Madala kvaliteediga sõrmejäljepiltide klassifitseerimine

Nimi
Pavlo Tertychnyi
Kokkuvõte
Traditsioonilised sõrmejälgede tuvastamise süsteemid kasutavad otsuste tegemisel minutiae punktide informatsiooni. Nagu selgub paljude varasemate tööde põhjal, ei ole sõrmejälgede pildid mitte alati piisava kvaliteediga, et neid saaks kasutada automaatsetes sõrmejäljetuvastuse süsteemides. Selle takistuse ületamiseks keskendub magistritöö väga madala kvaliteediga sõrmejälgede piltide tuvastusele – sellistel piltidel on mitmed üldteada moonutused, nagu kuivus, märgus, füüsiline vigastatus, punktide olemasolu ja hägusus.
Töö eesmärk on välja töötada efektiivne ja kõrge täpsusega sügaval närvivõrgul põhinev algoritm, mis tunneb sõrmejälje ära selliselt madala kvaliteediga pildilt. Eksperimentaalsed katsed sügavõppepõhise meetodiga näitavad kõrget tulemuslikkust ja robustsust, olles rakendatud praktikast kogutud madala kvaliteediga sõrmejälgede andmebaasil. VGG16 baseeruv sügavõppe närvivõrk saavutas kõrgeima tulemuslikkuse kuivade (93%) ja madalaima tulemuslikkuse häguste (84%) piltide klassifitseerimisel.
Lõputöö keel
inglise
Lõputöö tüüp
Magister - Informaatika
Juhendaja(d)
Gholamreza Anbarjafari
Kaitsmise aasta
2018
 
PDF Lisad