Comparative Evaluation for the Performance of Big Stream Processing Systems
Name
Elkhan Shahverdi
Abstract
Nowadays data is growing with tremendous acceleration, and this growing data must be processed properly if we want to have control over it. It pushes us to think about data stream processing. Most of the time, a data-intensive fraud detecting, trading, manufacturing, military and intelligence systems require processing data immediately (real-time). These kinds of systems need considerably ssophisticated pattern matching and correlations. However, other uses of stream processing have also emerged over time. In this thesis, we will benchmark to compare and contrast Apache Flink, Apache Storm, Heron, Kafka an Apache Spark stream processing engines. In these applications and domains, there is a crucial requirement to collect, process, and analyze significant streams of data to extract valuable information. This thesis aims to conduct an empirical evaluation and benchmarking of the state-of-the-art of big stream processing systems.
Graduation Thesis language
English
Graduation Thesis type
Master - Software Engineering
Supervisor(s)
Sherif Sakr
Defence year
2018