Blockchain Oracles

Name
Kamran Mammadzada
Abstract
Blockchain technology has emerged as a potential disruptor of multiple industries and became an enabler for separate entities to trans-act in a secure and decentralized manner. Nevertheless, the blockchain technology in itself does not directly interact with the external data sources. External data, that is needed, is transferred by means of oracles. The research goal of this thesis is to explore the relationship between blockchain networks and oracles and develop a framework to help guide blockchain developers and decision makers in their blockchain projects. Few of the existing oracle projects have described similar efforts in their papers, but no systematic review has been made by authors. The framework, presented in the thesis, is developed based on Systematic Literature Review of existing blockchain projects involving oracles. It includes components such as type of information oracles collect, blockchain networks with which they interact as well as encryption of communication between the oracles and the data source. Additionally, oracle decision making, which captures how the information is passed to the oracle, along with the verification of that data and methods of integration of oracles with blockchain networks, play an important role in blockchain oracle projects. The results of the review demonstrate that blockchain oracles are complex solutions involving multiple components and aspects. They can be intangible or tangible and transport data from web or sensor devices respectively. Oracles can be used in all types of blockchain networks and integrated in different formats including custom smart contract interfaces or directly with blockchain nodes. They can be centralized or decentralized in terms of decision making and utilize various existing consensus mechanisms to decide on correctness of the data or simply trust the external data provider. These findings will help the blockchain developers demystify the potential usage or implementation of oracles in their blockchain projects and help bridge the gap between the virtual world of blockchain and the external environments.
Graduation Thesis language
English
Graduation Thesis type
Master - Innovation and Technology Management
Supervisor(s)
Fredrik Milani
Defence year
2019
 
PDF