Role-Based Enterprise Mashups with State Sharing, Preservation and Restoration Support for Multi-Instance Executions

Name
Liisi Haav
Abstract
Recent hype on consumer web mashups has resulted in many general-purpose mashup frameworks and tools. These tools aim at simplifying the creation of mashups targeted to mainstream Internet users. At the same time, mashups are also used for solving specific business-related tasks. Such mashups are called enterprise mashups and more sophisticated frameworks and tools have been developed to support their creation. However, similarly to traditional web application development tools, the complexity of these frameworks is hindering the main benefits associated with mashup development – agility and simplicity. This thesis aims at extending a general-purpose mashup framework to support develop-ment of enterprise mashups while still preserving the simplicity and agility of develop-ment. More specifically, this thesis describes a solution for role-based decomposition of mashups for multi-instance executions with state sharing, preservation and restoration. In this thesis, a general-purpose mashup framework is extended with the concept of roles to support multi-user interaction and decomposing complex enterprise mashups with rich interactions into role-based views. In the context of this thesis, a view is defined as a subset of widgets a mashup is made of. Hence, through views an effective mechanism is provided for decomposing enterprise mashups to mashups as simple as general-purpose mashups. Additionally, this thesis proposes a generic solution for multi-instance mashup executions. In this thesis, each workflow instance is associated with an instance of a mashup. Since situational applications target at solving users day-to-day tasks, it is necessary to support multiple instances of a mashup. Furthermore, support for multiple mashup instances leverages users’ ability to participate in multiple workflow instances and to initialize new ones. Such mashup instances are in this thesis also referred to as mashup sessions. Finally, a solution is proposed for supporting mashup state sharing, preservation and restoration. Sharing states with other users is the key mechanism for facilitating interaction and collaboration between multiple users. State preservation and restoration are needed to allow a user to stop using the mashup and to resume to the same state at a later time. The proposed solution is also validated through a proof of concept application.
Graduation Thesis language
English
Graduation Thesis type
Master - Information Technology
Supervisor(s)
Peep Küngas
Defence year
2013
 
PDF