Model Driven Development and Analysis for Embedded Automotive Software

Liem Radita Tapaning Hesti
Model-driven development and analysis is the state of the art method in the automotive industry. One of the reasons for its heavy utilization is coming from the black box nature of the components developed by the automotive vehicle manufacturers. The other reasons are coming from the pressure to produce quality software that complies with all regulatory standards but can fit the pricing model of automotive vehicle manufacturers.

Validity and standard compliance of the components can be verified using models before the actual piece of software is deployed into an automotive vehicle. The utilization of the model also creates challenges: how to produce final software that precisely reflects how the model works. An automatically generated software from a model is deemed as an answer since it is coming from the already verified model and also will inherently retain consistency with the model. As software gets more and more critical inside an automotive vehicle, a model to create the software is getting more and more complicated and along with the automated software generation process.

This thesis examines the model-driven development and analysis process for automotive software by conducting model conversion from MATLAB/Simulink model into AUTOSAR. The application developed for this thesis provides analysis and insights for every step of the conversion process. From the insights gathered along the process, it shows that the different model and transformation method creates a different model representation that affects the final structure of the AUTOSAR result. In the end, there are several possible alternatives on the way a model can be seen and transformed into an AUTOSAR file. It is also concluded that the iterative process in this project is not final and can be further improved.
Graduation Thesis language
Graduation Thesis type
Master - Computer Science
Dr. Kalmer Apinis, Dr. Christian Saad
Defence year