Konvolutsionaalsed tehisnärvivõrgud rakupiltide segmenteerimiseks

Nimi
Sten-Oliver Salumaa
Kokkuvõte
Üha enam lülituvad algoritmid töö tegemisel väärtuslikeks abimeesteks. Tänapäevase tehnoloogia toel on võimalik inimesed vabastada lihtsamatest ülesannetest, et nad saaksid keskenduda teistele töödele, mis on arvuti jaoks keerulised. Üks abistavatest tehnoloogiatest on süvaõpe. Selle abil suudavad arvutid lahendada ülesandeid, mida varem peeti arvutite jaoks raskeks või koguni võimatuks.
Üheks selliseks tööks on erevälja rakupiltide segmenteerimine. Seda on tarvis eelkõige biomeditsiinilaborites ning ravimifirmades, mis peavad suurt hulka mikroskoobipilte analüüsima ja kvantifitseerima. Praegused tööprotsessid väldivad ereväljapiltide kasutust, kuna nende segmenteerimiseks pole tööstuslikke lahendusi ning käsitsi töötlemine on keerukas ja aeganõudev.
Magistritöö eesmärgiks on tõestada, et masinõpe suudab lahendada seni masinatele raskete ereväljapiltide segmenteerimise ülesande. Loodud lahendus aitab teadlastel üle maailma katsetada teisi uurimismeetodeid ja säästa palju aega.
Lõputöö keel
inglise
Lõputöö tüüp
Magister - Tarkvaratehnika
Juhendaja(d)
Leopold Parts, Dmytro Fishman
Kaitsmise aasta
2018
 
PDF