A Framework for Verifying Scalability and Performance of Cloud Based Web Applications

Name
Martti Vasar
Abstract
Network usage and bandwidth speeds have increased massively and vast majority of people are using Internet on daily bases. This has increased CPU utilization on servers meaning that sites with large visits are using hundreds of computers to accommodate increasing traffic rates to the services. Making plans for hardware ordering to upgrade old servers or to add new servers is not a straightforward process and has to be carefully considered. There is a need to predict traffic rate for future usage. Buying too many servers can mean revenue loss and buying too few servers can result in losing clients. To overcome this problem, it is wise to consider moving services into virtual cloud and make server provisioning as an automatic step. One of the popular cloud service providers, Amazon is giving possibility to use large amounts of computing power for running servers in virtual environment with single click. They are providing services to provision as many servers as needed to run, depending how loaded the servers are and whatever we need to do, to add new servers or to remove existing ones. This will eliminate problems associated with ordering new hardware. Adding new servers is an automatic process and will follow the demand, like adding more servers for peak hours and removing unnecessary servers at night or when the traffic is low. Customer pays only for the used resources on the cloud. This thesis focuses on setting up a testbed for the cloud that will run web application, which will be scaled horizontally (by replicating already running servers) and will use the benchmark tool for stressing out the web application, by simulating huge number of concurrent requests and proper load-balancing mechanisms. This study gives us a proper picture how servers in the cloud are scaled and whole process remains transparent for the end user, as it sees the web application as one server. In conclusion, the framework is helpful in analyzing the performance of cloud based applications, in several of our research activities.
Graduation Thesis language
English
Graduation Thesis type
Master - Information Technology
Supervisor(s)
Satish Narayana Srirama
Defence year
2012
 
PDF Extras