Object Detection Using LiDAR and Camera Fusion in Off-road Conditions
Name
Mahir Gulzar
Abstract
Since the boom in the industry of autonomous vehicles, the need for precise
environment perception and robust object detection methods has grown. While we are making progress with state-of-the-art in 2D object detection with approaches such as convolutional neural networks, the challenge remains in efficiently achieving the same level of performance in 3D. The reasons for this include limitations of fusing multi-modal data and the cost of labelling different modalities for training such networks. Whether we use a stereo camera to perceive scene’s ranging information or use time of flight ranging sensors such as LiDAR, the existing pipelines for object detection in point clouds have certain bottlenecks and latency issues which tend to affect the accuracy of detection in real time speed. Moreover, these existing methods are primarily implemented and tested over urban cityscapes.
This thesis presents a fusion based approach for detecting objects in 3D by projecting the proposed 2D regions of interest (object’s bounding boxes) or masks (semantically segmented images) to point clouds and applies outlier filtering techniques to filter out target object points in projected regions of interest. Additionally, we compare it with human detection using thermal image thresholding and filtering. Lastly, we performed rigorous benchmarks over the off-road environments to identify potential bottlenecks and to find a combination of pipeline parameters that can maximize the accuracy and performance of real-time object detection in 3D point clouds.
environment perception and robust object detection methods has grown. While we are making progress with state-of-the-art in 2D object detection with approaches such as convolutional neural networks, the challenge remains in efficiently achieving the same level of performance in 3D. The reasons for this include limitations of fusing multi-modal data and the cost of labelling different modalities for training such networks. Whether we use a stereo camera to perceive scene’s ranging information or use time of flight ranging sensors such as LiDAR, the existing pipelines for object detection in point clouds have certain bottlenecks and latency issues which tend to affect the accuracy of detection in real time speed. Moreover, these existing methods are primarily implemented and tested over urban cityscapes.
This thesis presents a fusion based approach for detecting objects in 3D by projecting the proposed 2D regions of interest (object’s bounding boxes) or masks (semantically segmented images) to point clouds and applies outlier filtering techniques to filter out target object points in projected regions of interest. Additionally, we compare it with human detection using thermal image thresholding and filtering. Lastly, we performed rigorous benchmarks over the off-road environments to identify potential bottlenecks and to find a combination of pipeline parameters that can maximize the accuracy and performance of real-time object detection in 3D point clouds.
Graduation Thesis language
English
Graduation Thesis type
Master - Computer Science
Supervisor(s)
Tambet Matiisen
Defence year
2019