Objektituvastus maastikul kasutades lidarit ja kaamerat

Nimi
Mahir Gulzar
Kokkuvõte
Seoses hüppelise huvi kasvuga autonoomsete sõidukite vastu viimastel aastatel on suurenenud ka vajadus täpsemate ja töökindlamate objektituvastuse meetodite järele. Kuigi tänu konvolutsioonilistele närvivõrkudele on palju edu saavutatud 2D objektituvastuses, siis võrreldavate tulemuste saavutamine 3D maailmas on seni jäänud unistuseks. Põhjuseks on mitmesugused probleemid eri modaalsusega sensorite andmevoogude ühitamisel, samuti on 3D maailmas märgendatud andmestike loomine aeganõudvam ja kallim. Sõltumata sellest, kas kasutame objektide kauguse hindamiseks stereo kaamerat või lidarit, kaasnevad andmevoogude ühitamisega ajastusprobleemid, mis raskendavad selliste lahenduste kasutamist reaalajas. Lisaks on enamus olemasolevaid lahendusi eelkõige välja töötatud ja testitud linnakeskkonnas liikumiseks.
Töös pakutakse välja meetod 3D objektituvastuseks, mis põhineb 2D objektituvastuse tulemuste (objekte ümbritsevad kastid või segmenteerimise maskid) projitseerimisel 3D punktipilve ning saadud punktipilve filtreerimisel klasterdamismeetoditega. Tulemusi võrreldakse lihtsa termokaamera piltide filtreerimisel põhineva lahendusega. Täiendavalt viiakse läbi põhjalikud eksperimendid parimate algoritmi parameetrite leidmiseks objektituvastuseks maastikul, saavutamaks suurimat võimalikku täpsust reaalajas.
Lõputöö keel
inglise
Lõputöö tüüp
Magister - Informaatika
Juhendaja(d)
Tambet Matiisen
Kaitsmise aasta
2019
 
PDF