete, isikute, organisatsioonide ja asukohtade kirjeldused, veebis avalikuks. Selleks kasutatakse RDFa, microdata jms vorminguid. Microdata on üks viimastest vormingutest ning saanud populaarseks suhteliselt lühikese aja jooksul. Sarnaselt on arenenud tehnoloogiad veebist struktureeritud sisu kättesaamiseks. Näiteks on Apache Any23, mis võimaldab veebilehtedest microdata andmeid eraldada ja linkandmetena kättesaadavaks teha. Samas pole struktureeritud andmete veebist kättesaamine enam suurim tehniline väljakutse. Nimelt on veebist saadud andmeid enne kasutamist vaja puhastada - eemaldada duplikaadid, lahendada ebakõlad ning hakkama tuleb saada ka ebamääraste andmetega.
Käesoleva magistritöö peamiseks fookuseks on efektiivse lahenduse loomine veebis leiduvatest linkandmetest duplikaatide eemaldamine suurte andmekoguste jaoks. Kuigi deduplikeerimise algoritmid on saavutanud suhtelise küpsuse, tuleb neid konkreetsete andmekomplektide jaoks siiski peenhäälestada. Eelkõige tuleb tuvastada sobivaim võtme pikkus kirjete sortimiseks. Käesolevas töös tuvastatakse optimaalne võtme pikkus veebis leiduvate tooteandmete deduplikeerimise kontekstis. Suurte andmemahtude tõttu kasutatakse Apache Spark'i deduplikeerimist hajusalgoritmide realiseerimiseks.
Lõputöö keel
inglise
Lõputöö tüüp
Magister - Tarkvaratehnika
Juhendaja(d)
Peep Küngas
Kaitsmise aasta
2016
 
PDF