Entropy Based Robust Watermarking Algorithm

Lauri Laur
With growth of digital media distributed over the Internet, concerns about security and piracy have emerged. The amount of digital media reproduction and tampering has brought a need for content watermarking. In this work, multiple robust watermarking algorithms are introduced. They embed watermark image into singular values of host image’s blocks with low entropy values. In proposed algorithms, host image is divided into blocks, and the entropy of each block is calculated. The average of all entropies indicates the chosen threshold value for selecting the blocks in which watermark image should be embedded. All blocks with entropy lower than the calculated threshold are decomposed into frequency subbands using discrete wavelet transform (DWT). Subsequently chirp z-transform (CZT) is applied to the low-frequency subband followed by an appropriate matrix decomposition such as lower and upper decomposition (LUD) or orthogonal-triangular decomposition (QR decomposition). By applying singular value decomposition (SVD) to diagonal matrices obtained by the aforementioned matrix decompositions, the singular values of each block are calculated. Watermark image is embedded by adding singular values of the watermark image to singular values of the low entropy blocks. Proposed algorithms are tested on many host and watermark images, and they are compared with conventional and other state-of-the-art watermarking techniques. The quantitative and qualitative experimental results are indicating that the proposed algorithms are imperceptible and robust against many signal processing attacks.
Graduation Thesis language
Graduation Thesis type
Master - Software Engineering
Assoc. Prof. Gholamreza Anbarjafari, Asst. Prof. Mary Agoyi
Defence year